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Abstract. Let E be a reflexive Banach space having a weakly sequentially continuous duality

mapping Jϕ with a gauge function ϕ, C a nonempty closed convex subset of E, f : C → C a

contraction, and {T (t) : t ≥ 0} a nonexpansive semigroup on C with the fixed point set F :=
T

t≥0 F (T (t)) 6= ∅. Strong convergence theorems of the following implicit and explicit viscosity

iterative schemes are established:

xt = λtf(xt) + (1− λt)T (t)xt, t ∈ (0,∞)

where {λt}t∈(0,∞) is a net in (0, 1) such that limt→∞ λt = 0, and

xn+1 = αnf(xn) + (1− αn)T (tn)xn, n ≥ 0,

where {αn} ⊂ (0, 1) and {tn} ⊂ R+. The limit point is the unique solution of a certain variational
inequality.
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1. Introduction

Let E be a real Banach space and C be a nonempty closed convex subset of E.
Recall that a mapping f : C → C is a contraction on C if there exists a constant
k ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ k‖x − y‖,∀x, y ∈ C. We use ΣC to denote
the collection of mappings f verifying the above inequality. Let T : C → C be a
nonexpansive mapping (i.e., ‖Tx − Ty‖ ≤ ‖x − y‖ ∀x, y ∈ C) and F (T ) denotes the
set of fixed points of T ; that is, F (T ) = {x ∈ C : x = Tx}.

Recall that a family {T (t) : t ≥ 0} of mappings from C into itself is called a
nonexpansive semigroup on C if it satisfies the following conditions:
(1) T (t1 + t2)x = T (t1)T (t2)x for any t1, t2 ∈ R+ and x ∈ C;
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(2) T (0)x = x for each x ∈ C;
(3) for each x ∈ C, t 7→ T (t)x is continuous;
(4) ‖T (t)x− T (t)y‖ ≤ ‖x− y‖ for each t ∈ R+ and x, y ∈ C.

Given a real number t ∈ (0, 1), a contraction f ∈ ΣC and a nonexpasive mapping
T , let a contraction Tt := T f

t : C → C be defined by

Ttx = tf(x) + (1− t)Tx, x ∈ C.

Denote by xt := xf
t ∈ C the unique fixed point of Tt. Then xt is the unique solution

of the fixed point equation

xt = tf(xt) + (1− t)Txt. (1.1)

A special case of (1.1) has been considered in a Hilbert space by Browder [4] as follows.
Fix u ∈ C and define a contraction Gt on C by

Gtx = tu + (1− t)Tx, x ∈ C.

Let zt ∈ C be the unique fixed point of Gt. Then zt satisfies the equation

zt = tu + (1− t)Tzt.

(Such a sequence {zt} is said to be an approximating fixed point of T since it possesses
the property that if {zt} is bounded, then lim

t→0
‖Tzt −zt‖ = 0.) In 1967, the strong

convergence of {zt} as t → 0 for a self-mapping T of a bounded C was proved in a
Hilbert space by Browder [4] and Halpern [10]. In 1980, Reich [16] extended the result
of Browder [4] to a uniformly smooth Banach space and showed that the limit defines
the (unique) sunny nonexpansive retraction from C onto F (T ). Takahashi and Ueda
[21] improved results of Reich [16] to a reflexive Banach space having a uniformly
Gâteaux differentiable norm (see also Ha and Jung [9]).

In 1967, Halpern [10] firstly introduced the following explicit iterative scheme in
Hilbert space:

xn+1 = αnu + (1− αn)xn. (1.2)
He pointed out that the control conditions

(C1) lim
n→∞

αn = 0 and (C2)
∞∑

n=0

αn = ∞

are necessary for the convergence of the iterative scheme (1.2) to a fixed point of T .
In 1992, Wittmann [22] obtained a strong convergence result in a Hilbert space for

the iterative scheme (1.2) under the control conditions (C1), (C2) and (C3)
∞∑

n=0

|αn−

αn+1| < ∞.
Shioji and Takahashi [17] extended Wittmann’s results to a reflexive Banach space

having a uniformly Gâteaux differentiable norm and in which each nonempty closed
convex and bounded subset has the fixed point property for nonexpansive mappings.
For other control conditions, we also refer Lions [13] and Reich [16].

On the other hand, the viscosity approximation method of selecting a particular
fixed point of a given nonexpansive mapping was proposed by Moudafi [15]. In 2004,
in order to extend Theorem 2.2 of Moudafi [15] to a Banach space setting, Xu [24]
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consider the the following explicit viscosity iterative scheme in a uniformly smooth
Banach space: for T : C → C a nonexpansive mapping, f ∈ ΣC and αn ∈ (0, 1),

xn+1 = αnf(xn) + (1− αn)Txn, n ≥ 0, (1.3)

and under control conditions (C1), (C2) and (C3) or (C4) lim
n→∞

αn

αn+1
= 1, he studied

the strong convergence of the sequence {xn} generated by (1.3) to a fixed point of
T which is the unique solution of a certain variational inequality. Moreover, in [24],
he also studied the strong convergence of {xt} defined by (1.1) as t → 0 in either
a Hilbert space or a uniformly smooth Banach space. For the case of more general
Banach spaces, see also Jung [11].

On the another hand, in order to extend Browder’s and Reich’s results to the
nonexpansive semigroup case, Shioji and Takahashi [18] introduced in a Hilbert space
the implicit iterative scheme

xn = αnu + (1− αn)σtn
(xn), n ≥ 1,

where {αn} ⊂ (0, 1) and {tn} ⊂ R+ such that lim
n→∞

tn = ∞, and for each t > 0 and

x ∈ C, σt(x) is the average given by

σt(x) =
1
t

∫ t

0

T (s)xds.

Under suitable conditions on the sequence {αn}, they proved the strong convergence
of {xn} to a point in F :=

⋂
t≥0 F (T (t)).

In 2007, Chen and Song [5] considered the following implicit and explicit viscosity
iterative scheme:

xn = αnf(xn) + (1− αn)σtn
xn, n ≥ 1,

xn+1 = αnf(xn) + (1− αn)σtnxn, n ≥ 1,

and proved that the sequence {xn} converges to a same point of F in a uniformly
convex Banach space having a uniformly Gâteaux differentiable norm.

In 2003, Suzuki [20] introduced firstly in Hilbert space the following implicit iter-
ative scheme for the nonexpansive semigroup case:

xn = αnu + (1− αn)T (tn)xn, n ≥ 1, (1.4)

and proved strong convergence of the sequence {xn} generated by (1.4) with ap-
propriate conditions imposed upon the parameter sequence {αn}. In 2005, Xu [25]
proved that Suzuki’s result holds in a uniformly convex Banach space having a weakly
sequentially continuous duality mapping.

In 2005, Aleyner and Reich [2] considered the following explicit iterative scheme:

xn+1 = αnu + (1− αn)T (tn)xn, n ≥ 0 (1.5)

in a reflexive Banach space having a uniformly Gâteaux differentiable such that each
nonempty, bounded, closed and convex subset of E has the fixed point property for
nonexpansive mappings (Note that all these assumptions are fulfilled whenever E
is uniformly smooth). Under appropriate assumptions imposed upon the semigroup
{T (t) : t ≥ 0} and the control conditions (C1), (C2) and (C3) on {αn}, they showed
that the sequence {xn} generated by (1.5) converges strongly to Qu, where Q is
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the unique sunny nonexpansive retraction from C onto F :=
⋂

t≥0 F (T (t)), Qu =
s− lim

t→∞
zt and zt is the unique solution of the following equation:

zt = λtu + (1− λt)T (t)zt, t ∈ (0,∞),

where {λt}t∈(0,∞) is a net in (0,1) such that lim
t→∞

λt = 0. Benavides et al. [3] also

studied in a uniformly smooth Banach space that the implicit iterative scheme (1.4)
and the explicit iterative scheme (1.5) converges to a same point of F under the
asymptotic regularity on the semigroup {T (t) : t ≥ 0} and the control conditions
(C1), (C2) and (C4) on {αn}.

In 2008, Song and Xu [19] considered the following implicit and explicit viscosity
iterative schemes in a reflexive and strictly convex Banach space having a uniformly
Gâteaux differentiable norm:

xn = αnf(xn) + (1− αn)T (tn)xn, n ≥ 1,

xn+1 = αnf(xn) + (1− αn)T (tn)xn, n ≥ 1,

where {αn} ⊂ (0, 1) and {tn} ⊂ R+ such that lim
n→∞

tn = ∞, and proved that the

sequence {xn} converges to a same point of F under the control conditions (C1) and
(C2) on {αn} and uniform asymptotic regularity on {T (t) : t ≥ 0}.

In this paper, motivated by above-mentioned results, we consider the following
implicit and explicit viscosity iterative schemes for nonexpansive semigroup {T (t) :
t ≥ 0} from C → C; for f ∈ ΣC ,

xt = λtf(xt) + (1− λt)T (t)xt, t ∈ (0,∞) (1.6)

where {λt}t∈(0,∞) is a net in (0,1) such that lim
t→∞

λt = 0, and

xn+1 = αnf(xn) + (1− αn)T (tn)xn, n ≥ 0. (1.7)

where {αn} ⊂ (0, 1) and {tn} ⊂ R+. First, by using the uniform asymptotic regularity
on {T (t) : t ≥ 0}, we establish a strong convergence theorem for the sequence {xt}
defined by (1.6) in a reflexive Banach space having a weakly sequentially continuous
duality mapping. Then, under the control conditions (C1) and (C2) on {αn} and
lim

n→∞
tn = ∞, and the uniform asymptotic regularity on {T (t) : t ≥ 0}, we prove in

the same Banach space that the sequence {xn} generated by (1.7) converges strongly
to a common fixed point of {T (t) : t ≥ 0}, which is the unique solution of a certain
variational inequality. The main results develop and improve the corresponding results
of Aleyner and Censor [1], Aleyner and Reich [2], Benavides et al. [3], Chen and Song
[5], Shioji and Takahashi [18], Song and Xu [19], Suzuki [20] and Xu [25].

2. Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual. The value
of f ∈ E∗ at x ∈ E will be denoted by 〈x, f〉. When {xn} is a sequence in E, then
xn → x (resp., xn ⇀ x, xn

∗
⇀ x) will denote strong (resp., weak, weak∗) convergence

of the sequence {xn} to x.



VISCOSITY ITERATIVE SCHEMES FOR NONEXPANSIVE SEMIGROUPS 293

The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}.
By a gauge function we mean a continuous strictly increasing function ϕ defined

on R+ := [0,∞) such that ϕ(0) = 0 and lim
r→∞

ϕ(r) = ∞. The mapping Jϕ : E → 2E∗

defined by

Jϕ(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖f‖ = ϕ(‖x‖)}, for all x ∈ E

is called the duality mapping with gauge function ϕ. In particular, the duality mapping
with gauge function ϕ(t) = t denoted by J , is referred to as the normalized duality
mapping. It is known that a Banach space E is smooth if and only if the normalized
duality mapping J is single-valued. The following property of duality mapping is also
well-known ([6]):

Jϕ(λx) = sign λ

(
ϕ(|λ| · ‖x‖)

‖x‖

)
J(x) for all x ∈ E \ {0}, λ ∈ R, (2.1)

where R is the set of all real numbers; in particular, J(−x) = −J(x) for all x ∈ E.
We say that a Banach space E has a weakly sequentially continuous duality

mapping if there exists a gauge function ϕ such that the duality mapping Jϕ is
single-valued and continuous from the weak topology to the weak∗ topology, that
is, for any {xn} ∈ E with xn ⇀ x, Jϕ(xn) ∗

⇀ Jϕ(x). For example, every lp space
(1 < p < ∞) has a weakly sequentially continuous duality mapping with gauge func-
tion ϕ(t) = tp−1. Set

Φ(t) =
∫ t

0

ϕ(τ)dτ, for all t ∈ R+.

Then it is known that Jϕ(x) is the subdifferential of the convex functional Φ(‖ · ‖) at
x. Thus it is easy to see ([6]) that the normalized duality mapping J(x) can also be
defined as the subdifferential of the convex functional Φ(‖x‖) = ‖x‖2/2, that is, for
all x ∈ E

J(x) = ∂Φ(‖x‖) = {f ∈ E∗ : Φ(‖y‖)− Φ(‖x‖) ≥ 〈y − x, f〉 for all y ∈ E}.

Let D be a subset of C. Then a mapping Q : C → D is said to be a retraction
from C onto D if Qx = x for all x ∈ D. A retraction Q : C → D is said to be sunny
if Q(Qx + t(x − Qx)) = Qx for all x ∈ C and t ≥ 0 with Qx + t(x − Qx) ∈ C. A
subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny
nonexpansive retraction of C onto D. In a smooth Banach space E, it is well-known
[8, p. 48]) that Q is a sunny nonexpansive retraction from C onto D if and only if
the following condition holds:

〈x−Qx, J(z −Qx)〉 ≤ 0, x ∈ C, z ∈ D. (2.2)

(Note that this fact still holds if the normalized duality mapping J is replaced by a
general duality mapping Jϕ with gauge function ϕ.)
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We need the following lemmas for the proof of our main results. (Lemma 2.1 was
also given in [12]. Lemma 2.2 is essentially Lemma 2 in [14] (also see [23]). We refer
also [6, 7, 8] for Lemmas 2.3, 2.4 and 2.5).
Lemma 2.1. Let E be a real Banach space and ϕ a continuous strictly increasing
function on R+ such that ϕ(0) = 0 and lim

r→∞
ϕ(r) = ∞. Define

Φ(t) =
∫ t

0

ϕ(τ)dτ, for all t ∈ R+.

Then the following inequality holds:

Φ(‖x + y‖) ≤ Φ(‖x‖) + 〈y, jϕ(x + y)〉, for all x, y ∈ E,

where jϕ(x + y) ∈ Jϕ(x + y). In particular, if E is smooth, then one has

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x + y)〉, for all x, y ∈ E.

Lemma 2.2. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− λn)sn + λnβn + γn, n ≥ 0,

where {λn}, {βn} and {γn} satisfy the following conditions:

(i) {λn} ⊂ [0, 1] and
∞∑

n=0

λn = ∞ or, equivalently,
∏∞

n=0(1− λn) = 0,

(ii) lim sup
n→∞

βn ≤ 0 or
∞∑

n=0

λnβn < ∞,

(iii) γn ≥ 0 (n ≥ 0),
∞∑

n=0

γn < ∞.

Then lim
n→∞

sn = 0.

Lemma 2.3 (Demiclosedness principle). Let E be a reflexive Banach space having
a weakly sequentially continuous duality mapping Jϕ with a gauge function ϕ, C a
nonempty closed convex subset of E and T : C → E a nonexpansive mapping. Then
the mapping I − T is demiclosed on C, where I is the identity mapping; that is,
xn ⇀ x in E and (I − T )xn → y imply that x ∈ C and (I − T )x = y.
Lemma 2.4. If E is a Banach space such that E∗ is strictly convex, then E is smooth
and any duality mapping is norm-to-weak∗ continuous.

Lemma 2.5. Let E be a smooth Banach space, C a nonempty closed convex subset
of E and T : C → C a nonexpansive mapping. If J is the normalized duality mapping
on E, then

〈(I − T )(x)− (I − T )(y), J(x− y)〉 ≥ 0, for all x, y ∈ C.

Finally, recall that a nonexpansive semigroup {T (t) : t ≥ 0} on C is said to be
uniformly asymptotically regular (shortly, u.a.r) on bounded subsets of C if

T (s + t)x = T (s)T (t)x, for all s, t ≥ 0 and x ∈ C
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and for all bounded subset K of C there holds

lim
t→∞

sup
K

‖T (s)T (t)x− T (t)x‖ = 0, (2.3)

uniformly for all s ≥ 0 (also see [1, 2, 3]). Examples of u.a.r operator semigroup can
be found in [1, 19].

3. Main results

First, we study the convergence of implicit viscosity iterative scheme to the unique
solution of a certain variational inequality.

For any t ≥ 0, T (t) : C → C is nonexpansive and so, for any λt ∈ (0, 1) and
f ∈ ΣC , λtf + (1 − λt)T (t) : C → C defines a contraction. Thus, by the Banach
contraction mapping principle, there exists a unique fixed point xf

t satisfying

xf
t = λtf(xf

t ) + (1− λt)T (t)xf
t . (3.1)

For simplicity we will write xt for xf
t provided no confusion occurs.

Now we show that the sequence {xt} defined by (3.1) converges strongly some
common fixed point of {T (t) : t ≥ 0}.
Theorem 3.1. Let E be a reflexive Banach space having a weakly sequentially contin-
uous duality mapping Jϕ with gauge function ϕ. Let C be a nonempty closed convex
subset of E and {T (t) : t ≥ 0} a u.a.r. nonexpansive semigroup from C into itself
with F :=

⋂
t≥0 F (T (t)) 6= ∅. Let {xt} be defined by (3.1) and λt ∈ (0, 1) such that

lim
t→∞

λt = 0. Then as t → ∞, {xt} converges strongly to a point in F . If we define
Q : ΣC → F by

Q(f) = q := lim
t→∞

xt, f ∈ ΣC ,

then q is the unique solution in F of the variational inequality

〈(I − f)(q), Jϕ(q − p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

Proof. Note that the definition of the weak sequential continuity of duality mapping
Jϕ implies that E is smooth. Let {xtn} be a subsequence of {xt} such that lim

n→∞
tn =

∞ and
xtn

= λtn
f(xtn

) + (1− λtn
)T (tn)xtn

.

Let p ∈ F . Then xtn
− p = λtn

(f(xtn
)− p) + (1− λtn

)(T (tn)xtn
− T (tn)p). Therefore

‖xtn − p‖ϕ(‖xtn − p‖) = 〈xtn − p, Jϕ(xtn − p)〉
≤ λtn

〈f(xtn
)− p, Jϕ(xtn

− p)〉+ (1− λtn
)‖xtn

− p‖ϕ(‖xtn
− p‖).

It follows that for all p ∈ F ,

‖xtn
− p‖ϕ(‖xtn

− p‖) ≤ 〈f(xtn
)− p, Jϕ(xtn

− p)〉. (3.2)

Hence
〈xtn − f(xtn), Jϕ(xtn − p)〉

= 〈xtn
− p, Jϕ(xtn

− p)〉+ 〈p− f(xtn
), Jϕ(xtn

− p)〉
≥ ‖xtn

− p‖ϕ(‖xtn
− p‖)− ‖xtn

− p‖ϕ(‖xtn
− p‖) = 0.
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That is, 〈ztn − f(xtn), Jϕ(xtn − p)〉 ≥ 0. Now

‖xtn
− p‖ ≤ λtn

‖f(xtn
)− p‖+ (1− λtn

)‖T (tn)xtn
− T (tn)p‖

≤ λtn
‖f(xtn

)− p‖+ (1− λtn
)‖xtn

− p‖.

This gives that

‖xtn − p‖ ≤ ‖f(xtn)− p‖ ≤ ‖f(xtn)− f(p)‖+ ‖f(p)− p‖
≤ k‖xtn

− p‖+ ‖f(p)− p‖,

and so ‖xtn
− p‖ ≤ 1

1−k‖f(p) − p‖. In particular, {xtn
} is bounded, so are {f(xtn

)}
and {T (tn)xtn

}. Since E is reflexive, {xtn
} has a weakly convergence subsequence

{xtnk
}, say, xtnk

⇀ u ∈ E. Since λtn
→ 0,

‖xtn
− T (tn)xtn

‖ = λtn
‖f(xtn

)− T (tn)xtn
‖ → 0 (as n →∞).

Also by (2.3), we have for each t ∈ R+,

‖T (t)xtn
− xtn

‖
≤ ‖T (t)T (tn)xtn − T (t)xtn‖+ ‖T (t)T (tn)xtn − T (tn)xtn‖

+ ‖T (tn)xtn − xtn‖
≤ ‖T (t)T (tn)xtn

− T (t)xtn
‖+ 2‖T (tn)xtn

− xtn
‖

≤ sup
K

‖T (t)T (tn)x− T (tn)x‖+ 2‖T (tn)xtn
− xtn

‖ → 0 (as n →∞),

where K is a bounded subset containing {xtn
}. So, by Lemma 2.3, u ∈ F . Therefore

by (3.2) and the assumption that Jϕ is weakly sequentially continuous, we obtain

‖xtn − u‖ϕ(‖xtn − u‖) ≤ 〈f(xtn)− u, Jϕ(xtn − u)〉 → 0 (as n →∞).

Since ϕ is continuous and strictly increasing, we must have xtnk
→ u ∈ F .

We will now show that every weakly convergent subsequence of {xtn
} has the same

limit. Suppose that xtnk
⇀ u and xtnj

⇀ v. Then by the above proof, u, v ∈ F ,
xtnk

→ u and xtnj
→ v. It follows from (3.2) that

‖u− v‖ϕ(‖u− v‖) ≤ 〈f(u)− v, Jϕ(u− v)〉 (3.3)

and
‖v − u‖ϕ(‖v − u‖) ≤ 〈f(v)− u, Jϕ(v − u)〉. (3.4)

Adding (3.3) and (3.4) yields

2‖u− v‖ϕ(‖u− v‖) ≤ ‖u− v‖ϕ(‖u− v‖)− 〈f(u)− f(v), Jϕ(u− v)〉
≤ (1− k)‖u− v‖ϕ(‖u− v‖).

Since k ∈ (0, 1), this implies that ‖u− v‖ϕ(‖u− v‖) ≤ 0, and so u = v. Hence {xtn
}

converges strongly to a point in F as tn →∞.
The same argument shows that if tl → ∞, then the subsequence {xtl

} of {xt}
converges strongly to the same limit. Thus, as t → ∞, {xt} converges strongly to a
point in F .



VISCOSITY ITERATIVE SCHEMES FOR NONEXPANSIVE SEMIGROUPS 297

If we define Q :
∑
C

→ F by Q(f) = q = lim
t→∞

xt, f ∈
∑
C

, then q solves the

variational inequality

〈(I − f)(q), J(q − p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

In fact, since (I − f)(xt) = − 1−λt

λt
(I − T (t))xt, by Lemma 2.5, we have for p ∈ F ,

〈(I − f)(xt), J(xt − p)〉 = −1− λt

λt
〈(I − T (t))xt − (I − T (t))p, J(xt − p)〉 ≤ 0.

Since E is smooth, it follows that E∗ is strictly convex for E reflexive (cf, [6, p. 43]).
Noting that J is norm-to-weak∗ continuous by Lemma 2.4 and taking the limit as
t → ∞, we obtain 〈(I − f)(q), J(q − p)〉 ≤ 0, f ∈ ΣC , p ∈ F. Since Jϕ(x) =
(ϕ(‖x‖)/‖x‖)J(x) for x 6= 0 by (2.1), this implies that

〈(I − f)(q), Jϕ(q − p)〉 ≤ 0, f ∈ ΣC , p ∈ F. (3.5)

Finally, we show the uniqueness of solution of the variational inequality (3.5) in F .
In fact, suppose that p, q ∈ F satisfy (3.5). Then we have

〈(I − f)(p), Jϕ(p− q)〉 ≤ 0 (3.6)

and
〈(I − f)(q), Jϕ(q − p)〉 ≤ 0. (3.7)

Combining (3.6) and (3.7), it follows that

(1− k)‖p− q‖ϕ(‖p− q‖) ≤ 〈(I − f)(p)− (I − f)(q), Jϕ(p− q)〉 ≤ 0.

So, we have p = q and the uniqueness is proved. �
Remark 3.2. (1) In Theorem 3.1, if f(x) = u, x ∈ C, is a constant, then

〈Qu− u, Jϕ(Qu− p)〉 ≤ 0, u ∈ C, p ∈ F.

Hence by (2.2), Q reduces to the sunny nonexpansive retraction from C to F .
(2) Theorem 3.1 develops Theorem 3.2 in Song and Xu [19] to different Banach

space.
(3) Theorem 3.1 generalizes the corresponding results of Suzuki [20] and Xu [25]

to the viscosity method in more general Banach space.
(4) When f(x) = u for all x ∈ C, Theorem 3.1 complements the corresponding

results of Aleyner and Reich [2] and Benavides et al. [3] in different Banach space.
(5) Theorem 3.1 also improves the corresponding results of Chen and Song [5] and

Shioji and Takahasi [18].
By using Theorem 3.1, we establish the strong convergence of the explicit viscosity

iterative scheme.
Theorem 3.3. Let E be a reflexive Banach space having a weakly sequentially

continuous duality mapping Jϕ with gauge function ϕ. Let C be a nonempty closed
convex subset of E and {T (t) : t ≥ 0} a u.a.r. nonexpansive semigroup from C into
itself with F :=

⋂
t≥0 F (T (t)) 6= ∅. Let {αn} ⊂ (0, 1) and {tn} ⊂ R+ be sequences

satisfying the following conditions:

(i) lim
n→∞

αn = 0,
∞∑

n=0

αn = ∞; (ii) lim
n→∞

tn = ∞.
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Let f ∈
∑

C and x0 ∈ C be chosen arbitrarily . Let {xn} be defined by{
x0 = x ∈ C,

xn+1 = αnf(xn) + (1− αn)T (tn)xn,
(3.8)

Then {xn} converges strongly to q ∈ F , which is the unique solution of the variational
inequality

〈(I − f)(q), Jϕ(q − p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

Proof. First we note that by Theorem 3.1, there exists the unique solution q ∈ F of
the variational inequality

〈(I − f)(q), Jϕ(q − p)〉 ≤ 0, f ∈ ΣC , p ∈ F, (3.9)

where q = lim
t→∞

xt and xt is defined by (3.1). We will show that xn → q.
We divide the proof into several steps.

Step 1. We show that ‖xn − z‖ ≤ max{‖x0 − z‖, 1
1−k‖f(z) − z‖} for all n ≥ 0 and

all z ∈ F and so {xn}, {f(xn)} and {T (tn)xn} are bounded. Indeed, let z ∈ F . Then
we have

‖xn+1 − z‖ = ‖αn(f(xn)− z) + (1− αn)(T (tn)xn − z)‖
≤ αn‖f(xn)− z‖+ (1− αn)‖xn − z‖
≤ αn(‖f(xn)− f(z)‖+ ‖f(z)− z‖) + (1− αn)‖xn − z‖
≤ αnk‖xn − z‖+ αn‖f(z)− z‖+ (1− αn)‖xn − z‖
= (1− (1− k)αn)‖xn − z‖+ αn‖f(z)− z‖

≤ max
{
‖xn − z‖, 1

1− k
‖f(z)− z‖

}
.

Using an induction, we obtain

‖xn − z‖ ≤ max
{
‖x0 − z‖, 1

1− k
‖f(z)− z‖

}
, for all n ≥ 0.

Hence {xn} is bounded, and so are {T (tn)xn} and {f(xn)}.
Step 2. We show that lim

n→∞
‖T (r)xn − xn‖ = 0 uniformly in r ∈ R+. Indeed, it

follows from condition (i) that

‖xn+1 − T (tn)xn‖ = αn‖f(xn)− T (tn)xn‖ → 0 (as n →∞). (3.10)

Since {T (t)} is u.a.r. nonexpansive semigroup,

lim
n→∞

‖T (r)T (tn)xn − T (tn)xn‖ ≤ lim
n→∞

sup
x∈D

‖T (r)T (tn)x− T (tn)x‖ = 0, (3.11)

uniformly r ∈ R+, where D = {x ∈ C : ‖x− z‖ ≤ max{‖x0 − z‖, 1
1−k‖f(z)− z‖} for

z ∈ F . Combining (3.10) and (3.11), we have that for all r > 0

‖T (r)xn+1 − xn+1‖ ≤ ‖T (r)xn+1 − T (r)T (tn)xn‖
+ ‖T (r)T (tn)xn − T (tn)xn‖+ ‖T (tn)xn − xn+1‖

≤ 2‖xn+1 − T (tn)xn‖+ sup
x∈D

‖T (r)T (tn)x− T (tn)x‖ → 0, n →∞.
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Step 3. We show that lim sup
n→∞

〈(I − f)(q), Jϕ(q − xn)〉 ≤ 0. Since E is reflexive and

{xn} is bounded, there exists a subsequence {xnj
} of {xn} such that xnj

⇀ p ∈ C
and

lim sup
n→∞

〈(I − f)(q), Jϕ(q − xn)〉 = lim
j→∞

〈(I − f)(q), Jϕ(q − xnj
)〉

From Step 2. it follows that ‖T (r)xni
− xni

‖ → 0 as i →∞. By Lemma 2.3, we have
p = T (r)p for each r ∈ R+ and so p ∈ F . Thus by the weakly sequentially continuity
of the duality mapping Jϕ and (3.9), we have

lim sup
n→∞

〈(I − f)(q), Jϕ(q − xn)〉 = lim
j→∞

〈(I − f)(q), Jϕ(q − xnj
)〉

= 〈(I − f)(q), Jϕ(q − p)〉 ≤ 0.

Step 4. We show that lim
n→∞

‖xn − q‖ = 0. By using (3.8), we have

xn+1 − q = αn(f(xn)− f(q)) + (1− αn)(T (tn)xn − q) + αn(f(q)− q).

As a consequence, since Φ is an increasing convex function with Φ(0) = 0, by applying
Lemma 2.1, we obtain

Φ(‖xn+1 − q‖)
≤ Φ(‖αn(f(xn)− f(q)) + (1− αn)(T (tn)xn − q)‖)

+ αn〈f(q)− q, Jϕ(xn+1 − q)〉
≤ Φ(kαn‖xn − q‖+ (1− αn)‖xn − q‖)

+ αn〈f(q)− q, Jϕ(xn+1 − q)〉
≤ (1− (1− k)αn)Φ(‖xn − q‖) + αn〈f(q)− q, Jϕ(xn+1 − q)〉.

(3.12)

Put λn = (1− k)αn and δn = 1
1−k 〈(I − f)(q), Jϕ(q − xn+1)〉. From (i) and Step 3, it

follows that λn → 0,
∞∑

n=0

λn = ∞ and lim sup
n→∞

δn ≤ 0. Since (3.12) reduces to

Φ(‖xn+1 − q‖) ≤ (1− λn)Φ(‖xn − q‖) + λnδn,

from Lemma 2.2, we conclude that lim
n→∞

Φ(‖xn − q‖) = 0, and thus lim
n→∞

xn = q. �

Remark 3.4. (1) Theorem 3.3 develops Theorem 4.2 in Song and Xu [19] in different
Banach space.

(2) Theorem 3.3 complements the corresponding result in Aleyner and Censor [1],
Aleyner and Reich [2], Benavides et al. [3] to the viscosity method in different Banach

space. In particular, the conditions
∞∑

n=0

|αn −αn+1| < ∞ in [1, 2] and lim
n→∞

αn

αn+1
= 1

in [3] can be removed.
(3) Theorem 3.3 also improves the corresponding results of Suzuki [20] to the

viscosity method in more general Banach space.
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