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1. Introduction

In this paper we study the following problem

x′(t) = f(t, x(t), x(t − h), x(t + h)), t ∈ [−T, T ], (1.1)

x(t) = ϕ(t), t ∈ [−h, h]. (1.2)

The problem (1.1)-(1.2) has been studied in the papers R. Driver [4], I.A. Rus and
C. Iancu [9] and V.A. Darzu [2]. This problem is known in literature as Wheeler-
Feynman problem. For this problem the above authors studied the existence and
uniqueness of the solution using the step method.

The purpose of this paper is to elaborate an algorithm based on the step method
and the successive approximation method and to apply it on the problem (1.1)-(1.2).

Algorithm. At each step we have a problem like this
{

x′(t) = f(t, x(t), x(t − h), x(t + h)), t ∈ [a + h, a + 2h]
x(t) = θ(t), t ∈ [a, a + 2h],

(1.3)

where f ∈ C([a + h, a + 2h] × R
3, R), θ ∈ C([a, a + 2h], R) and x : [a, a + 3h] → R.
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It follows that

θ′(t) = f(t, θ(t), θ(t − h), x(t + h)), t ∈ [a + h, a + 2h].

We denote ξ := t + h, ξ ∈ [a + 2h, a + 3h].
Then

θ′(ξ − h) = f(ξ − h, θ(ξ − h), θ(ξ − 2h), x(ξ)), ξ ∈ [a + 2h, a + 3h].

We denote F (ξ, x(ξ)) := f(ξ − h, θ(ξ − h), θ(ξ − 2h), x(ξ)) − θ′(ξ − h). So

F (ξ, x(ξ)) = 0. (1.4)

The purpose is to impose conditions on f such that equation (1.4) has a unique
solution who can be approximated by Newton’s method.

In order to study the problem (1.1)-(1.2) we need the following well known results.

Implicit function theorem. ([1]) We suppose that F : [a, b] × R → R satisfy the
following conditions

(i) F ∈ C1([a, b] × R);

(ii) there exists ∂F (t,u)
∂u

∈ R
∗ and

∣∣∣∂F (t,u)
∂u

∣∣∣ ≤ M1, ∀t ∈ [a, b], u ∈ R;

(iii) for each t0 ∈ [a, b], there exists u0 ∈ R such that F (t0, u0) = 0.

Then, there exists a unique solution x ∈ C1[a, b] such that F (t, x(t)) = 0,
∀(t, x(t)) ∈ [a, b]×R, solution that can be obtained using the successive approximations
method.

In terms of f , for the problem (1.1)-(1.2), the conditions from the above theorem
are:

(C1) f ∈ C∞([−T, T ] × R
3, R), ϕ ∈ C([−h, h], R);

(C2)
∂f(t,u,v,w)

∂w
∈ R

∗, ∀t ∈ [−T, T ], ∀u, v, w ∈ R;

(C3)
∣∣∣∂f(t,u,v,w)

∂w

∣∣∣ ≤ M1,∀t ∈ [−T, T ], ∀u, v, w ∈ R;

(C4) ∀t ∈ [−T, T ], u, v, η ∈ R, the equation f(t, u, v, w) − η = 0 has a unique
solution.

We shall use the notations, the terminology and some results given by I.A. Rus in
the paper [6], and the following result, that is a generalization of the fibre contraction
theorem (see [6]).

Fibre contraction theorem. (Theorem 9.1., [7]) Let (Xi, di), i = 0,m, m ≥ 1, be
some metric spaces. Let

Ai : X0 × · · · × Xi → Xi, i = 0,m

be some operators. We suppose that:

(i) (Xi, di), i = 1,m, are complete metric spaces;
(ii) the operator A0 is WPO;
(iii) there exists αi ∈ (0; 1) such that:

Ai(x0, . . . , xi−1, ·) : Xi → Xi, i = 1,m

are αi-contractions;
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(iv) the operators Ai, i = 1,m, are continuous.

The operator A : X0 × · · · × Xm → X0 × · · · × Xm,

A(x0, . . . , xm) = (A0(x0), A1(x0, x1), . . . , Am(x0, . . . , xm))

is WPO. If A0 is PO, then A is PO.

2. Main result

In this section we apply the algorithm from section 1 for the problem (1.1)-(1.2).
Let n ∈ N

∗ be such that nh ≤ T, (n + 1)h > T . In the conditions (C1)− (C3), the
step method consists in the following:

For t ∈ [h, 2h] we have

x′(t) = f(t, x(t), x(t − h), x(t + h)),

x′(t − h) = f(t − h, x(t − h), x(t − 2h), x(t)),

x′

0(t − h) = f(t − h, x0(t − h), x−1(t − 2h), x(t)),

where x(t) = ϕ(t) =

{
x−1(t), t ∈ [−h, 0],
x0(t), t ∈ [0, h].

We denote x(t) := x1(t), t ∈ [h, 2h].
Let

F (t, x1(t)) := f(t − h, x0(t − h), x−1(t − 2h), x1(t)) − x′

0(t − h) = 0, t ∈ [h, 2h].

F (t, x1(t)) = 0, t ∈ [h, 2h].

From the implicit function theorem there exists a solution x∗

1 ∈ C1[h, 2h] such that

F (t, x∗

1(t)) = 0,∀t ∈ [h, 2h].

The key of each step is to approximate the solution x∗

1 ∈ [h, 2h] with the method of
Newton:

x1m(t) = x1,m−1(t) − G(t, x∗

1(t))F (t, x1,m−1(t)),

where G(t, x∗

1(t)) 6= 0 and x1,m−1(t) − G(t, x∗

1(t))F (t, x1,m−1(t)) is a contraction.

We choose the function G : [h, 2h]×R → R with G(t, x∗

1(t)) :=M
(

∂F (h,x1(h))
∂x1

)
−1,

where M ∈ (0, 1) is a constant. It is obvious that G(t, x∗

1(t)) 6= 0.
Now we consider the operator A1 : C[h, 2h] → C[h, 2h], defined by

A1(x1,m−1)(t) := x1,m−1(t) − G(t, x∗

1(t))F (t, x1,m−1(t)).

Proving that A1 is a contraction we have the uniqueness of the solution x1m on
[h, 2h]. For all t ∈ [h, 2h] we have the inequality

‖A1(x1,m−1)(t) − A1(y1,m−1)(t)‖ ≤ (1 − M) ‖x1,m−1 − y1,m−1‖ .

We have that x1m
unif
→ x∗

1 on [h, 2h], so in the next step we shall use x1m instead of
x∗

1.
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For t ∈ [2h, 3h] we have

x′(t) = f(t, x(t), x(t − h), x(t + h)),

x′(t − h) = f(t − h, x(t − h), x(t − 2h), x(t)),

x′

1m(t − h) = f(t − h, x1m(t − h), x0(t − 2h), x(t)).

We denote x(t) := x2(t), t ∈ [2h, 3h].
Let

F (t, x2(t)) := f(t − h, x1m(t − h), x0(t − 2h), x2(t)) − x′

1m(t − h) = 0, t ∈ [2h, 3h].

F (t, x2(t)) = 0, t ∈ [2h, 3h].

Applying the implicit function theorem, we have that there exists the solution
x∗

2 ∈ C1[2h, 3h] such that

F (t, x∗

2(t)) = 0,∀t ∈ [2h, 3h].

Now we approximate the solution x∗

2 ∈ [2h, 3h] with the method of Newton:

x2m(t) = x2,m−1(t) − G(t, x∗

2(t))F (t, x2,m−1(t)),

where G(t, x∗

2(t)) 6= 0 and x2,m−1(t) − G(t, x∗

2(t))F (t, x2,m−1(t)) is a contraction.

We choose G : [2h, 3h] × R → R with G(t, x∗

2(t)) := M
(

∂F (2h,x2(2h))
∂x2

)−1

, where

M ∈ (0, 1) is a constant. Then we have G(t, x∗

2(t)) 6= 0.
Let us consider the operator A2 : C[2h, 3h] → C[2h, 3h], defined by

A2(x2,m−1)(t) := x2,m−1(t) − G(t, x∗

2(t))F (t, x2,m−1(t)).

In the same way as in the previous step we prove that A2 is a contraction. Follows

that x2m
unif
→ x∗

2 on [2h, 3h], so in the next step we shall use x2m instead of x∗

2.
By induction, for t ∈ [nh, T ] we have

x′(t) = f(t, x(t), x(t − h), x(t + h)),

x′(t − h) = f(t − h, x(t − h), x(t − 2h), x(t)),

x′

n−1,m(t − h) = f(t − h, xn−1,m(t − h), xn−2,m(t − 2h), x(t)).

We denote x(t) := xn(t), t ∈ [nh, T ].
Let

F (t, xn(t)) :=f(t − h, xn−1,m(t − h), xn−2,m(t − 2h), x(t)) − x′

n−1,m(t − h) = 0,

F (t, xn(t)) = 0, t ∈ [nh, T ].

Applying implicit function theorem, there exists the solution x∗

n ∈ C1[nh, T ] such
that F (t, x∗

n(t)) = 0,∀t ∈ [nh, T ]. We approximate the solution x∗

n ∈ [nh, T ] with
the method of Newton, by xnm(t) = xn,m−1(t) − G(t, x∗

n(t))F (t, xn,m−1(t)), where
G(t, x∗

n(t)) 6= 0 and xn,m−1(t) − G(t, x∗

n(t))F (t, xn,m−1(t)) is a contraction.

The function chosen here is G : [nh, T ]×R → R, G(t, x∗

n(t)) :=M
(

∂F (nh,xn(nh))
∂xn

)−1

,

where M ∈ (0, 1) is a constant. Then G(t, x∗

n(t)) 6= 0.
Let the operator An : C[nh, T ] → C[nh, T ] defined by

An(xn,m−1)(t) := xn,m−1(t) − G(t, x∗

n(t))F (t, xn,m−1(t)).
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Notice that An is a contraction. Then we have that xnm
unif
→ x∗

n on [nh, T ].
So, the following convergence takes place

x̃ =





x−1, t ∈ [−h, 0]

x0, t ∈ [0, h]

x1m, t ∈ [h, 2h]
...

xnm, t ∈ [nh, T ]

→ x∗ =





x−1, t ∈ [−h, 0]

x0, t ∈ [0, h]

x∗

1, t ∈ [h, 2h]
...

x∗

n, t ∈ [nh, T ].

In what follows we present the step method for the solution determined with the
above algorithm.

(p0) x(t) = ϕ(t) =

{
x−1(t), t ∈ [−h, 0],
x0(t), t ∈ [0, h];

(p1) x∗

0(t − h) = x∗

0(0) +

∫ t

h

f(s − h, x∗

0(s − h), x∗

−1(s − 2h), x1(s))ds, t ∈ [h, 2h];

(p2) x∗

1(t − h) = x∗

1(h) +

∫ t

2h

f(s − h, x∗

1(s − h), x0(s − 2h), x2(s))ds, t ∈ [2h, 3h];

(p3) x∗

2(t − h) = x∗

2(2h) +

∫ t

3h

f(s − h, x∗

2(s − h), x∗

1(s − 2h), x3(s))ds, t ∈ [3h, 4h];

...

(pn) x∗

n−1(t − h) =x∗

n−1((n − 1)h)+

∫ t

nh

f(s − h,x∗

n−1(s − h), x∗

n−2(s − 2h), xn(s))ds,

t ∈ [nh, T ].

Thus we have the following theorem

Theorem 2.1. In the conditions (C1) − (C3) we have:

a) the problem (1.1)-(1.2) has in C[−T, T ] a unique solution

x∗(t) =





ϕ(t), t ∈ [−h, h]

x∗

1(t), t ∈ [h, 2h]
...

x∗

n(t), t ∈ [nh, T ].
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b) the sequence define by

x0(t − h) = x0(0) +

∫ t

h

f(s − h, x0(s − h), x−1(s − 2h), x1m(s))ds, t ∈ [h, 2h];

x∗

1(t − h) = x∗

1(h) +

∫ t

2h

f(s − h, x∗

1(s − h), x0(s − 2h), x2m(s))ds, t ∈ [2h, 3h];

x∗

2(t − h) = x∗

2(2h) +

∫ t

3h

f(s − h, x∗

2(s − h), x∗

1(s − 2h), x3m(s))ds, t ∈ [3h, 4h];

...

x∗

n−1(t − h) = x∗

n−1((n−1)h)+

∫ t

nh

f(s − h, x∗

n−1(s − h), x∗

n−2(s − 2h), xnm(s))ds,

t ∈ [nh, T ];

is convergent and lim
m→∞

xkm = x∗

k, k = 1, n.

Theorem 2.1 gives a uniqueness result for the solution of the problem (1.1)-(1.2) by
successive approximation method and now we want to improve the convergence of this
solution. So, here cames the question: can we put xi−1,m(t) instead of x∗

i−1(t), i = 2, n
in the conclusion b) of Theorem 2.1? The answer of this question is given by the
following theorem.

Theorem 2.2. We suppose that the conditions (C1) − (C3) and

(C4) there exists Lf > 0 such that

|f(t, u, v, w1) − f(t, u, v, w2)| ≤ Lf |w1 − w2| ,∀t ∈ [−T, T ], u, v, w1, w2 ∈ R;

are satisfied. Then the sequence defined by

x0(t−h)=ϕ(0)+

∫ t

h

f(s−h, x0(s−h), x−1(s−2h), x1m(s))ds, t ∈ [h, 2h]; (2.1)

x1m(t−h)=x1m(h)+

∫ t

2h

f(s−h, x1m(s−h), x0(s−2h), x2m(s))ds, t ∈ [2h, 3h];

x2m(t−h)=x2m(2h)+

∫ t

3h

f(s−h, x2m(s−h), x1m(s−2h), x3m(s))ds, t ∈ [3h, 4h];

· · ·

xn−1,m(t−h)=xn−1,m((n − 1)h)+

+

∫ t

nh

f(s − h, xn−1,m(s− h), xn−2,m(s− 2h), xnm(s))ds, t ∈ [nh, T ];

is convergent and lim
m→∞

xkm = x∗

k, k = 1, n.
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Proof. We consider the Banach spaces

X0 = (C[−h, h], ‖·‖0) with ‖·‖0 = max
t∈[−h,h]

{‖x(t)‖ e−λ(t+h)}, λ > 0,

Xi = (C[ih, (i + 1)h], ‖·‖i) with ‖·‖i = max
t∈[ih,(i+1)h]

{‖x(t)‖ e−λ(t−ih)}, λ > 0,

Xn = (C[nh, T ], ‖·‖n) with ‖·‖n = max
t∈[nh,T ]

{‖x(t)‖ e−λ(t−nh)}, λ > 0,

and the operators

A0 : X0 → X0, A(x0)(t) = ϕ(t), t ∈ [−h, h],

Ai : Xi−2 × Xi−1 × Xi → Xi, i = 1, n − 1

Ai(xi−2, xi−1, xi)(t) = xi−1((i − 1)h)+

+

∫ t

ih

f(s−h,xi−1(s−h),xi−2(s−2h),xi(s))ds, t ∈ [ih,(i+1)h]

An : Xn−2 × Xn−1 × Xn → Xn,

An(xn−2, xn−1, xn)(t) = xn−1((n − 1)h+

+

∫ t

nh

f(s−h,xn−1(s − h),xn−2(s − 2h),xn(s))ds, t ∈ [nh, T]

and

A : X0 × · · · × Xn → X0 × · · · × Xn

A(x0, . . . , xn) = (A0(x0), A1(x−1, x0, x1), . . . , An(xn−2, xn−1, xn)).

For fixed (x0, . . . , xn) ∈ X0 × · · · × Xn, the sequence (2.1) means

(x0m, . . . , xnm) = Am(x0, . . . , xn).

We need to prove that the operator A is PO and for this we apply the fibre contraction
theorem.

Since A0 : X0 → X0 is a constant operator then A0 is α0-contraction with α0 = 0,
so A0 is PO and FA0

= {x∗

0}, where x∗

0 = ϕ. For i = 1, n we have:

‖Ai(xi−2, xi−1, xi) − Ai(xi−2, xi−1, yi)‖i ≤
Lf

λ
‖xi − yi, ‖

for all xi−2 ∈ Xi−2, xi−1 ∈ Xi−1, xi ∈ Xi. Choosing λ = Lf + 1, we get that

Ai(xi−2, xi−1, ·) : Xi → Xi are αi-contractions with αi =
Lf

Lf+1 , so we are in the con-

ditions of the fibre contraction theorem, therefore A is PO and FA = {(x∗

0, . . . , x
∗

n)}.
Thus

(x0m, . . . , xnm) = Am(x0, . . . , xn) → (x∗

0, . . . , x
∗

n),

where xm
0 = ϕ, for all m ∈ N, and x1m, . . . , xnm are defined by (2.1). From condition

(C3) and from the definitions of Ai, i = 1, n, we have

x∗

i−1((i − 1)h) = x∗

i ((i − 1)h), i = 1, n,
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therefore

x∗(t) =





ϕ(t), t ∈ [−h, h]

x∗

1(t), t ∈ [h, 2h]
...

x∗

n(t), t ∈ [nh, T ]

is the unique solution in C[−T, T ]. �

3. Numerical example

In this section we give an example to test the numerical method presented above.
We consider the following functional-differential problem with mixed type argument:

x′(t) = −4x(t) + x(t − h) + 3x(t + h) + (1 − 2h)/12, t ∈ [−7; 7], h = 1, (3.1)

x(t) = (t − 1)/12, t ∈ [−1; 1].

We divide the working interval [−1; 7] by the points Pn = nh, n = −1, 7. We develop
the solution for the step of time s = 0.1, thus we obtain N = 10 points on each
subinterval In =[Pn−1, Pn]. From implicit function theorem, on each In, there exists
a solution xn(t) and this solution is approximated by Newton’s method. Applying
the algorithm explained in the previous section we get:

xnm(t) = xnm−1(t) − F (t, xnm−1(t))/3 (3.2)

with F (t, xnm−1(t)) = −4x(t − nh) + x(t − 2nh) + 3x(t) + 1−2nh
12 − x′(t − nh).

−1 0 1 2 3 4 5 6 7
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

x(t)

Figure 1. Exact and numerical solution for equation (3.1)

The algorithm from Section 2 is implemented using Matlab in the following way:
Step 0: We construct the vector t formed by 2N + 1 points of the interval [−h;h]

at each step s. Further, we initialize the known solution for this interval with ϕ(t) =
(t − 1)/12 and its derivative with ϕ′(t) = 1/12.
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Step k: We concatenate to the initial vector t the rest of the points till T , con-
structing the interval [nh, T ], n = 2, 7. For this interval we get the solution applying
Newton’s method. For starting this method, we initialize the value of the first solution
with that computed to the last knot at the previous step.

Stoping test: We evaluate the difference in norm between two consecutive computed

values x
(k)
n and x

(k+1)
n and the iterations stop when it is less than a chosen value (in

our case 10−6). The last values of the solution are retained in the solution vector
and are plotted along to the exact solution of the equation (3.1). These solutions are
presented in Fig. 1.

We can see from Fig. 1 that for the equation (3.1), our algorithm work perfectly.
The exact solution x(t) = (t − 1)/12 are designed graphically by circles and the
numerical solution x = xn(t) by line. We observe that the numerical solution is
overlapping the exact solution.
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