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Abstract. We consider a Neumann problem involving nonhomogeneous operators

−div(Ψ(x,∇u)) + Φ(x, u) = µ |u|p−2 u + f(λ, x, u,∇u) in Ω

when Ψ, Φ, and f satisfy certain conditions and µ is not an eigenvalue in some sense. The aim

of this paper is to study the structure of the set of solutions for the above equation, by applying a

bifurcation result for nonlinear equations and a nonlinear spectral theory for homogeneous operators.
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1. Introduction

Some eigenvalue problems with Neumann boundary conditions have been investi-
gated in [5, 9, 13, 14, 15]. From this background, a bifurcation theory for Neumann
problems can be developed; see e.g. [6, 13, 14]. In fact, Khalil and Ouanan [6] obtained
some bifurcation results for nonlinear Neumann problem of the form{

−div(|∇u|p−2∇u) = λm(x)|u|p−2u+ f(λ, x, u) in Ω
∂u
∂n = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , p > 1, and ∂u
∂n denotes the outer normal

derivative of u with respect to ∂Ω. It is based on the fact in [5] that the first eigenvalue
of the p-Laplacian is simple and isolated, under suitable conditions on m.

Concerning Dirichlet boundary conditions, various bifurcation problems from the
first eigenvalue of the p-Laplacian can be found in [1, 3, 10, 11, 12]; see [2] for the
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degenerated p-Laplacian. While one thus deals with bifurcation at the first eigenvalue,
Väth [16] has attempted another approach in the case when µ is not an eigenvalue
of the p-Laplacian; see [7]. In this direction, a global bifurcation result for Dirichlet
problems involving nonhomogeneous operators{

−div(Ψ(x,∇u)) = µ |u|p−2
u+ f(λ, x, u,∇u) in Ω

u = 0 on ∂Ω

is given in [8]. It is required that Ψ behaves asymptotically at infinity like the p-
Laplacian.

In the present paper, we consider the following nonlinear Neumann problem{
−div(Ψ(x,∇u)) + Φ(x, u) = µ |u|p−2

u+ f(λ, x, u,∇u) in Ω
∂u
∂n = 0 on ∂Ω

(B)

when µ is not an eigenvalue of the form{
−div(w(x) |∇u|p−2∇u) + ν(x) |u|p−2

u = µ |u|p−2
u in Ω

∂u
∂n = 0 on ∂Ω.

(E)

Here Ψ(x, ·) : RN → RN and Φ(x, ·) : R → R are not necessarily positively homoge-
neous and f : R × Ω× R × RN → R satisfies a Carathéodory condition. It is known
in [4, 16] that the condition that µ is not an eigenvalue of the p-Laplacian is closely
related to nonlinear spectral theory for homogeneous operators. The aim of this paper
is to study the structure of the solution set for the above Neumann problem (B). A
key tool is to use a bifurcation result for nonlinear equations given in [8], with the aid
of nonlinear spectral theory.

This note is organized as follows: In Section 2, to solve our bifurcation problem (B)
in the weak sense, we give some properties of the corresponding integral operators. In
Section 3, the main idea in our approach is to observe the asymptotic behavior of the
integral operator induced by Ψ and Φ at infinity, as the Dirichlet problem has shown
in [8]. With this observation, we obtain a spectral result concerning nonhomogeneous
operators provided that µ is not an eigenvalue of (E). In Section 4, we prove the main
theorem on global bifurcation for the above Neumann problem (B).

2. Some properties of integral operators

Let Ω be a bounded domain in RN with smooth boundary. Let 1 < p < ∞ and
p′ := p/(p− 1). Let X = W 1,p(Ω) be the Sobolev space, endowed with the norm

‖u‖X =
( ∫

Ω

|∇u|p dx+
∫

Ω

|u|p dx
) 1

p

,

where | · | denotes the Euclidean norm on RN or R1. We assume that

(J1) Ψ: Ω × RN → RN and Φ: Ω × R → R satisfy a Carathéodory condition,
respectively, that is, Ψ(·, v) is measurable on Ω for all v ∈ RN , Ψ(x, ·) is
continuous on RN for almost all x ∈ Ω, Φ(·, u) is measurable on Ω for all
u ∈ R, and Φ(x, ·) is continuous on R for almost all x ∈ Ω.
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(J2) There are functions ai ∈ Lp′(Ω) and nonnegative constants bi (i = 1, 2) such
that for almost all x ∈ Ω, the following growth conditions hold:

|Ψ(x, v)| ≤ a1(x) + b1 |v|p−1 and |Φ(x, u)| ≤ a2(x) + b2 |u|p−1

for all v ∈ RN and for all u ∈ R.
(J3) There are positive constants ci (i = 1, 2) such that for almost all x ∈ Ω, the

estimates hold:

〈Ψ(x, v1)−Ψ(x, v2), v1 − v2〉 ≥

{
c1 min

{
1, (|v1|+ |v2|)p−2

}
|v1 − v2|2 if 1 < p < 2

c1 |v1 − v2|p if 2 ≤ p <∞

for all v1, v2 ∈ RN and

〈Φ(x, u1)− Φ(x, u2), u1 − u2〉≥

{
c2 min

{
1, (|u1|+ |u2|)p−2

}
|u1 − u2|2 if 1 < p < 2

c2 |u1 − u2|p if 2≤ p<∞

for all u1, u2 ∈ R.

Under (J1) and (J2), we define an operator J : X → X∗ by

〈J(u), v〉 :=
∫

Ω

(
〈Ψ(x,∇u(x)),∇v(x)〉+ 〈Φ(x, u(x)), v(x)〉

)
dx, (2.1)

where 〈 · , · 〉 denotes the pairing of X and its dual X∗ and the Euclidean scalar
product on RN or R1, respectively.

The following examples are a particular form of Corollary 3.1 in [8].

Example 2.1. Suppose that ψ : Ω × [0,∞) → [0,∞) has the property that ψ(·, t)
is measurable on Ω for all t ∈ [0,∞) and ψ(x, ·) is locally absolutely continuous on
[0,∞) for almost all x ∈ Ω. Assume that there exists a positive constant c3 such that
the following conditions are satisfied for almost all x ∈ Ω:

ψ(x, t) ≥ c3t
p−2 and t

∂ψ

∂t
(x, t) + ψ(x, t) ≥ c3t

p−2 (2.2)

for almost all t ∈ (0, 1) and in case 2 ≤ p < ∞ the condition (2.2) holds for almost
all t ∈ (1,∞) and in case 1 < p < 2

ψ(x, t) ≥ c3 and t
∂ψ

∂t
(x, t) + ψ(x, t) ≥ c3 (2.3)

holds for almost all t ∈ (1,∞). Then Ψ: Ω × RN → RN , Ψ(x, v) = ψ(x, |v|)v
satisfies (J1) and (J3).

Example 2.2. Suppose that φ : Ω × [0,∞) → [0,∞) has the property that φ(·, u)
is measurable on Ω for all u ∈ [0,∞) and φ(x, ·) is locally absolutely continuous on
[0,∞) for almost all x ∈ Ω. Assume that there exists a positive constant c4 such that
the following conditions are satisfied for almost all x ∈ Ω:

φ(x, u) ≥ c4u
p−2 and u

∂φ

∂u
(x, u) + φ(x, u) ≥ c4u

p−2 (2.4)
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for almost all u ∈ (0, 1) and in case 2 ≤ p < ∞ the condition (2.4) holds for almost
all u ∈ (1,∞) and in case 1 < p < 2

φ(x, u) ≥ c4 and u
∂φ

∂u
(x, u) + φ(x, u) ≥ c4 (2.5)

holds for almost all u ∈ (1,∞). Then Φ: Ω×R → R, Φ(x, u) = φ(x, |u|)u satisfies (J1)
and (J3).

To observe the above integral operator J in a more concrete situation, we assume
that

(J4) w and ν belong to L∞(Ω) and there are positive constants di (i = 1, 2) such
that

w(x) ≥ d1 and ν(x) ≥ d2 for almost all x ∈ Ω.

Setting Ψp : Ω× RN → RN and Φp : Ω× R → R by

Ψp(x, v) = w(x) |v|p−2
v and Φp(x, u) = ν(x) |u|p−2

u,

we define another operator Jp : X → X∗ by

〈Jp(u), v〉 :=
∫

Ω

(
〈Ψp(x,∇u(x)),∇v(x)〉+ 〈Φp(x, u(x)), v(x)〉

)
dx. (2.6)

The first goal of this section is to show that two operators J and Jp are bounded
homeomorphisms, where the term Φ(x, u) or Φp(x, u) is essential for the case of Neu-
mann conditions.

Lemma 2.3. Under assumptions (J1), (J2), and (J3), the operator J : X → X∗ is
a bounded homeomorphism. Under assumption (J4), the operator Jp : X → X∗ is a
bounded homeomorphism.

Proof. In view of (J1) and (J2), it is obvious that J is bounded and continuous on
X. We will now show that J−1 is continuous on X∗; see the proof of Theorem 3.1
in [8], where the term Φ(x, u) is not necessary. Set c = min{c1, c2}. Assume first that
2 ≤ p <∞. Let u, v ∈ X. Then for almost all x ∈ Ω, we have by (J3) that

〈Ψ(x,∇u(x))−Ψ(x,∇v(x)),∇u(x)−∇v(x)〉 ≥ c1|∇u(x)−∇v(x)|p

and
〈Φ(x, u(x))− Φ(x, v(x)), u(x)− v(x)〉 ≥ c2|u(x)− v(x)|p.

taking the integral at both sides of these inequalities, we obtain

〈J(u)− J(v), u− v〉 =
∫

Ω

〈Ψ(x,∇u)−Ψ(x,∇v),∇u−∇v〉 dx

+
∫

Ω

〈Φ(x, u)− Φ(x, v), u− v〉 dx ≥ c ‖u− v‖p
X .
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Next, assume that 1 < p < 2. Then for all u, v ∈ X with (u, v) 6= (0, 0), we obtain by
(J3) that

〈J(u)− J(v), u− v〉 ≥ c

∫
Ω0

(
mp−2

1 |∇u−∇v|2 +mp−2
2 |u− v|2

)
dx,

where we put Ω0 := {x ∈ Ω : (u(x), v(x)) 6= (0, 0)} and use the shortcuts

m1(x) := min{1, |∇u(x)|+ |∇v(x)|} and m2(x) := min{1, |u(x)|+ |v(x)|}.

From Hölder’s and Minkowski’s inequalities, and the inequality

a
1
q′ r

1
q + b

1
q′ s

1
q ≤ (a+ b)

1
q′ (r + s)

1
q

for any positive numbers a, b, r, s, it follows that

||u−v||pX =
∫

Ω0

m
−p(p−2)/2
1 m

p(p−2)/2
1 |∇u−∇v|p dx+

∫
Ω0

m
−p(p−2)/2
2 m

p(p−2)/2
2 |u−v|p dx

≤
( ∫

Ω0

|m1|p dx
)(2−p)/2( ∫

Ω0

mp−2
1 |∇u−∇v|2 dx

)p/2

+
( ∫

Ω0

|m2|p dx
)(2−p)/2( ∫

Ω0

mp−2
2 |u− v|2 dx

)p/2

≤
( ∫

Ω0

(
|m1|p + |m2|p

)
dx

)(2−p)/2( ∫
Ω0

(
mp−2

1 |∇u−∇v|2 +mp−2
2 |u− v|2

)
dx

)p/2

.

Applying Minkowski’s inequality twice, we have∫
Ω0

(
|m1|p + |m2|p

)
dx ≤

∫
Ω0

(
|∇u|+ |∇v|

)p
dx+

∫
Ω0

(
|u|+ |v|

)p
dx

≤
(
‖∇u‖Lp(Ω, RN ) + ‖∇v‖Lp(Ω, RN )

)p

+
(
‖u‖Lp(Ω) + ‖v‖Lp(Ω)

)p

≤ (‖u‖X + ‖v‖X)p

and hence∫
Ω0

(
mp−2

1 |∇u−∇v|2 +mp−2
2 |u− v|2

)
dx ≥ (‖u‖X + ‖v‖X)p−2 ‖u− v‖2

X .

Consequently, we obtain

〈J(u)− J(v), u− v〉 ≥

 c (‖u‖X + ‖v‖X)p−2 ‖u− v‖2
X if 1 < p < 2 and

(u, v) 6= (0, 0)
c ‖u− v‖p

X if 2 ≤ p <∞.
(2.7)

It is easily checked that J is strictly monotone and coercive. Since J is bounded
and continuous on X, the Browder-Minty theorem hence implies that J is a bounded
homeomorphism on X and J−1 is bounded on X∗; see e.g. [18, Theorem 26.A].
Moreover, we see from (J4) that Ψp and Φp satisfy (J1), (J2), and (J3), respectively.
Using the first assertion gives that Jp is a bounded homeomorphism on X. This
completes the proof. �
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For the sake of convenience, we prove the following result which is formally Corol-
lary 3.4 of [8]. The difference from the assumptions in [8] is the presence of the term
Φ(x, u) in (2.1) which makes possible to work in the whole Sobolev space. We point
out that the continuity of the map (t, f) 7→ J−1

t (f) is crucial for obtaining our main
result in Section 4.

Lemma 2.4. Suppose that two operators J, J0 : X → X∗ of the form (2.1) are
generated by functions satisfying (J1), (J2), and (J3), respectively. Then for each
t ∈ [0, 1], the operator Jt : X → X∗ defined by Jt := tJ + (1 − t)J0 is a bounded
homeomorphism onto X∗. Moreover, the map h : [0, 1] ×X∗ → X, (t, f) 7→ J−1

t (f)
is continuous on [0, 1]×X∗.

Proof. For all t ∈ [0, 1] and u, v ∈ X, we have

〈Jt(u)− Jt(v), u− v〉 ≥ min {〈J0(u)− J0(v), u− v〉 , 〈J1(u)− J1(v), u− v〉} (2.8)

and by (2.7)

〈Ji(u)−Ji(v), u− v〉 ≥

 c (‖u‖X + ‖v‖X)p−2 ‖u− v‖2
X if 1 < p < 2 and

(u, v) 6= (0, 0)
c ‖u− v‖p

X if 2 ≤ p <∞
(2.9)

for i = 0, 1. Since each bounded continuous operator Jt is thus strictly monotone and
coercive, we know as before that it is a bounded homeomorphism. For all s, t ∈ [0, 1]
and u, v ∈ X, it follows from the relation

〈Jt(u)− Js(v), u− v〉 = (t− s) 〈J1(v)− J0(v), u− v〉+ 〈Jt(u)− Jt(v), u− v〉
that(
|t− s| ‖J1(v)− J0(v)‖X∗ + ‖Jt(u)− Js(v)‖X∗

)
‖u− v‖X ≥ 〈Jt(u)− Jt(v), u− v〉

and hence by (2.8) and (2.9)

|t− s| ‖J1(v)− J0(v)‖X∗ + ‖Jt(u)− Js(v)‖X∗

≥

{
c (‖u‖X + ‖v‖X)p−2 ‖u− v‖X if 1 < p < 2 and (u, v) 6= (0, 0)
c ‖u− v‖p−1

X if 2 ≤ p <∞.

(2.10)
To show the continuity of h, there are two cases to consider. For 1 < p < 2, let
(tn, fn) be any sequence in [0, 1]×X∗ such that tn → t in [0, 1] and fn → f in X∗ as
n→∞. Set un = J−1

tn
(fn) and u = J−1

t (f). We obtain from (2.10) that

‖un − u‖X ≤ c−1 (‖un‖X + ‖u‖X)2−p(|tn − t| ‖J1(u)− J0(u)‖X∗

+ ‖Jtn
(un)− Jt(u)‖X∗).

Note that h maps bounded sets into bounded sets, as follows from (2.10) with t = s
and v = 0. Since {un : n ∈ N} is bounded and Jtn

(un) → Jt(u) in X∗ as n→∞, we
conclude that

un → u and equivalently h(tn, fn) → h(t, f) as n→∞.

Thus, h is continuous on [0, 1] × X∗. For 2 ≤ p < ∞, it is clear by (2.10) that h is
continuous on [0, 1]×X∗. This completes the proof. �
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Let p∗ denote the critical Sobolev exponent, that is, p∗ = Np/(N − p) if p < N
and p∗ = ∞ if p ≥ N . We assume that

(F1) f : R × Ω × R × RN → R satisfies the Carathéodory condition in the sense
that f(λ, ·, u, v) is measurable for all (λ, u, v) ∈ R×R×RN and f(·, x, ·, ·) is
continuous for almost all x ∈ Ω.

(F2) For each bounded interval I ⊂ R, there are a function aI ∈ Lq(Ω) and a
nonnegative constant bI such that

|f(λ, x, u, v)| ≤ aI(x) + bI(|u|
p
q + |v|

p
q )

for almost all x ∈ Ω and for all (λ, u, v) ∈ I × R × RN , where the conjugate
exponent of q > 1 is strictly less than p∗.

(F3) There exist a function a ∈ Lp′(Ω) and a locally bounded function b : [0,∞) →
R with limr→∞ b(r)/rp−1 = 0 such that

|f(0, x, u, v)| ≤ a(x) + b(|u|+ |v|),
for almost all x ∈ Ω and for all (u, v) ∈ R× RN .

Under (F1) and (F2), we can define an operator F : R×X → X∗ by

〈F (λ, u), v〉 =
∫

Ω

f(λ, x, u(x),∇u(x))v(x) dx (2.11)

and an operator G : X → X∗ by

〈G(u), v〉 =
∫

Ω

|u(x)|p−2u(x)v(x) dx. (2.12)

For our aim, we need the following result. The argument follows the lines of the
proof of Theorem 4.1 in [8], although we work in the whole Sobolev space, not only
in the subspace with zero traces. Recall that F is completely continuous if F is
continuous and maps bounded sets into relatively compact sets.

Lemma 2.5. If (F1) and (F2) hold, then F : R×X → X∗ is completely continuous.
The operator G : X → X∗ is completely continuous.

Proof. A linear operator I1 : R×X → R× Lp(Ω)× Lp(Ω,RN ) defined by

I1(λ, u) := (λ, u,∇u) for (λ, u) ∈ R×X

is clearly bounded. Let Γ : Y = R× Lp(Ω)× Lp(Ω,RN ) → Lq(Ω) be defined by

Γ(λ, u, v)(x) := f(λ, x, u(x), v(x)).

If I is a bounded interval in R and aI ∈ Lq(Ω) and bI ∈ [0,∞) are chosen from (F2),
then we have

‖Γ(λ, u, v)‖q
Lq(Ω) ≤

∫
Ω

(3 max{|aI |, bI |u|
p
q , bI |v|

p
q })qdx

≤ 3q
(
‖aI‖q

Lq(Ω) + (bI)q ‖u‖p
Lp(Ω) + (bI)q ‖v‖p

Lp(Ω, RN )

)
.

Thus, Γ is bounded. Since Y is a generalized ideal space and Lq(Ω) is a regular ideal
space, Theorem 6.4 of [17] implies that Γ is continuous on Y . The embedding I2 :
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X ↪→ Lq′(Ω) is completely continuous and so is the adjoint operator I∗2 : Lq(Ω) → X∗

given by

(I∗2v)(u) =
∫

Ω

vu dx.

From the relation F = I∗2 ◦ Γ ◦ I1 it follows that F is completely continuous. In
particular, if we set f(λ, x, u, v) = |u|p−2u (with q = p′ in the notation of (F2)), then
G is completely continuous. This completes the proof. �

We close this section by making observation on the behavior of F (0, ·) at infinity
and it was proved in [16].

Lemma 2.6. Under assumptions (F1) and (F3), the operator F (0, ·) : X → X∗ has
the following estimate:

lim
‖u‖X→∞

‖F (0, u)‖X∗

‖u‖p−1
X

= 0.

3. A Spectral Result

In this section, we study the asymptotic behavior of the integral operator J induced
by Ψ and Φ and then deduce a spectral result for operators that are not necessarily
positively homogeneous.

To do this, we consider the functions Ψp,Φp which induce the integral operator Jp

of the form (2.6) and the following asymptotic hypothesis is required as in [8]:
(A) For each ε > 0 there are functions Mi ∈ Lp(Ω) (i = 1, 2) such that for almost

all x ∈ Ω the following estimates hold:

|Ψ(x, v)−Ψp(x, v)|
|v|p−1 ≤ ε, for all v ∈ RN with |v| > |M1(x)|

and
|Φ(x, u)− Φp(x, u)|

|u|p−1 ≤ ε, for all u ∈ R with |u| > |M2(x)| .

Now we can show that the operators J and Jp are asymptotic at infinity, as in
Proposition 5.1 of [8].

Proposition 3.1. If (J1), (J2), and (A) hold, then

lim
‖u‖X→∞

‖J(u)− Jp(u)‖X∗

‖u‖p−1
X

= 0.

Proof. Given ε > 0, choose functions Mi ∈ Lp(Ω) (i = 1, 2) such that for almost all
x ∈ Ω, the following

|Ψ(x, v)−Ψp(x, v)| ≤ ε|v|p−1 and |Φ(x, u)− Φp(x, u)| ≤ ε|u|p−1
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hold for all v ∈ RN with |v| > |M1(x)| and for all u ∈ R with |u| > |M2(x)|. In view
of (J2), choose functions ai ∈ Lp′(Ω) and nonnegative constants bi (i = 1, 2) such
that for almost all x ∈ Ω, the estimates

|Ψ(x, v)| ≤ a1(x) + b1 |M1(x)|p−1 and |Φ(x, u)| ≤ a2(x) + b2 |M2(x)|p−1

hold for all v ∈ RN with |v| ≤ |M1(x)| and for all u ∈ R with |u| ≤ |M2(x)|. Set

αM1(x) = a1(x)+(b1+w(x)) |M1(x)|p−1 and αM2(x) = a2(x)+(b2+ν(x)) |M2(x)|p−1
.

Then αM1 and αM2 belong to Lp′(Ω) and for almost all x ∈ Ω, the estimates

|Ψ(x, v)−Ψp(x, v)| ≤ αM1(x) and |Φ(x, u)− Φp(x, u)| ≤ αM2(x)

hold for all v ∈ RN with |v| ≤ |M1(x)| and for all u ∈ R with |u| ≤ |M2(x)|. Thus,
for almost all x ∈ Ω, the following relations

|Ψ(x, v)−Ψp(x, v)| ≤ max
{
αM1(x), ε |v|

p−1
}

and
|Φ(x, u)− Φp(x, u)| ≤ max

{
αM2(x), ε |u|

p−1
}

hold for all v ∈ RN and for all u ∈ R. For all u ∈ X, we obtain by Hölder’s and
Minkowski’s inequalities that

‖J(u)− Jp(u)‖p′

X∗ ≤
Z

Ω

�
|Ψ(x,∇u(x))−Ψp(x,∇u(x))|p

′
+ |Φ(x, u(x))− Φp(x, u(x))|p

′ �
dx

≤
Z

Ω

�
max

n
|αM1(x)|p

′
, εp′ |∇u(x)|p

o
max

n
|αM2(x)|p

′
, εp′ |u(x)|p

o�
dx

≤
Z

Ω

�
|αM1(x)|p

′
+ |αM2(x)|p

′
+ εp′(|∇u(x)|p + |u(x)|p)

�
dx

= ‖αM1‖
p′

Lp′ (Ω)
+ ‖αM2‖

p′

Lp′ (Ω)
+ εp′ ‖u‖p

X .

Hence, for all u ∈ X with u 6= 0, we have

‖J(u)− Jp(u)‖X∗

‖u‖p−1
X

≤

‖αM1‖
p′

Lp′ (Ω)
+ ‖αM2‖

p′

Lp′ (Ω)

‖u‖p
X

+ εp′


1
p′

.

This completes the proof. �

Definition 3.2. A real number µ is called an eigenvalue of (E) if the equation

Jp(u) = µG(u)

has a solution u0 in X that is different from the origin.

The following analogue of Theorem 5.1 in [8] will be used in the next section to
prove the main theorem. We give another direct proof, by applying nonlinear spectral
theory for homogeneous operators given in [4].
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Lemma 3.3. Suppose that (J1), (J2), (J4) and (A) hold. If µ is not an eigenvalue
of (E), we have

lim inf
‖u‖X→∞

min
t∈[0,1]

‖Jt(u)− µG(u)‖X∗

‖u‖p−1
X

> 0, (3.1)

where Jt := tJ + (1− t)Jp is a convex combination of J and Jp.

Proof. Using a spectral result for homogeneous operators stated in [4], we can obtain
in view of Lemma 2.3 and Lemma 2.5 that

α := lim inf
‖u‖X→∞

‖Jp(u)− µG(u)‖X∗

‖u‖p−1
X

> 0.

Let ε be an arbitrary positive number. Choose a positive number R1 such that

‖u‖X ≥ R1 implies ‖Jp(u)− µG(u)‖X∗ > (α− ε) ‖u‖p−1
X .

By Proposition 3.1, there exists a positive number R2 such that

‖u‖X ≥ R2 implies ‖J(u)− Jp(u)‖X∗ <
α

2
‖u‖p−1

X .

Set R := max{R1, R2}. For all u ∈ X with ‖u‖X ≥ R, we have

min
t∈[0,1]

‖Jt(u)− µG(u)‖X∗ ≥ ‖Jp(u)− µG(u)‖X∗ − max
t∈[0,1]

‖Jp(u)− Jt(u)‖X∗

= ‖Jp(u)− µG(u)‖X∗ − ‖J(u)− Jp(u)‖X∗

> (
α

2
− ε) ‖u‖p−1

X .

As ε > 0 was arbitrary, we conclude that

lim inf
‖u‖X→∞

min
t∈[0,1]

‖Jt(u)− µG(u)‖X∗

‖u‖p−1
X

≥ α

2
> 0.

�

4. Main Result

The following bifurcation result is taken from Theorem 2.2 of [8], as a key tool in
obtaining our bifurcation result.

Lemma 4.1. Let X be a Banach space and Y a normed space. Suppose that
J : X → Y is a homeomorphism and G : X → Y is a completely continuous operator
such that the Leray-Schauder degree in X satisfies

degX (IX − (J−1 ◦ (−G)), Br, 0) 6= 0

for all sufficiently large r > 0, where IX denotes the identity operator on X and Br

the open ball in X of radius r centered at the origin, respectively. Let F : R×X → Y
be a completely continuous operator. If the set⋃

t∈[0,1]

{u ∈ X : J(u) +G(u) = tF (0, u)}

is bounded, then the set

{(λ, u) ∈ R×X : J(u) +G(u) = F (λ, u)}
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has an unbounded connected set C ⊆ (R \ {0})×X such that C intersects {0} ×X.

Definition 4.2. A weak solution of (B) is a pair (λ, u) in R×X such that

J(u)− µG(u) = F (λ, u) in X∗,

where J , F , and G are defined by (2.1), (2.11), and (2.12), respectively.

We are now prepared to prove the main result on global bifurcation for Neumann
problems.

Theorem 4.3. Suppose that conditions (J1)-(J4), (A), and (F1)-(F3) are satisfied.
If µ is not an eigenvalue of (E), then there is an unbounded connected set C ⊆
(R\{0})×X such that every point (λ, u) in C is a weak solution of the above Neumann
problem (B) and C intersects {0} ×X.

Proof. Since µ is not an eigenvalue of (E), we have by Lemma 3.3 that

lim inf
‖u‖X→∞

‖J(u)− µG(u)‖X∗

‖u‖p−1
X

> 0.

In view of Lemma 2.6, for some β > 0, there is a positive constant R such that

‖J(u)− µG(u)‖X∗ > β ‖u‖p−1
X > ‖F (0, u)‖X∗ ≥ ‖tF (0, u)‖X∗

for all u ∈ X with ‖u‖X ≥ R and for all t ∈ [0, 1]. Hence, the set⋃
t∈[0,1]

{u ∈ X : J(u)− µG(u) = tF (0, u)}

is bounded. To apply Lemma 4.1, it thus remains to prove that

degX(IX − J−1 ◦ (µG), Br, 0) 6= 0 (4.1)

holds for all sufficiently large r > R. By Lemma 2.4, Jt := tJ +(1− t)Jp : X → X∗ is
a homeomorphism on X and h : [0, 1]×X∗ → X, h(t, f) := J−1

t (f) is continuous on
[0, 1] ×X∗. Since g : [0, 1] ×X → X∗, g(t, u) := (t, µG(u)) is completely continuous
by Lemma 2.5, the homotopy H : [0, 1] × X → X∗, H(t, u) = J−1

t (µG(u)), is also
completely continuous, as the composition of h with g. Moreover, we obtain by Lemma
3.3 that for sufficiently large r > R we have H(t, u) 6= u for all (t, u) ∈ [0, 1] × ∂Br.
Hence the homotopy invariance of the degree implies that

degX(IX − J−1 ◦ (µG), Br, 0) = degX(IX −H(1, · ), Br, 0)

= degX(IX −H(0, · ), Br, 0)

= degX(IX − J−1
p ◦ (µG), Br, 0).

Since Ψp(x, ·) and Φp(x, ·) are odd for almost all x ∈ Ω, Borsuk’s theorem implies
that the last degree is odd and so (4.1) holds. This completes the proof. �

As a consequence of Theorem 4.3, we can show for which particular problems the
assertion holds; see e.g., Examples 2.1 and 2.2.
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[2] P. Drábek, A. Kufner, F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Sin-

gularities, W. de Gruyter, Berlin, 1997.

[3] N. Fukagai, M. Ito, K. Narukawa, A bifurcation problem of some nonlinear degenerate elliptic
equations, Adv. Differential Equations, 2(1997), 895-926.
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