A STRONG QUADRATIC FUNCTIONAL EQUATION IN C^{*}-ALGEBRAS

ASGHAR RAHIMI* AND ABBAS NAJATI**
*Department of Mathematics, Faculty of Basic Sciences
University of Maragheh, Maragheh, Iran
E-mail: asgharrahimi@yahoo.com
** Department of Mathematics, Faculty of Sciences
University of Mohaghegh Ardabili, Ardabil, Iran
E-mail: a.nejati@yahoo.com

Abstract

In this paper, we use a fixed point method to investigate the problem of stability on C^{*}-algebras of the strong quadratic functional equation $$
f(x)+f(y)=f\left(\sqrt{x x^{*}+y y^{*}}\right) .
$$

Key Words and Phrases: Generalized Hyers-Ulam stability, quadratic function, C^{*}-algebra, generalized metric space, fixed point.
2010 Mathematics Subject Classification: 39B72; 47H09, 47H10.

1. Introduction and preliminaries

In 1940, S.M. Ulam [41] posed the following question concerning the stability of group homomorphisms: Under what conditions does there exist a group homomorphism near an approximately group homomorphism?

In 1941, D.H. Hyers [15] considered the case of approximately additive functions $f: E \rightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon, \text { for all } x, y \in E
$$

T. Aoki [3] and Th.M. Rassias [35] provided a generalization of the Hyers' theorem for additive and linear mappings, respectively, by allowing the Cauchy difference to be unbounded (see also [4]).

Theorem 1.1. (Th.M. Rassias). Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$.
Then the limit $L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies, for all $x \in E$, the relation

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

If $p<0$ then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$. Also, if for each $x \in E$ the mapping $t \mapsto f(t x)$ is continuous in $t \in \mathbb{R}$, then L is linear.

Theorem 1.1 has been generalized by G.L. Forti [11, 12] and P. Găvruta [13] who permitted the Cauchy difference to be bounded by a general control function. During the last three decades a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings (see [5], [6], [7], [10], [14], [18], [19], [21], [23], [24], [26]-[34] and [36]-[38]). We also refer the readers to the books [1], [8], [17], [22] and [39]. The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.3}
\end{equation*}
$$

is called a quadratic functional equation. In particular, every solution of the quadratic equation (1.3) is said to be a quadratic function. Quadratic functional equations were used to characterize inner product spaces. It is well known that a function f between real vector spaces is quadratic if and only if there exists a unique symmetric bi-additive function B such that $f(x)=B(x, x)$ for all x (see [1, 2, 20, 24]. The bi-additive function B is given by

$$
B(x, y)=\frac{1}{4}[f(x+y)-f(x-y)] .
$$

The Hyers-Ulam stability problem for the quadratic functional equation (1.3) was proved by Skof [40] for functions $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group. In the paper [7], Czerwik proved the generalized Hyers-Ulam stability of the quadratic functional equation (1.3). Grabiec [14] has generalized these results mentioned above. Jun and Lee [21] proved the generalized Hyers-Ulam stability of a Pexiderized quadratic equation.

Let E be a set. A function $d: E \times E \rightarrow[0, \infty]$ is called a generalized metric on E if d satisfies the usual axioms of a metric.

We recall the following theorem by Margolis and Diaz.
Theorem 1.2. [25] Let (E, d) be a complete generalized metric space and let $J: E \rightarrow$ E be a strictly contractive mapping with Lipschitz constant $L<1$. Then for each given element $x \in E$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=\infty
$$

for all non-negative integers n or there exists a non-negative integer n_{0} such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in E: d\left(J^{n_{0}} x, y\right)<\infty\right\}$;
(4) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Throughout this paper A will be a C^{*}-algebra. We denote by \sqrt{a} the unique positive element $b \in A$ such that $b^{2}=a$. Also, we denote by \mathbb{R}, \mathbb{C} and \mathbb{Q} the set of real, complex and rational numbers, respectively. In this paper, we use a fixed point
method (see $[5,23,26]$) to investigate the problem of stability of the strong quadratic (or simply s-quadratic) functional equation

$$
\begin{equation*}
f(x)+f(y)=f\left(\sqrt{x x^{*}+y y^{*}}\right) \tag{1.4}
\end{equation*}
$$

on C^{*}-algebras. In particular, every solution of the s-quadratic equation (1.4) is said to be a s-quadratic function. For some results on fixed point theorems in nonlinear analysis we refer the reader to $[9,16,19,42]$.

2. Solutions of Eq. (1.4)

Theorem 2.1. Let X be a linear space. If a function $f: A \longrightarrow X$ satisfies the functional equation (1.4), then f is quadratic.

Proof. Letting $x=y=0$, in (1.4), we get $f(0)=0$. Replacing x and y by $x+y$ and $x-y$ in (1.4), respectively, we get

$$
\begin{equation*}
f(x+y)+f(x-y)=f\left(\sqrt{2 x x^{*}+2 y y^{*}}\right) \tag{2.1}
\end{equation*}
$$

for all $x, y \in A$. It follows from (1.4) that $f(\sqrt{2} x)+f(\sqrt{2} y)=f\left(\sqrt{2 x x^{*}+2 y y^{*}}\right)$ for all $x, y \in A$. Therefore we have from (2.1) that

$$
\begin{equation*}
f(x+y)+f(x-y)=f(\sqrt{2} x)+f(\sqrt{2} y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in A$. Setting $y=0$ in (2.2), we get

$$
\begin{equation*}
f(\sqrt{2} x)=2 f(x) \tag{2.3}
\end{equation*}
$$

for all $x \in A$. It follows from (2.2) and (2.3) that $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ for all $x \in A$. Hence f is quadratic.
Remark 2.1. Let $f: A \rightarrow A$ be the mapping defined by $f(x)=x^{2}$ for all $x \in A$. It is clear that f is quadratic. Let $a \neq 0$ be a positive element of A. Hence f does not satisfy in (1.4) for $x=y=i \sqrt{a}$. Therefore f is not s-quadratic.

Corollary 2.2. Let X be a linear space. If a function $f: A \longrightarrow X$ satisfies the functional equation (1.4), then there exists a symmetric bi-additive function $B: A \times$ $A \rightarrow X$ such that $f(x)=B(x, x)$ for all $x \in A$.

3. Generalized Hyers-Ulam stability of Eq. (1.4) on C^{*}-algebras

In this section, we use a fixed point method (see [5, 23, 26]) to investigate the problem of stability of the functional equation (1.4) on C^{*}-algebras. For convenience, we use the following abbreviation for a given function $f: A \rightarrow X$:

$$
D f(x, y):=f(x)+f(y)-f\left(\sqrt{x x^{*}+y y^{*}}\right)
$$

for all $x, y \in A$, where X is a normed linear space.
Theorem 3.1. Let X be a linear space and let $f: A \rightarrow X$ be a function with $f(0)=0$ for which there exists a function $\varphi: A^{2} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\|D f(x, y)\| \leq \varphi(x, y) \tag{3.1}
\end{equation*}
$$

for all $x, y \in A$. If there exists a constant $0<L<1$ such that

$$
\begin{equation*}
\varphi(2 x, 2 y) \leq 4 L \varphi(x, y) \tag{3.2}
\end{equation*}
$$

for all $x, y \in A$, then there exists a unique s-quadratic function $Q: A \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{4-4 L} \phi(x) \tag{3.3}
\end{equation*}
$$

for all $x \in A$, where $\phi(x):=\varphi(\sqrt{2} x, \sqrt{2} x)+\varphi(2 x, 0)+2 \varphi(\sqrt{2} x, 0)+2 \varphi(x, x)$.
Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then Q is \mathbb{R}-quadratic, i.e., $Q(t x)=t^{2} Q(x)$ for all $x \in A$ and all $t \in \mathbb{R}$.

Proof. It follows from (3.1) and (3.2) that

$$
\begin{gather*}
\left\|f(\sqrt{2} x)+f(\sqrt{2} y)-f\left(\sqrt{2 x x^{*}+2 y y^{*}}\right)\right\| \leq \varphi(\sqrt{2} x, \sqrt{2} y), \tag{3.4}\\
\lim _{k \rightarrow \infty} \frac{1}{4^{k}} \varphi\left(2^{k} x, 2^{k} y\right)=0 \tag{3.5}
\end{gather*}
$$

for all $x, y \in A$. Replacing x and y by $x+y$ and $x-y$ in (3.1), respectively, we get

$$
\begin{equation*}
\left\|f(x+y)+f(x-y)-f\left(\sqrt{2 x x^{*}+2 y y^{*}}\right)\right\| \leq \varphi(x+y, x-y) \tag{3.6}
\end{equation*}
$$

for all $x, y \in A$. It follows from (3.4) and (3.6) that

$$
\begin{align*}
& \|f(x+y)+f(x-y)-f(\sqrt{2} x)-f(\sqrt{2} y)\| \\
& \quad \leq \varphi(\sqrt{2} x, \sqrt{2} y)+\varphi(x+y, x-y) \tag{3.7}
\end{align*}
$$

for all $x, y \in A$. Letting $y=0$ in (3.7), we get

$$
\begin{equation*}
\|2 f(x)-f(\sqrt{2} x)\| \leq \varphi(\sqrt{2} x, 0)+\varphi(x, x) \tag{3.8}
\end{equation*}
$$

for all $x \in A$. Therefore we have from (3.7) and (3.8) that

$$
\begin{align*}
& \|f(x+y)+f(x-y)-2 f(x)-2 f(y)\| \\
& \quad \leq \varphi(\sqrt{2} x, \sqrt{2} y)+\varphi(x+y, x-y) \tag{3.9}\\
& \quad+\varphi(\sqrt{2} x, 0)+\varphi(x, x)+\varphi(\sqrt{2} y, 0)+\varphi(y, y)
\end{align*}
$$

for all $x, y \in A$. Setting $x=y$ in (3.9), we get

$$
\begin{equation*}
\|f(2 x)-4 f(x)\| \leq \phi(x) \tag{3.10}
\end{equation*}
$$

for all $x \in A$. By (3.2) we have $\phi(2 x) \leq 4 L \phi(x)$ for all $x \in A$. Let E be the set of all functions $g: A \rightarrow X$ with $g(0)=0$ and introduce a generalized metric on E as follows:

$$
d(g, h):=\inf \{C \in[0, \infty]:\|g(x)-h(x)\| \leq C \phi(x) \quad \text { for all } x \in A\}
$$

It is easy to show that (E, d) is a generalized complete metric space [5].
Now we consider the function $\Lambda: E \rightarrow E$ defined by

$$
(\Lambda g)(x)=\frac{1}{4} g(2 x), \quad \text { for all } g \in E \text { and } x \in A
$$

Let $g, h \in E$ and let $C \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq C$. From the definition of d, we have $\|g(x)-h(x)\| \leq C \phi(x)$, for all $x \in A$. By the assumption and the last inequality, we have

$$
\|(\Lambda g)(x)-(\Lambda h)(x)\|=\frac{1}{4}\|g(2 x)-h(2 x)\| \leq \frac{1}{4} C \phi(2 x) \leq C L \phi(x), \text { for all } x \in A .
$$

Thus $d(\Lambda g, \Lambda h) \leq L d(g, h)$, for any $g, h \in E$. It follows from (3.10) that $d(\Lambda f, f) \leq \frac{1}{4}$. Therefore according to Theorem 1.2, the sequence $\left\{\Lambda^{k} f\right\}$ converges to a fixed point Q of Λ, i.e.,

$$
Q: A \rightarrow X, \quad Q(x)=\lim _{k \rightarrow \infty}\left(\Lambda^{k} f\right)(x)=\lim _{k \rightarrow \infty} \frac{1}{4^{k}} f\left(2^{k} x\right)
$$

and $Q(2 x)=4 Q(x)$ for all $x \in A$. Also Q is the unique fixed point of Λ in the set $E^{*}=\{g \in E: d(f, g)<\infty\}$ and

$$
d(Q, f) \leq \frac{1}{1-L} d(\Lambda f, f) \leq \frac{1}{4-4 L}
$$

i.e., inequality (3.3) holds true for all $x \in A$. It follows from the definition of Q, (3.1) and (3.5) that

$$
\|D Q(x, y)\|=\lim _{k \rightarrow \infty} \frac{1}{4^{k}}\left\|D f\left(2^{k} x, 2^{k} y\right)\right\| \leq \lim _{k \rightarrow \infty} \frac{1}{4^{k}} \varphi\left(2^{k} x, 2^{k} y\right)=0
$$

for all $x, y \in A$. So Q is s-quadratic. By Theorem 2.1, the function $Q: A \rightarrow X$ is quadratic. Finally it remains to prove the uniqueness of Q. Let $T: A \rightarrow X$ be another s-quadratic function satisfying (3.3). Since $d(f, T) \leq \frac{1}{4-4 L}$ and T is quadratic, we get $T \in E^{*}$ and $(\Lambda T)(x)=\frac{1}{4} T(2 x)=T(x)$ for all $x \in A$, i.e., T is a fixed point of Λ. Since Q is the unique fixed point of Λ in E^{*}, then $T=Q$. Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then by the same reasoning as in the proof of [35] Q is \mathbb{R}-quadratic.

Corollary 3.2. Let $0<r<2$ and θ, δ be non-negative real numbers and let $f: A \rightarrow$ X be a function with $f(0)=0$ such that

$$
\|D f(x, y)\| \leq \delta+\theta\left(\|x\|^{r}+\|y\|^{r}\right)
$$

for all $x, y \in A$. Then there exists a unique s-quadratic function $Q: A \rightarrow X$ such that

$$
\|f(x)-Q(x)\| \leq \frac{6 \delta}{4-2^{r}}+\frac{4+4(\sqrt{2})^{r}+2^{r}}{4-2^{r}} \theta\|x\|^{r}
$$

for all $x \in A$. Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then Q is \mathbb{R}-quadratic.

The following theorem is an alternative result of Theorem 3.1 and we leave its proof to the reader.
Theorem 3.3. Let $f: A \rightarrow X$ be a function for which there exists a function φ : $A^{2} \rightarrow[0, \infty)$ satisfying (3.1) for all $x, y \in A$. If there exists a constant $0<L<1$ such that

$$
4 \varphi(x, y) \leq L \varphi(2 x, 2 y)
$$

for all $x, y \in A$, then there exists a unique s-quadratic function $Q: A \rightarrow X$ such that

$$
\|f(x)-Q(x)\| \leq \frac{L}{4-4 L} \phi(x)
$$

for all $x \in A$, where $\phi(x)$ is defined as in Theorem 3.1. Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then Q is \mathbb{R}-quadratic.

Corollary 3.4. Let $r>2$ and θ be non-negative real numbers and let $f: A \rightarrow X$ be an even function such that

$$
\|D f(x, y)\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}\right)
$$

for all $x, y \in A$. Then there exists a unique s-quadratic function $Q: A \rightarrow X$ such that

$$
\|f(x)-Q(x)\| \leq \frac{4+4(\sqrt{2})^{r}+2^{r}}{2^{r}-4} \theta\|x\|^{r}
$$

for all $x \in A$. Moreover, if $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in A$, then Q is \mathbb{R}-quadratic.

For the case $r=2$ we have the following counterexample which is a modification of the example of S. Czwerwik [7].

Example 3.1. Let $\phi: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
\phi(x):= \begin{cases}|x|^{2} & \text { for }|x|<1 \\ 1 & \text { for }|x| \geq 1\end{cases}
$$

Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}$ by the formula

$$
f(x):=\sum_{n=0}^{\infty} \frac{1}{4^{n}} \phi\left(2^{n} x\right)
$$

It is clear that f is continuous and bounded by $\frac{4}{3}$ on \mathbb{C}. We prove that

$$
\begin{equation*}
\left|f(x)+f(y)-f\left(\sqrt{|x|^{2}+|y|^{2}}\right)\right| \leq 16\left(|x|^{2}+|y|^{2}\right) \tag{3.11}
\end{equation*}
$$

for all $x, y \in \mathbb{C}$. To see this, if $|x|^{2}+|y|^{2}=0$ or $|x|^{2}+|y|^{2} \geq \frac{1}{4}$, then

$$
\left|f(x)+f(y)-f\left(\sqrt{|x|^{2}+|y|^{2}}\right)\right| \leq 4 \leq 16\left(|x|^{2}+|y|^{2}\right)
$$

Now suppose that $|x|^{2}+|y|^{2}<\frac{1}{4}$. Then there exists a positive integer k such that

$$
\begin{equation*}
\frac{1}{4^{k+1}} \leq|x|^{2}+|y|^{2}<\frac{1}{4^{k}} \tag{3.12}
\end{equation*}
$$

Then $2^{k}|x|, 2^{k}|y|, 2^{k} \sqrt{|x|^{2}+|y|^{2}} \in(-1,1)$ and $2^{m}|x|, 2^{m}|y|, 2^{m} \sqrt{|x|^{2}+|y|^{2}} \in(-1,1)$, for all $m=0,1, \ldots, k$.

From the definition of f and (3.12), we have

$$
\begin{aligned}
& \left|f(x)+f(y)-f\left(\sqrt{|x|^{2}+|y|^{2}}\right)\right| \\
& \quad=\left\lvert\, \sum_{n=k+1}^{\infty} \frac{1}{4^{n}}\left[\phi\left(2^{n} x\right)+\phi\left(2^{n} y\right)+\phi\left(2^{n} \sqrt{|x|^{2}+|y|^{2}}\right) \mid\right.\right. \\
& \quad \leq 3 \sum_{n=k+1}^{\infty} \frac{1}{4^{n}}=\frac{4}{4^{k+1}} \leq 4\left(|x|^{2}+|y|^{2}\right) .
\end{aligned}
$$

Therefore f satisfies (3.11). Let $Q: \mathbb{C} \rightarrow \mathbb{C}$ be a quadratic function such that $\left.||f(x)-Q(x)| \leq \beta| x\right|^{2}$, for all $x \in \mathbb{C}$, where β is a positive constant. Then there exists a constant $c \in \mathbb{C}$ such that $Q(x)=c x^{2}$ for all $x \in \mathbb{Q}$. So we have

$$
\begin{equation*}
|f(x)| \leq(\beta+|c|)|x|^{2} \tag{3.13}
\end{equation*}
$$

for all $x \in \mathbb{Q}$. Let $m \in \mathbb{N}$ with $m>\beta+|c|$. If $x_{0} \in\left(0,2^{-m}\right) \cap \mathbb{Q}$, then $2^{n} x_{0} \in(0,1)$ for all $n=0,1, \ldots, m-1$. So

$$
f\left(x_{0}\right) \geq \sum_{n=0}^{m-1} \frac{1}{4^{n}} \phi\left(2^{n} x_{0}\right)=m x_{0}^{2}>(\beta+|c|) x_{0}^{2}
$$

which contradicts (3.13).
Acknowledgment. The authors would like to thank the referee for a number of valuable suggestions regarding a previous version of this paper.

References

[1] J. Aczél, J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, 1989.
[2] D. Amir, Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986.
[3] T. Aoki, On the stability of the linear transformations in Banach spaces, J. Math. Soc. Japan 2(1950), 64-66.
[4] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57(1951), 223-237.
[5] L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346(2004), 43-52.
[6] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., $\mathbf{2 7}(1984)$ 76-86.
[7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62(1992), 59-64.
[8] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[9] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, 1985.
[10] V.A. Faizev, Th.M. Rassias, P.K. Sahoo, The space of (ψ, γ)-additive mappings on semigroups, Trans. Amer. Math. Soc., 354(2002), no. 11, 4455-4472.
[11] G.L. Forti, An existence and stability theorem for a class of functional equations, Stochastica, 4(1980), 23-30.
[12] G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50(1995), 143-190.
[13] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
[14] A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen, 48(1996), 217-235.
[15] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27(1941), 222-224.
[16] D.H. Hyers, G. Isac, Th.M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific Publishing Company, 1997.
[17] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[18] D.H. Hyers, Th.M. Rassias, Approximate homomorphisms, Aequationes Mathematicae, 44(1992), 125-153.
[19] G. Isac, Th.M. Rassias, Stability of Ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci., 19(1996), 219-228.
[20] P. Jordan, J. von Neumann, On inner products in linear metric spaces, Ann. of Math., 36(1935), 719-723.
[21] K. Jun, Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl., 4(2001), 93-118.
[22] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001.
[23] S.-M. Jung, T.-S. Kim, A fixed point approach to stability of cubic functional equation, Bol. Soc. Mat. Mexicana, 12 (2006), 51-57.
[24] P. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27(1995), 368-372.
25] B. Margolis, J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74(1968), 305-309.
[26] M. Mirzavaziri, M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37(2006), 361-376.
27] M.S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Difference Equat. Appl., 11(2005), 999-1004.
[28] M.S. Moslehian, Th.M. Rassias, Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math., 1(2007), 325-334.
[29] A. Najati, Hyers-Ulam stability of an n-Apollonius type quadratic mapping, Bull. Belgian Math. Soc.-Simon Stevin, 14(2007), 755-774.
[30] A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl., 340(2008), 569-574.
[31] A. Najati, M.B. Moghimi, Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., 337(2008), 399-415.
[32] A. Najati, C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the Pexiderized Cauchy functional equation, J. Math. Anal. Appl., 335(2007), 763-778.
[33] A. Najati, C. Park, The Pexiderized Apollonius-Jensen type additive mapping and isomorphisms between C^{*}-algebras, J. Difference Equat. Appl., 14(2008), 459-479.
[34] C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., $275(2002), 711-720$.
[35] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 1978), 297-300.
[36] Th.M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158(1991), 106-113.
[37] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62(2000), No. 1, 23-130.
[38] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 2000), 264-284.
[39] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
[40] F. Skof, Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53(1983), 113-129.
[41] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
[42] E. Zeidler, Nonlinear Functional Analysis and its Applications, Volume I, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985.

Received: March 26, 2009; Accepted: June 16, 2010.

