GLOBAL BIFURCATION FOR NEUMANN PROBLEMS INVOLVING NONHOMOGENEOUS OPERATORS

IN-SOOK KIM* AND YUN-HO KIM**

Dedicated to Wataru Takahashi on the occasion of his retirement

*Department of Mathematics, Sungkyunkwan University
Suwon 440-746, Republic of Korea
E-mail: iskim@skku.edu

**Department of Mathematics, University of Iowa
Iowa City, Iowa 52242, USA
E-mail: ykim16@math.uiowa.edu

Abstract. We consider a Neumann problem involving nonhomogeneous operators
\[-\text{div}(\Psi(x, \nabla u)) + \Phi(x, u) = \mu |u|^{p-2} u + f(\lambda, x, u, \nabla u) \text{ in } \Omega\]
when \(\Psi, \Phi,\) and \(f\) satisfy certain conditions and \(\mu\) is not an eigenvalue in some sense. The aim of this paper is to study the structure of the set of solutions for the above equation, by applying a bifurcation result for nonlinear equations and a nonlinear spectral theory for homogeneous operators.

Key Words and Phrases: Bifurcation, Neumann problem, nonhomogeneous operators, \(p\)-Laplacian.

2010 Mathematics Subject Classification: 47J05, 47J15, 47H10, 35B32.

Acknowledgment. This research was supported by the Basic Science Research Program through the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-C00051).

REFERENCES

The paper was presented at The 9th International Conference on Fixed Point Theory and Its Applications, July 16-22, 2009, National Changhua University of Education, Changhua, Taiwan (R.O.C.).

311

Y.-H. Kim, M. Váth, Global solution branches for equations involving nonhomogeneous operators of p-Laplace type, (Submitted).

Received: December 31, 2009; Accepted: May 2, 2010.