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1. Introduction and preliminaries

In 1940, S.M. Ulam [41] posed the following question concerning the stability of
group homomorphisms: Under what conditions does there exist a group homomor-
phism near an approximately group homomorphism?

In 1941, D.H. Hyers [15] considered the case of approximately additive functions
f : E → E′, where E and E′ are Banach spaces and f satisfies Hyers inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε, for all x, y ∈ E.

T. Aoki [3] and Th.M. Rassias [35] provided a generalization of the Hyers’ theorem
for additive and linear mappings, respectively, by allowing the Cauchy difference to
be unbounded (see also [4]).

Theorem 1.1. (Th.M. Rassias). Let f : E → E′ be a mapping from a normed vector
space E into a Banach space E′ subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1.
Then the limit L(x) = limn→∞

f(2nx)
2n exists for all x ∈ E and L : E → E′ is the

unique additive mapping which satisfies, for all x ∈ E, the relation

‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p. (1.2)
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If p < 0 then inequality (1.1) holds for x, y 6= 0 and (1.2) for x 6= 0. Also, if for each
x ∈ E the mapping t 7→ f(tx) is continuous in t ∈ R, then L is linear.

Theorem 1.1 has been generalized by G.L. Forti [11, 12] and P. Găvruta [13] who
permitted the Cauchy difference to be bounded by a general control function. Dur-
ing the last three decades a number of papers and research monographs have been
published on various generalizations and applications of the generalized Hyers-Ulam
stability to a number of functional equations and mappings (see [5], [6], [7], [10], [14],
[18], [19], [21], [23], [24], [26]-[34] and [36]-[38]). We also refer the readers to the books
[1], [8], [17], [22] and [39]. The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y) (1.3)

is called a quadratic functional equation. In particular, every solution of the quadratic
equation (1.3) is said to be a quadratic function. Quadratic functional equations
were used to characterize inner product spaces. It is well known that a function f
between real vector spaces is quadratic if and only if there exists a unique symmetric
bi-additive function B such that f(x) = B(x, x) for all x (see [1, 2, 20, 24]. The
bi-additive function B is given by

B(x, y) =
1
4

[
f(x + y)− f(x− y)

]
.

The Hyers-Ulam stability problem for the quadratic functional equation (1.3) was
proved by Skof [40] for functions f : E1 → E2, where E1 is a normed space and E2 is a
Banach space. Cholewa [6] noticed that the theorem of Skof is still true if the relevant
domain E1 is replaced by an Abelian group. In the paper [7], Czerwik proved the
generalized Hyers-Ulam stability of the quadratic functional equation (1.3). Grabiec
[14] has generalized these results mentioned above. Jun and Lee [21] proved the
generalized Hyers-Ulam stability of a Pexiderized quadratic equation.

Let E be a set. A function d : E × E → [0,∞] is called a generalized metric on E
if d satisfies the usual axioms of a metric.

We recall the following theorem by Margolis and Diaz.

Theorem 1.2. [25] Let (E, d) be a complete generalized metric space and let J : E →
E be a strictly contractive mapping with Lipschitz constant L < 1. Then for each
given element x ∈ E, either

d(Jnx, Jn+1x) = ∞

for all non-negative integers n or there exists a non-negative integer n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = { y ∈ E : d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

Throughout this paper A will be a C∗-algebra. We denote by
√

a the unique
positive element b ∈ A such that b2 = a. Also, we denote by R, C and Q the set of
real, complex and rational numbers, respectively. In this paper, we use a fixed point
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method (see [5, 23, 26]) to investigate the problem of stability of the strong quadratic
(or simply s-quadratic) functional equation

f(x) + f(y) = f(
√

xx∗ + yy∗ ) (1.4)

on C∗-algebras. In particular, every solution of the s-quadratic equation (1.4) is said
to be a s-quadratic function. For some results on fixed point theorems in nonlinear
analysis we refer the reader to [9, 16, 19, 42].

2. Solutions of Eq. (1.4)

Theorem 2.1. Let X be a linear space. If a function f : A −→ X satisfies the
functional equation (1.4), then f is quadratic.

Proof. Letting x = y = 0, in (1.4), we get f(0) = 0. Replacing x and y by x + y and
x− y in (1.4), respectively, we get

f(x + y) + f(x− y) = f(
√

2xx∗ + 2yy∗ ) (2.1)

for all x, y ∈ A. It follows from (1.4) that f(
√

2x) + f(
√

2y) = f(
√

2xx∗ + 2yy∗ ) for
all x, y ∈ A. Therefore we have from (2.1) that

f(x + y) + f(x− y) = f(
√

2x) + f(
√

2y) (2.2)

for all x, y ∈ A. Setting y = 0 in (2.2), we get

f(
√

2x) = 2f(x) (2.3)

for all x ∈ A. It follows from (2.2) and (2.3) that f(x+ y) + f(x− y) = 2f(x) + 2f(y)
for all x ∈ A. Hence f is quadratic. �

Remark 2.1. Let f : A → A be the mapping defined by f(x) = x2 for all x ∈ A. It
is clear that f is quadratic. Let a 6= 0 be a positive element of A. Hence f does not
satisfy in (1.4) for x = y = i

√
a. Therefore f is not s-quadratic.

Corollary 2.2. Let X be a linear space. If a function f : A −→ X satisfies the
functional equation (1.4), then there exists a symmetric bi-additive function B : A×
A → X such that f(x) = B(x, x) for all x ∈ A.

3. Generalized Hyers-Ulam stability of Eq. (1.4) on C∗-algebras

In this section, we use a fixed point method (see [5, 23, 26]) to investigate the
problem of stability of the functional equation (1.4) on C∗-algebras. For convenience,
we use the following abbreviation for a given function f : A → X :

Df(x, y) := f(x) + f(y)− f(
√

xx∗ + yy∗ )

for all x, y ∈ A, where X is a normed linear space.

Theorem 3.1. Let X be a linear space and let f : A → X be a function with f(0) = 0
for which there exists a function ϕ : A2 → [0,∞) such that

‖Df(x, y)‖ ≤ ϕ(x, y) (3.1)

for all x, y ∈ A. If there exists a constant 0 < L < 1 such that

ϕ(2x, 2y) ≤ 4Lϕ(x, y) (3.2)



364 ASGHAR RAHIMI AND ABBAS NAJATI

for all x, y ∈ A, then there exists a unique s-quadratic function Q : A → X such that

‖f(x)−Q(x)‖ ≤ 1
4− 4L

φ(x) (3.3)

for all x ∈ A, where φ(x) := ϕ(
√

2x,
√

2x) + ϕ(2x, 0) + 2ϕ(
√

2x, 0) + 2ϕ(x, x).
Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ A, then Q is R-quadratic,
i.e., Q(tx) = t2Q(x) for all x ∈ A and all t ∈ R.

Proof. It follows from (3.1) and (3.2) that

‖f(
√

2x) + f(
√

2y)− f(
√

2xx∗ + 2yy∗ )‖ ≤ ϕ(
√

2x,
√

2y), (3.4)

lim
k→∞

1
4k

ϕ(2kx, 2ky) = 0 (3.5)

for all x, y ∈ A. Replacing x and y by x + y and x− y in (3.1), respectively, we get

‖f(x + y) + f(x− y)− f(
√

2xx∗ + 2yy∗ )‖ ≤ ϕ(x + y, x− y) (3.6)

for all x, y ∈ A. It follows from (3.4) and (3.6) that

‖f(x + y) + f(x− y)− f(
√

2x)− f(
√

2y)‖

≤ ϕ(
√

2x,
√

2y) + ϕ(x + y, x− y)
(3.7)

for all x, y ∈ A. Letting y = 0 in (3.7), we get

‖2f(x)− f(
√

2x)‖ ≤ ϕ(
√

2x, 0) + ϕ(x, x) (3.8)

for all x ∈ A. Therefore we have from (3.7) and (3.8) that

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)‖

≤ ϕ(
√

2x,
√

2y) + ϕ(x + y, x− y)

+ ϕ(
√

2x, 0) + ϕ(x, x) + ϕ(
√

2y, 0) + ϕ(y, y)

(3.9)

for all x, y ∈ A. Setting x = y in (3.9), we get

‖f(2x)− 4f(x)‖ ≤ φ(x) (3.10)

for all x ∈ A. By (3.2) we have φ(2x) ≤ 4Lφ(x) for all x ∈ A. Let E be the set of
all functions g : A → X with g(0) = 0 and introduce a generalized metric on E as
follows:

d(g, h) := inf{C ∈ [0,∞] : ‖g(x)− h(x)‖ ≤ Cφ(x) for all x ∈ A }.
It is easy to show that (E, d) is a generalized complete metric space [5].

Now we consider the function Λ : E → E defined by

(Λg)(x) =
1
4
g(2x), for all g ∈ E and x ∈ A.

Let g, h ∈ E and let C ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ C. From the
definition of d, we have ‖g(x)−h(x)‖ ≤ Cφ(x), for all x ∈ A. By the assumption and
the last inequality, we have

‖(Λg)(x)− (Λh)(x)‖ =
1
4
‖g(2x)− h(2x)‖ ≤ 1

4
Cφ(2x) ≤ CLφ(x), for all x ∈ A.
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Thus d(Λg,Λh) ≤ Ld(g, h), for any g, h ∈ E. It follows from (3.10) that d(Λf, f) ≤ 1
4 .

Therefore according to Theorem 1.2, the sequence {Λkf} converges to a fixed point
Q of Λ, i.e.,

Q : A → X, Q(x) = lim
k→∞

(Λkf)(x) = lim
k→∞

1
4k

f(2kx)

and Q(2x) = 4Q(x) for all x ∈ A. Also Q is the unique fixed point of Λ in the set
E∗ = {g ∈ E : d(f, g) < ∞} and

d(Q, f) ≤ 1
1− L

d(Λf, f) ≤ 1
4− 4L

,

i.e., inequality (3.3) holds true for all x ∈ A. It follows from the definition of Q, (3.1)
and (3.5) that

‖DQ(x, y)‖ = lim
k→∞

1
4k

∥∥Df(2kx, 2ky)
∥∥ ≤ lim

k→∞

1
4k

ϕ(2kx, 2ky) = 0

for all x, y ∈ A. So Q is s-quadratic. By Theorem 2.1, the function Q : A → X is
quadratic. Finally it remains to prove the uniqueness of Q. Let T : A → X be another
s-quadratic function satisfying (3.3). Since d(f, T ) ≤ 1

4−4L and T is quadratic, we
get T ∈ E∗ and (ΛT )(x) = 1

4T (2x) = T (x) for all x ∈ A, i.e., T is a fixed point of
Λ. Since Q is the unique fixed point of Λ in E∗, then T = Q. Moreover, if f(tx) is
continuous in t ∈ R for each fixed x ∈ A, then by the same reasoning as in the proof
of [35] Q is R-quadratic. �

Corollary 3.2. Let 0 < r < 2 and θ, δ be non-negative real numbers and let f : A →
X be a function with f(0) = 0 such that

‖Df(x, y)‖ ≤ δ + θ(‖x‖r + ‖y‖r)

for all x, y ∈ A. Then there exists a unique s-quadratic function Q : A → X such that

‖f(x)−Q(x)‖ ≤ 6δ

4− 2r
+

4 + 4(
√

2)r + 2r

4− 2r
θ‖x‖r

for all x ∈ A. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ A, then Q
is R-quadratic.

The following theorem is an alternative result of Theorem 3.1 and we leave its
proof to the reader.

Theorem 3.3. Let f : A → X be a function for which there exists a function ϕ :
A2 → [0,∞) satisfying (3.1) for all x, y ∈ A. If there exists a constant 0 < L < 1
such that

4ϕ(x, y) ≤ Lϕ(2x, 2y)
for all x, y ∈ A, then there exists a unique s-quadratic function Q : A → X such that

‖f(x)−Q(x)‖ ≤ L

4− 4L
φ(x)

for all x ∈ A, where φ(x) is defined as in Theorem 3.1. Moreover, if f(tx) is contin-
uous in t ∈ R for each fixed x ∈ A, then Q is R-quadratic.
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Corollary 3.4. Let r > 2 and θ be non-negative real numbers and let f : A → X be
an even function such that

‖Df(x, y)‖ ≤ θ(‖x‖r + ‖y‖r)

for all x, y ∈ A. Then there exists a unique s-quadratic function Q : A → X such that

‖f(x)−Q(x)‖ ≤ 4 + 4(
√

2)r + 2r

2r − 4
θ‖x‖r

for all x ∈ A. Moreover, if f(tx) is continuous in t ∈ R for each fixed x ∈ A, then Q
is R-quadratic.

For the case r = 2 we have the following counterexample which is a modification
of the example of S. Czwerwik [7].

Example 3.1. Let φ : C → C be defined by

φ(x) :=
{
|x|2 for |x| < 1;
1 for |x| ≥ 1.

Consider the function f : C → C by the formula

f(x) :=
∞∑

n=0

1
4n

φ(2nx).

It is clear that f is continuous and bounded by 4
3 on C. We prove that∣∣f(x) + f(y)− f(

√
|x|2 + |y|2 )

∣∣ ≤ 16(|x|2 + |y|2) (3.11)

for all x, y ∈ C. To see this, if |x|2 + |y|2 = 0 or |x|2 + |y|2 ≥ 1
4 , then∣∣f(x) + f(y)− f(

√
|x|2 + |y|2 )

∣∣ ≤ 4 ≤ 16(|x|2 + |y|2).

Now suppose that |x|2 + |y|2 < 1
4 . Then there exists a positive integer k such that

1
4k+1

≤ |x|2 + |y|2 <
1
4k

. (3.12)

Then 2k|x|, 2k|y|, 2k
√
|x|2 + |y|2 ∈ (−1, 1) and 2m|x|, 2m|y|, 2m

√
|x|2 + |y|2 ∈ (−1, 1),

for all m = 0, 1, ..., k.
From the definition of f and (3.12), we have∣∣f(x) + f(y)− f(

√
|x|2 + |y|2 )

∣∣
=

∣∣∣ ∞∑
n=k+1

1
4n

[
φ(2nx) + φ(2ny) + φ(2n

√
|x|2 + |y|2 )

∣∣∣
≤ 3

∞∑
n=k+1

1
4n

=
4

4k+1
≤ 4(|x|2 + |y|2).

Therefore f satisfies (3.11). Let Q : C → C be a quadratic function such that
‖f(x)−Q(x)| ≤ β|x|2, for all x ∈ C, where β is a positive constant. Then there exists
a constant c ∈ C such that Q(x) = cx2 for all x ∈ Q. So we have

|f(x)| ≤ (β + |c|)|x|2 (3.13)



A STRONG QUADRATIC FUNCTIONAL EQUATION 367

for all x ∈ Q. Let m ∈ N with m > β + |c|. If x0 ∈ (0, 2−m) ∩ Q, then 2nx0 ∈ (0, 1)
for all n = 0, 1, ...,m− 1. So

f(x0) ≥
m−1∑
n=0

1
4n

φ(2nx0) = mx2
0 > (β + |c|)x2

0

which contradicts (3.13).
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