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Abstract. In this paper, the concept of equidifferentiability, which is analogous to the concept of

equicontinuity, is introduced and this concept is applied to some relations between the sets consisting
of finitely equidifferentiable functions defined on [0, 1] and the sets consisting of infinitely equidif-

ferentiable functions defined on [0, 1]. Moreover, fixed point theorems for the finitely differentiable
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1. Introduction

The concept of compactness plays an important role in the function space theory.
For example, the solution to Hilbert’s 13th problem (cf. [1],[2],[3],[8]), which is re-
lated to the superposition representability of the functions of several variables, has
required a compactness criterion represented in terms of the theory of function spaces.
Moreover, Ascoli’s theorem (cf. [6],[7]) shows that equicontinuity can be regarded as
a characterization of compactness of subsets of function spaces. By the way, as for
the several researches investigating the existence of fixed points under the conditions
such as a family of nonexpansive mappings and a family of several metrics, we can
refer to the results obtained by Petruşel and Rus (cf. [5]) and the results obtained by
Nakajo, Shimoji and Takahashi (cf. [4]), respectively.
In this paper, the concept of equidifferentiability, which is analogeous to the concept
of equicontinuity, is introduced and this concept is applied to some relations between
the sets consisting of finitely equidifferentiable functions defined on [0, 1] and the sets
consisting of infinetely equidifferentiable functions defined on [0, 1]. Moreover, the
fixed point theorems for the finitely differentiable function spaces and those for the
infinitely differentiable function spaces are remarked.

The paper was presented at The 9th International Conference on Fixed Point Theory and Its
Applications, July 16-22, 2009, National Changhua University of Education, Changhua, Taiwan
(R.O.C.).

323



324 SATOSHI KODAMA AND SHIGEO AKASHI

2. A criterion for compactness

Let N be the set of all positive integers and let k be a positive integer. Moreover,
Dk([0, 1]) denotes the set of all k-time continuously differentiable real-valued functions
defined on [0, 1] and ‖ · ‖k denotes the norm defined as

‖f‖k = max
0≤i≤k

sup
x∈[0,1]

|f (i)(x)|, f ∈ Dk([0, 1]).

By the same way as above, ‖ · ‖∞ denotes the function defined as

‖f‖∞ = max
0≤i≤k

sup
x∈[0,1]

|f (i)(x)|, f ∈ Dk([0, 1]),

where f is an infinitely differentiable function. It can be easily proved that
(Dk([0, 1]), ‖ · ‖k) is a Banach space and that there exists an infinitely differentiable
function f satisfying ‖f‖∞ = ∞.

Let D∞([0, 1]) be the set of all infinity differentiable functions defined on [0, 1] and
d∞(·, ·) denotes the metric defined as

d∞(f, g) =
∞∑

k=1

‖f − g‖k

2k(1 + ‖f − g‖k)
, f, g ∈ D∞([0, 1]).

Then,we can prove the follows. Let F be a non-empty subset of Dk([0, 1]). Then,
F is said to be k-time equidifferentiable, if, for any positive number ε, there exists a
positive number δ satisfying

max
0≤i≤k

sup
|x−y|<δ

|f (i)(x)− f (i)(y)| ≤ ε, f ∈ F .

Now, we can obtain the following:
Theorem 2.1. Let F be a non-empty closed subset of (Dk([0, 1]), ‖ · ‖k)). Then, F
is compact if and only if F is bounded and k-time equidifferentiable.
Proof. We first assume that F is compact. Since the compactness of F implies the
boundedness of F , it is sufficient to prove that F is k-time equidifferentiable. For
any arbitrary positive number ε, we can find a finite (ε/3)-net which is denoted by
N (F , ε/3). Therefore, there exists a positive number δ satisfying

max
0≤j≤k

sup
|x−y|<δ

|f (j)(x)− f (j)(y)| ≤ ε

3
, f ∈ N

(
F ,

ε

3

)
,

because all the k-time continuously differentiable functions and their derivative func-
tions are uniformly continuous on [0, 1]. Let g be an element of Dk([0, 1]). Then,
there exists an element fg belonging to N (F , ε/3) satisfying ‖g − fg‖k < ε/3. Let x
and y be any two elements belonging to [0, 1] satisfying |x − y| < δ. Then, for any
integer i satisrying 0 ≤ i ≤ k, we have

|g(i)(x)− g(i)(y)| ≤ |g(i)(x)− f (i)
g (x)|+ |f (i)

g (x)− f (i)
g (y)|+ |f (i)

g (y)− g(i)(y)|
≤ ε.

Therefore, the former half has been proved. Finally, we assume that F is bounded
and k-time equidifferentiable. Since F is closed, it is sufficient to prove that every
sequence cosisting of elements belonging to F has a Cauchy subsequence. Here,
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Q([0, 1]) denotes the set of all non-negative rational numbers belonging to [0, 1] and
q denotes a bijective mapping defined on N with values in Q([0, 1]). Let {gj}∞j=1 be
a sequence consisting of elements belonging to F . Then, we can find a subsequence
{g1

j }∞j=1 satisfying the condition that {g1
j (q(1))}∞j=1 converges. Moreover, we can find

a subsequence of {g1
j }∞j=1 which is denoted by {g2

j }∞j=1 satisfying the condition that
{g1

j (q(2))}∞j=1 also converges. If we continue this process iteratively, we can construct
the array of sequence {{gi

j}∞j=1; i ∈ N}. It is clear that the following inequality holds:

max
0≤j≤k

sup
|x−y|<δ

∣∣∣(gi
i

)(j)
(x)(x)−

(
gi

i

)(j)
(y)

∣∣∣ ≤ ε

3
, i ∈ N,,

because {gi
i}∞i=1 is also k-time equidifferentiable. Let L be a positive integer and let

{q(j`); 1 ≤ ` ≤ L} be a finite subset of {q(j); j ∈ N} which satisfies the following:

[0, 1] ⊂ ∪L
`=1(q(j`)− δ, q(j`) + δ).

Therefore, we can find such a positive integer n(ε) that, for any two positive integers
m and n satisfying m > n(ε) and n > n(ε), the following inequality holds:∣∣∣(gm

m)(j) (q(j`))− (gn
n)(j) (q(j`))

∣∣∣ ≤ ε

3
, 1 ≤ j ≤ k, 1 ≤ ` ≤ L.

These results lead us to the following inequalities:

| (gm
m)(i) (x)− (gn

n)(i) (x)| ≤ | (gm
m)(i) (x)− (gm

m)(i) (q(j`))|
+ | (gm

m)(i) (q(j`))− (gn
n)(i) (q(j`))|

+ | (gn
n)(i) (q(j`))− (gn

n)(i) (x)|
≤ ε

Therefore, we can conclude the proof of the latter half. �
Let k and ` be two positive integers satisfying k < `. Then, D`([0, 1]) can be

regarded as a closed subspace of Dk([0, 1]). Here, for any positive number M , Uk(M)
and U∞(M) denote he subset of Dk([0, 1]) and the subset of D∞([0, 1]) defined as

Uk(M) = {f ∈ Dk([0, 1]); ‖f‖k ≤ M}

and
U∞(M) = {f ∈ D∞([0, 1]); ‖f‖∞ ≤ M},

respectively. Then, we can obtain the following:
Proposition 2.2. Let m be a positive integer and let S∞(m) denote the closed
sphere of the metric space (D∞([0, 1]), d(·, ·)) with its radius 1/2m. Then, S∞(m) is
a bounded subset of (Dm([0, 1]), ‖ · ‖m).
Proof. Assume that we have

sup
f∈S∞(m)

‖f‖m = ∞.

Then, for any positive integer ` which is greater than m, we have

sup
f∈S∞(m)

‖f‖` = ∞.



326 SATOSHI KODAMA AND SHIGEO AKASHI

This equality implies that the following inequalities hold:

sup
f∈S∞(m)

d∞(0, f) ≥
∞∑

k=m

‖f‖k

2k(1 + ‖f‖k)

=
1

2m−1
.

Therefore, we have the conclusion. �
Remark 2.3. For any non-negative integer k and for any positive number M ,

{f ∈ Dk([0, 1]); ‖f‖k+1 ≤ M}
is a compact subset of (Dk([0, 1]), ‖ · ‖k)), because a bounded subset included by
(Dk([0, 1]), ‖ · ‖k+1)) assures that all the elements belonging to the subset are equid-
ifferentiable.
Remark 2.4. Let T∞ be a continuous mapping on D∞([0, 1]) and, for any positive
integer k, let Tk be the unique extension of T∞ whose extended domain is Dk([0, 1]).
Moreover, let F be a non-empty compact and convex subset of D∞([0, 1]). Then,
we can apply Schauder’s fixed point theorem to F , because F can be regarded as a
compact and convex subset of Dk([0, 1]), and eventually, we can prove that Tk has
a fixed point, which is denoted as pk. Since D∞([0, 1]) can be regarded as a locally
convex topological vector space, we can apply Tychonoff’s fixed point theorm to F ,
andeventually, we can prove that T∞ has a fixed point, which is denoted as p∞. Here
we can easily prove that pk is exactly equal to p∞, because D∞([0, 1]) is a dense
subset of Dk([0, 1]).
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the members of the organizing committee for their warmhearted hospitality presented
in the 9th International Conference on Fixed Point Theory and Applications 2009.
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