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1. Introduction and preliminaries

In [8] the first author developed a technique for the investigation of systems of
nonlinear operator equations which is based on vector-valued metrics and convergent
to zero matrices together with fundamental principles of nonlinear functional analysis.
It is shown in [8] that the use of vector-valued metrics is more appropriate when
treating systems of equations. The technique was applied in [10] to obtain existence
of solutions for the Cauchy problem associated to a semilinear system of abstract
evolution equations: 

du1

dt
(t) + A1u1(t) = F1(t, u1(t), u2(t))

du2

dt
(t) + A2u2(t) = F2(t, u1(t), u2(t))

u1(0) = u0
1

u2(0) = u0
2.

(1.1)

The aim of this paper is to extend the methods and results from [10] to inclusions.
More exactly we are concerned with the Cauchy problem associated to the semilinear
system of abstract evolution inclusions:

du1

dt
(t) + A1u1(t) ∈ F1(u1(t), u2(t))

du2

dt
(t) + A2u2(t) ∈ F2(u1(t), u2(t))

u1(0) = u0
1

u2(0) = u0
2.

(1.2)
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Here Ai : D(Ai) ⊆ Xi → Xi is assumed to be a linear operator, densely defined
on the real Banach space Xi which generates the strongly continuous semigroup of
contractions {Si(t), t ≥ 0} , and Fi : X1 × X2 → 2Xi is a multivalued operator, for
i = 1, 2.

We shall look for global mild solutions to (1.2) on the interval [0, T ], i.e., u =
(u1, u2) ∈ C ([0, T ] , X1 ×X2) = C ([0, T ] , X1)× C ([0, T ] , X2) such that

ui(t) = Si(t)u0
i +

∫ t

0

Si(t− τ)wi(τ)dτ t ∈ [0, T ],

where wi ∈ L1 ([0, T ] , Xi) is a selection for the multivalued function t 7−→ Fi (u (t)),
i.e.,

wi(t) ∈ Fi (u (t)) a.e. t ∈ [0, T ] i = 1, 2.

In the next section three different fixed point principles will be used in order to
prove the existence of solutions for the semilinear problem, namely the multivalued
versions of the fixed point theorems of Perov, Schauder and Leray-Schauder (see [9]).
In all three cases a key role will be played by the so called convergent to zero matrices.
A square matrix M with nonnegative elements is said to be convergent to zero if

Mk → 0 as k →∞.

It is known that the property of being convergent to zero is equivalent to each of the
following three conditions (for details see [6], [9], [11]):

(a) I −M is nonsingular and (I −M)−1 = I + M + M2 + ... (where I stands for
the unit matrix of the same order as M);

(b) the eigenvalues of M are located inside the unit disc of the complex plane;
(c) I −M is nonsingular and (I −M)−1 has nonnegative elements.
Let X be a nonempty set. By a vector-valued metric on X we mean a mapping

d : X ×X → Rn
+ such that

(i) d(u, v) ≥ 0 for all u, v ∈ X and if d(u, v) = 0 then u = v;
(ii) d(u, v) = d(v, u) for all u, v ∈ X;
(iii) d(u, v) ≤ d(u, w) + d(w, v) for all u, v, w ∈ X.

Here, if x, y ∈ Rn, x = (x1, x2, ..., xn)T , y = (y1, y2, ..., yn)T , by x ≤ y we mean
xi ≤ yi for i = 1, 2, ..., n. We call the pair (X, d) a generalized metric space. For such
a space convergence and completeness are similar to those in usual metric spaces.

Let (X, d) be a metric space. For two nonempty sets A,B ⊂ X and x ∈ X we use
the following notations:

d (x, A) = inf {d (x, a) : a ∈ A} ;

H (A,B) = max
{

sup
a∈A

d (a,B) ; sup
b∈B

d (b, A)
}

;

δ (A,B) = sup {d (a, b) : a ∈ A, b ∈ B} .

Recall that H is a metric (the Hausdorff-Pompeiu metric) on the set of all nonempty
closed bounded subsets of (X, d) . Also note the following property of this metric:

Remark 1.1. Let (X, d) be a metric space, A,B ⊂ X nonempty closed bounded sets
and q > 1. Then for each a ∈ A there exists b ∈ B such that d (a, b) ≤ qH (A,B) .
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We first give a vector version of Nadler’s fixed point theorem [5, p 28].

Theorem 1.2. Let (X1, d1) , (X2, d2) be two complete metric spaces and N : X1 ×
X2 → 2X1×X2 a multivalued operator with N (x) nonempty closed bounded for each
x ∈ X1 × X2. Assume that there exists matrix M which is convergent to zero, such
that (

H1 (N1 (u) , N1 (v))
H2 (N2 (u) , N2 (v))

)
≤ M

(
d1 (u1, v1)
d2 (u2, v2)

)
(1.3)

for all u = (u1, u2) , v = (v1, v2) ∈ X1 × X2, where N1 : X1 × X2 → 2X1 and
N2 : X1×X2 → 2X2 are the two components of N and H1,H2 stand for the Hausdorff-
Pompeiu metrics associated to d1 and d2, respectively. Then N has a fixed point.

Proof. First we note that X1 ×X2 endowed with the vector-valued metric

d(u, v) =
(

d1 (u1, v1)
d2 (u2, v2)

)
where u = (u1, u2) , v = (v1, v2) , is a complete generalized metric space.

Starting with any x0 ∈ X1 × X2 and x1 ∈ N
(
x0

)
we shall build a sequence of

successive approximations. Take any number q > 1 such that qM is still convergent
to zero. From Remark 1.1, there exists x2

i ∈ Ni

(
x1

)
with

di

(
x1

i , x
2
i

)
≤ qHi

(
Ni

(
x0

)
, Ni

(
x1

))
.

Let x2 =
(
x2

1, x
2
2

)
. Clearly x2 ∈ F

(
x1

)
. Now we use relationship (1.3) to obtain

d
(
x1, x2

)
≤ q

(
H1

(
N1

(
x1

)
, N1

(
x2

))
H2

(
N2

(
x1

)
, N2

(
x2

)) )
≤ qM

(
d1

(
x0

1, x
1
1

)
d2

(
x0

2, x
1
2

) )
= qMd

(
x0, x1

)
.

Recursively we generate a sequence (xn) such that for all n ∈ N

xn+1 ∈ N (xn) and d
(
xn, xn+1

)
≤ qnMnd

(
x0, x1

)
.

We show that this sequence is fundamental and thus it converges in the complete
generalized metric space (X1 ×X2, d) . Indeed,

d
(
xn, xn+p

)
≤ d

(
xn, xn+1

)
+ ... + d

(
xn+p−1, xn+p

)
≤ qnMn

(
I + qM + ... + qp−1Mp−1

)
d

(
x0, x1

)
≤ qnMn (I − qM)−1

d
(
x0, x1

)
.

Since qM is convergent to zero, we deduce that (xn) is fundamental as claimed.
Finally we show that the limit x∗ of (xn) is a fixed point of N. Indeed, for each

i = 1, 2 we have

di (x∗i , Ni (x∗)) ≤ di

(
x∗i , x

n+1
i

)
+ di

(
xn+1

i , Ni (x∗)
)

≤ di

(
x∗i , x

n+1
i

)
+ Hi (Ni (xn) , Ni (x∗))
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as xn+1
i ∈ Ni (xn) . Writing these inequalities in a vector form(

d1 (x∗1, N1 (x∗))
d2 (x∗2, N2 (x∗))

)
≤

(
d1

(
x∗1, x

n+1
1

)
d2

(
x∗2, x

n+1
2

) )
+

(
H1 (N1 (xn) , N1 (x∗))
H2 (N2 (xn) , N2 (x∗))

)
and applying (1.3) to the second term of the right hand side we obtain(

d1 (x∗1, N1 (x∗))
d2 (x∗2, N2 (x∗))

)
≤

(
d1

(
x∗1, x

n+1
1

)
d2

(
x∗2, x

n+1
2

) )
+ M

(
d1 (x∗1, x

n
2 )

d2 (x∗2, x
n
2 )

)
= d

(
x∗, xn+1

)
+ Md (xn, x∗) −→ 0 as n →∞.

Thus x∗ ∈ N (x∗) . �

Finally we recall two basic topological fixed point theorems for set-valued maps
(see e.g. [3])

Theorem 1.3 (Bohnenblust-Karlin). Let X be a Banach space, D ⊂ X nonempty
closed convex bounded and N : D → 2X upper semicontinuous with N (x) nonempty
closed convex for all x ∈ D. If N (D) ⊂ D and N (D) is relatively compact, then N
has at least one fixed point.

Theorem 1.4 (Leray-Schauder). Let X be a Banach space, U ⊂ X open bounded
and N : U → 2X upper semicontinuous with N (x) nonempty closed convex for all
x ∈ U. If N

(
U

)
is relatively compact and x0+λ (x− x0) /∈ N (x) on ∂U for all λ > 1,

then N has at least one fixed point.

2. Existence results

Obviously a mild solution for (1.2) is a fixed point of the multivalued operator

N : C ([0, T ] , X1)× C ([0, T ] , X2) → 2C([0,T ],X1×X2),

N (u) = (N1 (u) , N2 (u)) ,

where
Ni (u) =

{
Si(t)u0

i +
∫ t

0
Si(t− τ)wi(τ)dτ :

wi ∈ L1 ([0, T ] , Xi) , wi(t) ∈ Fi (u (t)) a.e. t ∈ [0, T ]
}

.
(2.1)

The multivalued operator N can be written as a composition of a single-valued oper-
ator N with a multivalued operator W, i.e., N = N◦W, where

W : C ([0, T ] , X1 ×X2) → 2L1([0,T ],X1×X2), W (u) = (W1 (u) ,W2 (u)) ,

Wi (u) =
{
wi ∈ L1 ([0, T ] , Xi) : wi(t) ∈ Fi (u (t)) a.e. t ∈ [0, T ]

}
and

N : L1 ([0, T ] , X1 ×X2) → C ([0, T ] , X1 ×X2) , N (f) = (N1 (f) (t) ,N2 (f) (t)) ,

Ni (f) (t) := Si(t)u0
i +

∫ t

0

Si(t− τ)fi(τ)dτ

for any f = (f1, f2) ∈ L1 ([0, T ] , X1 ×X2) = L1 ([0, T ] , X1)× L1 ([0, T ] , X2) .
We list below some properties of N .
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Lemma 2.1. If Fi has bounded values for i = 1, 2 then the operator N has bounded
values N (u).

Proof. Since N (u) = N (W (u)) and N is continuous we only have to show that
W (u) has bounded values.

Fi (u) are all bounded and thus there is Ri ∈ R+ such that

‖fi‖ ≤ Ri for all fi ∈ Fi (u (t)) , t ∈ [0, T ].

Let w = (w1, w2) ∈ W (u), because wi(t) ∈ Fi (u (t)) a.e. t ∈ [0, T ] we have

‖wi(t)‖ ≤ Ri a.e. t ∈ [0, T ]

and

‖wi‖L1([0,T ],Xi)
≤

T∫
0

Ridt = RiT

for i = 1, 2. And thus W (u) is bounded. �

Lemma 2.2. If Fi has closed values for i = 1, 2 then the operator N has closed values
N (u).

Proof. Since N (u) = N (W (u)) and N is continuous we only have to show that W
has closed values.

Let
(
wk

i

)
k∈N ⊂ Wi (u) a convergent sequence wk

i → wi. We show that wi ∈ Wi (u),
i.e., wi ∈ L1 ([0, T ] , Xi) and wi(t) ∈ Fi (u (t)) a.e. t ∈ [0, T ]. Obviously

wi ∈ L1 ([0, T ] , Xi) (2.2)

is satisfied.
Now, since wk

i → wi, we have, at least for a subsequence, that

wk
i (t) → wi (t) a.e. t ∈ [0, T ].

But for all k ∈ N
wk

i (t) ∈ Fi (u (t)) a.e. t ∈ [0, T ],

and thus
wi(t) ∈ Fi (u (t)) a.e. t ∈ [0, T ] (2.3)

which concludes our proof. �

Our goal now is to prove that the multivalued operator N also preserves the upper
semicontinuity of Fi.

Definition 2.3. A multifunction F : X → 2Y , X and Y being two metric spaces, is
upper semicontinuous if the set

F− (U) := {x ∈ X : F (x) ∩ U 6= ∅}

is closed for each closed set U ⊂ Y.
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Remark 2.4. Let (X, d) be a metric space, if F : X → 2X has bounded closed values
and is upper semicontinuous then, for any sequence (xk) in X such that xk → x, we
have

sup
y∈Fi(xk)

D (y, Fi (x)) → 0 as k →∞.

Remark 2.5. The composition of two upper semicontinuous operators is also upper
semicontinuous.

Lemma 2.6. If Fi has bounded values and is upper semicontinuous for i = 1, 2 then
the operator N is also upper semicontinuous.

Proof. Since N can be written as

N (u) = N (W (u))

and N is continuous it enough to show that W is upper semicontinuous for N to be
so.

Let U be a closed set in L1 ([0, T ] , X1)× L1 ([0, T ] , X2) we have to show that

W− (U) := {x ∈ C ([0, T ] , X1)× C ([0, T ] , X2) : W (x) ∩ U 6= ∅}

is closed.
For any sequence (xk) ⊂ W− (U) such that xk → x we show that x ∈ W− (U).
Inded, if xk → x then the sequence also converges poinwise xk (t) → x (t) and since

Fi is upper semicontinuous, we can apply Remark 2.4 to obtain

sup
y∈Fi(xk(t))

DXi
(y, Fi (x (t))) → 0 as k →∞. (2.4)

Now, since xk ∈ W− (U), i.e., W (xk) ∩ U 6= ∅,

∃wk ∈ U such that wk
i (t) ∈ Fi (xk (t)) a.e. t ∈ [0, T ] (2.5)

for all k ∈ N.
If we apply (2.4) to each wk in (2.5) we obtain that there exists a wi (t) ∈ Fi (x (t))

such that
wk

i (t) → wi (t) a.e. t ∈ [0, T ].

The fact that the sets Fi (xk (t)) are bounded for all t ∈ [0, T ] and k ∈ N assures
the bondedness of wk (t) a.e. on [0, T ], and thus we can apply Lesbegue’s bounded
convergence theorem to prove that w ∈ W (x) ∩ U. �

Our first existence result is established by means of the vector version of Nadler’s
theorem.

Theorem 2.7. Let Fi : X1 ×X2 → 2Xi and assume that Fi (x) is nonempty closed
bounded for each x ∈ X1 × X2. In addition assume that there are constants aij ≥ 0
for i, j = 1, 2 such that

δ
Xi

(Fi (u) , Fi (v)) ≤ ai1 ‖u1 − v1‖X1
+ ai2 ‖u2 − v2‖X2

(2.6)

for all u = (u1, u2), v = (v1, v2) ∈ X1 × X2 and i = 1, 2. Then problem (1.2) has a
mild solution.
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Proof. We apply Theorem 1.2 to the operator N defined in (2.1). We will use the
following notation for the space of continuous Xi-valued functions on [0, T ] , endowed
with the Bielecki norm

Ei := C ([0, T ] , Xi) ‖u‖Ei
:= max

t∈[0,T ]
e−kt ‖u(t)‖Xi

for some constant k > 0.Let u, v ∈ C ([0, T ] , X1 ×X2) . Then for every wu ∈ W (u)
and wv ∈ W (v) , we have

‖Ni (wu) (t)−Ni (wv) (t)‖Xi
≤

∥∥∥∥∫ t

0

Si (t− τ) (wu
i (τ)− wv

i (τ)) dτ

∥∥∥∥
Xi

≤
∫ t

0

‖Si (t− τ)‖ ‖(wu
i (τ)− wv

i (τ))‖Xi
dτ

≤
∫ t

0

‖(wu
i (τ)− wv

i (τ))‖Xi
dτ.

but since wu
i (τ) ∈ Fi (u (τ)) and wv

i (τ) ∈ Fi (v (τ)), by the definition of the functional
δ and using (2.6) we have

‖(wu
i (τ)− wv

i (τ))‖Xi
≤ δ (Fi (u (τ)) , Fi (v (τ)))

≤ ai1 ‖u1(τ)− v1(τ)‖X1
+ ai2 ‖u2(τ)− v2(τ)‖X2

.

Thus

‖Ni (wu) (t)−Ni (wv) (t)‖Xi
≤

∫ t

0

(
ai1 ‖u1(τ)− v1(τ)‖X1

+ ai2 ‖u2(τ)− v2(τ)‖X2

)
dτ

≤ ‖u1 − v1‖E1

∫ t

0

ai1e
kτdτ + ‖u2 − v2‖E2

∫ t

0

ai2e
kτdτ

≤ ai1

k
‖u1 − v1‖E1

ekt +
ai2

k
‖u2 − v2‖E2

ekt

for any t ∈ [0, T ] and i = 1, 2.
It follows that

‖Ni (wu)−Ni (wv)‖Ei
≤ ai1

k
||u1 − v1||E1 +

ai2

k
||u2 − v2||E2 .

Then by the definition of the Hausdorff-Pompeiu metric HEi

HEi (Ni (u) , Ni (v)) ≤ ai1

k
||u1 − v1||E1 +

ai2

k
||u2 − v2||E2

for i = 1, 2. This can be written in matrix form as(
HE1 (N1 (u) , N1 (v))
HE2 (N2 (u) , N2 (v))

)
≤ Mk

(
||u1 − v1||E1

||u2 − v2||E2

)
with

Mk =
(

a11
k

a12
k

a21
k

a22
k

)
. (2.7)

Finally note that Mk is convergent to zero provided that k > 0 is chosen sufficiently
large. Now the conclusion follows from Theorem 1.2. �
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The next existence result is an application of Theorem 1.3 and uses growth condi-
tions on Fi which are more general than the Lipschitz condition (2.6).

Theorem 2.8. Let Fi : X1×X2 → 2Xi be upper semicontinuous with Fi (x) nonempty
closed bounded for each x ∈ X1 ×X2. Assume that there exist constants aij ≥ 0 and
bi ≥ 0 for i, j = 1, 2, such that

‖w‖Xi
≤ ai1 ‖u1‖X1

+ ai2 ‖u2‖X2
+ bi (2.8)

for all u = (u1, u2) ∈ X1 ×X2 and w ∈ Fi (u) (i = 1, 2) . If in addition operator N is
completely continuous, then problem (1.2) has at least one mild solution.

Proof. In the Lemmas 2.1, 2.2, 2.6 we have proven that the operator N has bounded
closed values and is upper semicontinuous. In order to apply Theorem 1.3 we need to
find a nonempty closed convex bounded set D ⊂ E1 × E2 such that

N(D) ⊆ D (2.9)

Let us consider the set D := BR1(0;E1)×BR2(0;E2), where BRi
(0;Ei) is the closed

ball centered in origin of Ei of radius Ri. We try to find R1, R2 > 0 such that (2.9)
holds. For u ∈ C ([0, T ] , X1 ×X2) and any w ∈ W (u) we have

‖Ni (w) (t)‖Xi
≤

∥∥Si (t)u0
i

∥∥
Xi

+
∥∥∥∥∫ t

0

Si (t− τ) wi(τ)dτ

∥∥∥∥
Xi

≤
∥∥u0

i

∥∥
Xi

+
∫ t

0

‖wi(τ)‖Xi
dτ.

But since wi(τ) ∈ Fi (u (τ)) , we then have also using (2.8)

‖Ni (w) (t)‖Xi
≤

∥∥u0
i

∥∥
Xi

+
∫ t

0

(
ai1 ‖u1 (τ)‖X1

+ ai2 ‖u2 (τ)‖X2
+ bi

)
dτ

≤ ‖u1‖E1

∫ t

0

ai1e
kτdτ + ‖u2‖E2

∫ t

0

ai2e
kτdτ +

∥∥u0
i

∥∥
Xi

+ biT

for any t ∈ [0, T ] and i = 1, 2. Consequently

‖Ni (w)‖Ei
≤ ai1

k
||u1||E1 +

ai2

k
||u2||E2 + ci,

where ci =
∥∥u0

i

∥∥
Xi

+ biT. Now if u ∈ D, i.e., ||ui||Ei ≤ Ri for i = 1, 2, we have

‖Ni (w)‖Ei
≤ ai1

k
R1 +

ai2

k
R2 + ci (i = 1, 2)

or, equivalently (
‖N1 (w)‖E1

‖N2 (w)‖E2

)
≤ Mk

(
R1

R2

)
+

(
c1

c2

)
,

where Mk is given by (2.7). Now coose k > 0 such that Mk is convergent to zero and
take R1, R2 the solution of the algebraic system

Mk

(
R1

R2

)
+

(
c1

c2

)
=

(
R1

R2

)
.
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Hence (
R1

R2

)
= (I −Mk)−1

(
c1

c2

)
. (2.10)

Notice R1, R2 are nonnegative acconding to property (c) of convergent to zero ma-
trices. Thus, for i ∈ {1, 2} we have that ‖Ni (w)‖Ei

≤ Ri,, for every w ∈ W (u) and
u ∈ D. This shows that N (D) ⊂ D. Therefore Theorem 1.3 applies. �

In the case of Hilbert spaces and if all mild solutions are classical solutions (i.e.,
each component is in C([0, T ], D(Ai))∩C1([0, T ], Xi) and satisfies (1.2)) the existence
can be also derived from Theorem 1.4.

Theorem 2.9. Let (Xi, 〈., .〉Xi
), i = 1, 2 be real Hilbert spaces, assume that all mild

solutions of the system 

du1

dt
(t) + A1u1 (t) ∈ λF1 (u)

du2

dt
(t) + A2u2 (t) ∈ λF2 (u)

u1 (0) = λu0
1

u2 (0) = λu0
2

(2.11)

for λ ∈ (0, 1) are classical solutions and that the nonlinear operator N is completely
continuous. In addition, assume that there exist constants aij ≥ 0 and bi ≥ 0 for
i, j = 1, 2 such that

sup
wi∈Fi(u)

〈wi, ui〉Xi
≤ ai1 ‖u1‖2

X1
+ ai2 ‖u2‖2

X2
+ bi (2.12)

for all u ∈ X1 ×X2, i = 1, 2. Then problem (1.2) has at least one solution.

Proof. Let u = (u1, u2) be any solution of (2.11). Then there exists w ∈ W (u) such
that

dui

dt
(t) + Aiui (t) = λwi (t) , i = 1, 2.

Taking in this equation the inner product in Xi with ui (t) we obtain
1
2

d

dt
‖ui (t)‖2

Xi
+ 〈Aiui (t) , ui〉Xi

= λ 〈wi, ui〉Xi
.

Then using 〈Aix, x〉Xi
≥ 0 for all x ∈ D (Ai) (for details about this property of

generators of semigroups in Hilbert spaces see for example ([7]), and (2.12)) we obtain
1
2

d

dt
‖ui (t)‖2

Xi
≤ λ 〈wi (t) , ui (t)〉Xi

≤ ai1 ‖u1 (t)‖2
X1

+ ai2 ‖u2 (t)‖2
X2

+ bi.

Integrating with respect to t, we deduce that

‖ui (t)‖2
Xi
≤

∥∥u0
i

∥∥2

Xi
+ 2

∫ t

0

(
ai1 ‖u1 (τ)‖2

X1
+ ai2 ‖u2 (τ)‖2

X2
+ bi

)
dτ

for all t ∈ [0, T ] and i = 1, 2.
Using the same kind of estimates as in the proof of Theorem 2.8 we then deduce

that
‖ui‖2

Ei
≤ ai1

k
||u1||2E1

+
ai2

k
||u2||2E2

+ ci, i = 1, 2
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where ci =
∥∥u0

i

∥∥2

Xi
+ 2biT. This can be rewritten using the matrix form as follows

(I −Mk)
(
||u1||2E1

||u2||2E2

)
≤

(
c1

c2

)
(2.13)

where again Mk is given by (2.7). For a sufficiently large k, matrix Mk is convergent
to zero. Hence, I − Mk is nonsingular and (I − Mk)−1 has nonnegative elements.
Multiplication of both sides of (2.13) with (I −Mk)−1 yields(

||u1||2E1

||u2||2E2

)
≤ (I −Mk)−1

(
c1

c2

)
.

This guarantees the a priori boundedness of all solutions u = (u1, u2) of the equations
u ∈ λN (u) , for λ ∈ (0, 1) . Thus we may apply Theorem 1.4. �

Notice that sufficient conditions for the complete continuity of operator N, as well
as for that mild solutions be classical solutions are available in literature, see for
example [2], [13] and [14]. Related topics in connection with Perov’s method can be
found in [1] and [12].
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