CONVERGENCE OF VISCOSITY ITERATIVE SCHEMES FOR NONEXPANSIVE SEMIGROUPS

JONG SOO JUNG

Dedicated to Wataru Takahashi on the occasion of his retirement

Department of Mathematics, Donog-A University, Busan 604-714, Korea
E-mail: jungjs@mail.donga.ac.kr

Abstract. Let E be a reflexive Banach space having a weakly sequentially continuous duality mapping J_φ with a gauge function φ, C a nonempty closed convex subset of E, $f : C \to C$ a contraction, and $\{T(t) : t \geq 0\}$ a nonexpansive semigroup on C with the fixed point set $F := \bigcap_{t \geq 0} F(T(t)) \neq \emptyset$. Strong convergence theorems of the following implicit and explicit viscosity iterative schemes are established:

$$x_t = \lambda_t f(x_t) + (1 - \lambda_t) T(t)x_t, \quad t \in (0, \infty)$$

where $\{\lambda_t\}_{t \in (0, \infty)}$ is a net in $(0, 1)$ such that $\lim_{t \to \infty} \lambda_t = 0$, and

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) T(t_n)x_n, \quad n \geq 0,$$

where $\{\alpha_n\} \subset (0, 1)$ and $\{t_n\} \subset \mathbb{R}^+$. The limit point is the unique solution of a certain variational inequality.

Key Words and Phrases: Viscosity iterative scheme, nonexpansive semigroups, common fixed point, contraction, weakly sequentially continuous duality mapping, variational inequality.

2010 Mathematics Subject Classification: 47H20, 47H10, 47J20, 41A65.

REFERENCES

The paper was presented at The 9th International Conference on Fixed Point Theory and Its Applications, July 16-22, 2009, National Changhua University of Education, Changhua, Taiwan (R.O.C.).

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0017007).

Received: December 31, 2009; Accepted: May 2, 2010.