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1. INTRODUCTION AND PRELIMINARIES

In 1940, S.M. Ulam [41] posed the following question concerning the stability of
group homomorphisms: Under what conditions does there exist a group homomor-
phism near an approximately group homomorphism?

In 1941, D.H. Hyers [15] considered the case of approximately additive functions
f:E — E’', where E and E’ are Banach spaces and f satisfies Hyers inequality

If(x+y) = f(z) = [yl <€ forallz,y € E.

T. Aoki [3] and Th.M. Rassias [35] provided a generalization of the Hyers’ theorem
for additive and linear mappings, respectively, by allowing the Cauchy difference to
be unbounded (see also [4]).

Theorem 1.1. (Th.M. Rassias). Let f : E — E’ be a mapping from a normed vector
space E into a Banach space E' subject to the inequality

I1f(z+y) = fz) = F@)I < e(ll=]” + [lyl”) (1.1)
for all x,y € E, where € and p are constants with € > 0 and p < 1.
Then the limit L(xz) = lim,— f(g:;v) exists for allx € E and L : E — E’ is the
unique additive mapping which satisfies, for all x € E, the relation

2¢
I£@) - L@l < 5

361

(el (1.2)



362 ASGHAR RAHIMI AND ABBAS NAJATI

If p < 0 then inequality (1.1) holds for x,y # 0 and (1.2) for x # 0. Also, if for each
x € E the mapping t — f(tx) is continuous in t € R, then L is linear.

Theorem 1.1 has been generalized by G.L. Forti [11, 12] and P. Gavruta [13] who
permitted the Cauchy difference to be bounded by a general control function. Dur-
ing the last three decades a number of papers and research monographs have been
published on various generalizations and applications of the generalized Hyers-Ulam
stability to a number of functional equations and mappings (see [5], [6], [7], [10], [14],
[18], [19], [21], [23], [24], [26]-[34] and [36]-[38]). We also refer the readers to the books
[1], [8], [17], [22] and [39]. The functional equation

fle+y)+ flz—y) =2f(x) +2f(y) (1.3)

is called a quadratic functional equation. In particular, every solution of the quadratic
equation (1.3) is said to be a quadratic function. Quadratic functional equations
were used to characterize inner product spaces. It is well known that a function f
between real vector spaces is quadratic if and only if there exists a unique symmetric
bi-additive function B such that f(z) = B(xz,x) for all z (see [1, 2, 20, 24]. The
bi-additive function B is given by

HICE R rEn

The Hyers-Ulam stability problem for the quadratic functional equation (1.3) was
proved by Skof [40] for functions f : E; — Es, where Ej is a normed space and Fs is a
Banach space. Cholewa [6] noticed that the theorem of Skof is still true if the relevant
domain Ej is replaced by an Abelian group. In the paper [7], Czerwik proved the
generalized Hyers-Ulam stability of the quadratic functional equation (1.3). Grabiec
[14] has generalized these results mentioned above. Jun and Lee [21] proved the
generalized Hyers-Ulam stability of a Pexiderized quadratic equation.

Let E be a set. A function d: E x E — [0,00] is called a generalized metric on E
if d satisfies the usual axioms of a metric.

We recall the following theorem by Margolis and Diaz.

B((E,y) =

Theorem 1.2. [25] Let (E,d) be a complete generalized metric space and let J : E —
E be a strictly contractive mapping with Lipschitz constant L < 1. Then for each
given element x € E, either

d(J"z, J" " x) = 0o
for all non-negative integers n or there exists a non-negative integer ng such that

(1) d(J"z, J"Ta) < oo for all n > ng;

(2) the sequence {J™x} converges to a fized point y* of J;

(3) y* is the umque fized point of J in the set Y ={y € E:d(J™x,y) < o0 };
(4)

d(y,y*) < 1= Ld(y,Jy) forallyeY.

Throughout this paper A will be a C*-algebra. We denote by /a the unique
positive element b € A such that b> = a. Also, we denote by R,C and Q the set of
real, complex and rational numbers, respectively. In this paper, we use a fixed point
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method (see [5, 23, 26]) to investigate the problem of stability of the strong quadratic
(or simply s-quadratic) functional equation

f@) + fly) = [(Voz* +yy* ) (1.4)

on C*-algebras. In particular, every solution of the s-quadratic equation (1.4) is said
to be a s-quadratic function. For some results on fixed point theorems in nonlinear
analysis we refer the reader to [9, 16, 19, 42].

2. SOLUTIONS OF Eq. (1.4)

Theorem 2.1. Let X be a linear space. If a function f : A — X satisfies the
functional equation (1.4), then f is quadratic.
Proof. Letting x =y = 0, in (1.4), we get f(0) = 0. Replacing = and y by 2 + y and
x —y in (1.4), respectively, we get

fl@+y)+ flz—y) = f(V2r2* +2yy* ) (2.1)

for all z,y € A. Tt follows from (1.4) that f(v/2x) + f(v/2y) = f(v/2xx* + 2yy* ) for
all z,y € A. Therefore we have from (2.1) that

fla+y) + fla —y) = F(V22) + f(V2y) (2:2)

for all z,y € A. Setting y = 0 in (2.2), we get
F(V2x) = 2f(x) (2.3)
for all z € A. It follows from (2.2) and (2.3) that f(x +y) + f(x —y) = 2f(x) +2f(y)
for all x € A. Hence f is quadratic. O

Remark 2.1. Let f : A — A be the mapping defined by f(z) = 22 for all x € A. It
is clear that f is quadratic. Let a # 0 be a positive element of A. Hence f does not
satisfy in (1.4) for x = y = iy/a. Therefore f is not s-quadratic.

Corollary 2.2. Let X be a linear space. If a function f : A — X satisfies the
functional equation (1.4), then there exists a symmetric bi-additive function B : A X
A — X such that f(x) = B(z,x) for all x € A.

3. GENERALIZED HYERS-ULAM STABILITY OF EQ. (1.4) ON C*-ALGEBRAS

In this section, we use a fixed point method (see [5, 23, 26]) to investigate the
problem of stability of the functional equation (1.4) on C*-algebras. For convenience,
we use the following abbreviation for a given function f: A — X :

Df(z,y) := f(z) + f(y) = f(Vwz* +yy* )
for all x,y € A, where X is a normed linear space.

Theorem 3.1. Let X be a linear space and let f : A — X be a function with f(0) =0
for which there exists a function ¢ : A%> — [0,00) such that

IDf(z, y)ll < o(z,y) (3.1)
for all x,y € A. If there exists a constant 0 < L < 1 such that

©(2z,2y) < 4Lp(z,y) (3.2)
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for all x,y € A, then there exists a unique s-quadratic function @ : A — X such that

1
1£(2) - Q@) £ =7 6() (33)

for all x € A, where ¢(z) := p(v/2x,v/22) + ©(22,0) + 20(/21,0) + 2p(z, 2).
Moreover, if f(tx) is continuous in t € R for each fized x € A, then Q is R-quadratic,
i.e., Q(tx) = t2Q(x) for all x € A and all t € R.

Proof. Tt follows from (3.1) and (3.2) that

1£(V22) + f(V2y) = f(/ 222" + 2yy" )| < o(V22,V2y), (34)
. 1 k.. ok
khiglO 4—k<p(2 z,2%y) =0 (3.5)
for all z,y € A. Replacing = and y by = + y and  — y in (3.1), respectively, we get
1f(@+y)+ flz—y) — f(V2ez +2yy* )| < p(z +y, 2 —y) (3.6)

for all z,y € A. It follows from (3.4) and (3.6) that
I (@ +y) + fz —y) = F(V22) - f(V2y)]
< o(V22,V2y) + o(z + y, 2 — )
for all z,y € A. Letting y = 0 in (3.7), we get
12/ (z) = F(V22)]| < (V22,0) + p(, z) (3.8)
for all x € A. Therefore we have from (3.7) and (3.8) that
1f(x+y)+ flz —y) —2f(x) = 2f (W)l
< o(V22,V2y) + p(x + y, x — y) (3.9)
+¢(V22,0) + p(x,2) + ¢(V2y,0) + (y,9)
for all z,y € A. Setting x = y in (3.9), we get
1f(22) — 4f(2)]| < o(x) (3.10)

for all x € A. By (3.2) we have ¢(2z) < 4L¢(z) for all © € A. Let E be the set of
all functions g : A — X with ¢g(0) = 0 and introduce a generalized metric on F as
follows:

d(g,h) :=inf{C € [0,00] : ||g(z) — h(z)]| < Cp(xz) forallze A}.

It is easy to show that (E,d) is a generalized complete metric space [5].
Now we consider the function A : E — E defined by

1
(Ag)(x) = Zg(QJ:), for all g € F and z € A.

Let g,h € E and let C € [0, 00] be an arbitrary constant with d(g,h) < C. From the
definition of d, we have ||g(z) — h(z)|| < Cp(x), for all z € A. By the assumption and
the last inequality, we have

I(Ag)(x) — (AR)(x)| = {ll9(20) — h(2)]| < CB(2r) < OLO(w), for all & € A.
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Thus d(Ag, Ah) < Ld(g, h), for any g, h € E. It follows from (3.10) that d(Af, f) < 1.
Therefore according to Theorem 1.2, the sequence {A¥f} converges to a fixed point
Q of A, ie.,

QA= X, Q)= lim (\*f)@) = lim - f(2"0)

and Q(2z) = 4Q(z) for all x € A. Also @ is the unique fixed point of A in the set
E*={g€eFE:d(f,g) <o} and

1

i.e., inequality (3.3) holds true for all z € A. It follows from the definition of @, (3.1)
and (3.5) that
.1 k. ok o1 k,. ok
1DQ(z,y)l| = lim 7 |[Df(2°2,2%y)[| < lim (2", 2%y) = 0
for all z,y € A. So Q is s-quadratic. By Theorem 2.1, the function Q : A — X is
quadratic. Finally it remains to prove the uniqueness of (). Let T': A — X be another

s-quadratic function satisfying (3.3). Since d(f,T) < 4_14L and T is quadratic, we

get T € E* and (AT)(z) = $T(2z) = T(x) for all z € A, i.e., T is a fixed point of
A. Since @ is the unique fixed point of A in E*, then T' = Q. Moreover, if f(tz) is
continuous in ¢ € R for each fixed = € A, then by the same reasoning as in the proof

of [35] @ is R-quadratic. O

Corollary 3.2. Let 0 <r < 2 and 0,6 be non-negative real numbers and let f : A —
X be a function with f(0) =0 such that

IDf(z,y)ll <6+ 0zl + llyllI")
for all x,y € A. Then there exists a unique s-quadratic function Q : A — X such that

66 44+4(v2)" + 27
_ < r
17) = QI < 1o + 2 e
for all x € A. Moreover, if f(tx) is continuous in t € R for each fived x € A, then Q
is R-quadratic.

The following theorem is an alternative result of Theorem 3.1 and we leave its
proof to the reader.

Theorem 3.3. Let f: A — X be a function for which there exists a function ¢ :
A? — [0,00) satisfying (3.1) for all z,y € A. If there exists a constant 0 < L < 1
such that

4p(z,y) < Lp(2,2y)
for all x,y € A, then there exists a unique s-quadratic function @ : A — X such that

L
17) - QW) < T 6()

for all x € A, where ¢(x) is defined as in Theorem 3.1. Moreover, if f(tx) is contin-
uous in t € R for each fixed x € A, then Q is R-quadratic.
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Corollary 3.4. Let r > 2 and 6 be non-negative real numbers and let f: A — X be
an even function such that

IDf (@, y)ll < oll=l" + l[ylI")
for all x,y € A. Then there exists a unique s-quadratic function Q : A — X such that

44+4(V2) + 27
If(2) = Q@) < ————

for all x € A. Moreover, if f(tx) is continuous in t € R for each fized x € A, then Q
is R-quadratic.

e

For the case r = 2 we have the following counterexample which is a modification
of the example of S. Czwerwik [7].

Example 3.1. Let ¢ : C — C be defined by

| |z* for |z| < 1;
o(z) = { 1 for |x| > 1.

Consider the function f : C — C by the formula
o0 1
= —¢(2"x).
)= 3 grol2a)

It is clear that f is continuous and bounded by % on C. We prove that

|[f(@) + f(y) = F(V ]l + [y )] < 16(|2* + [y[*) (3.11)

for all z,y € C. To see this, if [#]? + [y[* = 0 or |z|* + |y|* > 1, then

[f(2) + Fy) = F(V]el? + [y )| < 4 < 16(]2]* + [yl*).

Now suppose that |z|> + |y|? < i. Then there exists a positive integer k such that

1
o <o+l <

Then 2|2, 2% |y, 2%\ /]2z]2 + [y[2 € (=1,1) and 2|z, 2™|y|, 2"+/]z]2 + [y|2 € (=1,1),
for allm=20,1,..., k.
From the definition of f and (3.12), we have

[f(@)+ f(y) = F (V]2 + [y?)]

o0

(3.12)

1
= > e + 6@y + o VIal + 1y )|
n=k+1
=1 4 ) )
<3 Y = g S AP ).
n=k+1

Therefore f satisfies (3.11). Let @ : C — C be a quadratic function such that
|lf(x) —Q(x)| < Blz|?, for all z € C, where 3 is a positive constant. Then there exists
a constant ¢ € C such that Q(x) = cx? for all x € Q. So we have

[f(@)] < (B+ le])|z[” (3.13)
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for all z € Q. Let m € N with m > 8+ |¢|. If 9 € (0,27™) N Q, then 2"z, € (0,1)
foralln=0,1,....,m —1. So

m—1

f(zo) > Z 4%¢(2"z0) =mxj > (B + |c|)zd

n=0

which contradicts (3.13).
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