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Abstract. Cădariu and Radu [Fixed points and the stability of Jensen’s functional equation, J.

Inequal. Pure Appl. Math. 4 (2003), Art. ID 4.] applied the fixed point alternative to the
investigation of Cauchy and Jensen functional equations. In this paper, we adopt the the fixed

point alternative method of Cădariu and Radu to prove the generalized Hyers-Ulam stability for the

quartic functional equation

f(kx + y) + f(kx− y) = k2[f(x + y) + f(x− y)] + 2k2(k2 − 1)f(x)− 2(k2 − 1)f(y)

for each k ∈ N \ {1}.
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1. Introduction

In 1940, Ulam [24] gave a wide ranging talk before the mathematics club of the Uni-
versity of Wisconsin in which he discussed a number of important unsolved problems.
Among those was the question concerning the stability of group homomorphisms:

Let G1 be a group and let G2 be a metric group with the metric d(., .). Given
ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfies the
inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

The case of approximately additive functions was solved by Hyers [13] under the
assumption that G1 and G2 are Banach spaces. Indeed, he proved that each solution
of the inequality ‖f(x+ y)− f(x)− f(y)‖ ≤ ε, for all x and y, can be approximated
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by an exact solution, say, an additive function. Th. M. Rassias [22] attempted to
weaken the condition for the bound of the norm of the Cauchy difference as follows

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

and generalized the result of Hyers. In 1950, Aoki [1] generalized Hyers’ theorem
for approximately additive mappings. Since then, the stability of several functional
equations has been extensively investigated.

The terminology Hyers-Ulam stability originates from these historical backgrounds.
The terminology can also be applied to the case of other functional equations. For
more detailed definitions of such terminologies, we can refer to [2, 4], [9]-[17] and [23].

Lee, Im and Hwang [18] introduced the following functional equation

f(2x+ y) + f(2x− y) = 4[f(x+ y) + f(x− y)] + 24f(x)− 6f(y), (1.1)

and they established the general solution of the functional equation (1.1). It is easy to
see that the function f(x) = cx4 is a solution of the functional equation (1.1). Thus,
it is natural that (1.1) is called a quartic functional equation and every solution of
the quartic functional equation is said to be a quartic mapping. For more detailed
definitions of such terminologies, we can refer to [7] and [21].

Now we introduce the following quartic functional equation

f(kx+y)+f(kx−y) = k2[f(x+y)+f(x−y)]+2k2(k2−1)f(x)−2(k2−1)f(y) (1.2)

for each k ∈ N \ {1}. Recently, Cădariu and Radu [5] applied the fixed point method
to the investigation of the Cauchy additive functional equation ([3, 4, 19]).

In this paper, we will adopt the fixed point alternative of Cădariu and Radu to
prove the generalized Hyers-Ulam stability of the functional equation (1.2).

2. Stability of Eq. (1.2)

For completeness, we will first present solution of the functional equation (1.2).

Lemma 2.1. Let X and Y be real vector spaces. A function f : X → Y satisfies the
functional equation (1.2) if and only if f is quartic.

Proof. (⇒) Letting k = 2 in (1.2), we get (1.1) which implies that f is quartic.
(⇐) Suppose that f is quartic. We prove (1.2) for k = j by induction on j ∈ N.

For the case j = 1, (1.2) holds obviously.
Letting j = 2 in (1.2), we have (1.1). For j = 3, we have

f(3x+ y) + f(3x− y) = [f(2x+ (x+ y)) + f(2x− (x+ y))]

+ [f(2x+ (x− y)) + f(2x− (x− y))]

− [f(x+ y) + f(x− y)] (2.1)

for all x, y ∈ X. On the other hand, we have

f(2x+(x+y))+f(2x−(x+y)) = 4[f(x+(x+y))+f(x−(x+y))]+24f(x)−6f(x+y)

so, by evenness of f we obtain

f(2x+ (x+ y)) + f(2x− (x+ y)) = 4[f(2x+ y) + f(y)] + 24f(x)− 6f(x+ y), (2.2)
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for all x, y ∈ X. So we have

f(2x+(x−y))+f(2x−(x−y)) = 4[f(x+(x−y))+f(x−(x−y))]+24f(x)−6f(x−y)

again, by evenness of f , we obtain

f(2x+ (x− y)) + f(2x− (x− y)) = 4[f(2x− y) + f(y)] + 24f(x)− 6f(x− y), (2.3)

for all x, y ∈ X. By (2.1), (2.2) and (2.3), we get

f(3x+y)+f(3x−y) = 4[f(2x+y)+f(2x−y)]+48f(x)+8f(y)−7f(x−y)−7f(x+y)
(2.4)

for all x, y ∈ X. By (1.1) and (2.4) we have

f(3x+ y) + f(3x− y) = 9[f(x+ y) + f(x− y)] + 144f(x)− 16f(y)

for all x, y ∈ X. Hence (1.2) holds for j = 3.
Suppose (1.2) holds for j = n − 1 and j = n, in which (2 ≤ n ≤ k). It is easy to see
that

f((k + 1)x+ y) + f((k + 1)x− y) = f(kx+ (x+ y)) + f(kx− (x+ y))

− [f((k − 1)x+ y) + f((k − 1)x− y)]

+ f(kx− (x− y)) + f(kx+ (x− y)) (2.5)

for all x, y ∈ X. On the other hand, we have

[f(kx+ (x+ y)) + f(kx− (x+ y))] + [f(kx+ (x− y)) + f(kx− (x− y))]

= k2[f(2x+ y) + f(y)] + 2k2(k2 − 1)f(x)− 2(k2 − 1)f(x+ y)

+ k2[f(2x− y) + f(y)] + 2k2(k2 − 1)f(x)− 2(k2 − 1)f(x− y) (2.6)

and

f((k − 1)x+ y) + f((k − 1)x− y) = (k − 1)2[f(x+ y) + f(x− y)]

+ 2(k − 1)2[(k − 1)2 − 1]f(x)

− 2[(k − 1)2 − 1]f(y) (2.7)

for all x, y ∈ X. By (2.5), (2.6) and (2.7), we get

f((k + 1)x+ y) + f((k + 1)x− y) = (k + 1)2[f(x+ y) + f(x− y)]

+ 2(k + 1)2[(k + 1)2 − 1]f(x)

− 2[(k + 1)2 − 1]f(y),

for all x, y ∈ X, this means that (1.2) holds for j = k + 1, then, by using (2.5) , one
inductively obtains (1.2). �

Definition 2.2. Let X be a non-empty set. A function d : X ×X → [0,∞] is called
a generalized metric on X if and only if d satisfies
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.



268 M. ESHAGHI GORDJI, CHOONKIL PARK AND M.B. SAVADKOUHI

Note that the only substantial difference of the generalized metric from the metric
is that the range of generalized metric includes the infinity. We now introduce one of
fundamental results of fixed point theory. For the proof, refer to [16]. For an extensive
theory of fixed point theorems and other nonlinear methods, the reader is referred to
the book of Hyers et al. [14, 15].

Theorem 2.3. [3, 19] (The alternative of fixed point.) Let (X, d) be a generalized
complete metric space. Assume that T : X → X is a strictly contractive operator
with the Lipschitz constant L < 1. If there exists a nonnegative integer k such that
d(T kx, T k+1x) <∞ for some x ∈ X, then the followings are true:
(1) The sequence {Tnx} converges to a fixed point x∗ of T ;
(2) x∗ is the unique fixed point of T in

X∗ = {y ∈ X | d(T kx, y) <∞};

(3) If y ∈ X∗, then d(y, x∗) ≤ 1
1−L d(y, Ty).

See also [4, 8].

Utilizing the above-mentioned fixed point alternative, we now obtain our main
result, i.e., the generalized Hyers-Ulam stability of the functional equation (1.2). Let
X be a real vector space and Y a real Banach space. Given a mapping f : X → Y,
we set

Df(x, y) := f(kx+y)+f(kx−y)−k2[f(x+y)+f(x−y)]−2k2(k2−1)f(x)+2(k2−1)f(y)

for all x, y ∈ X.
From now on, assume that k is a fixed integer greater than 1. Let ϕ : X ×X →

[0,∞) be a function such that

lim
n→∞

ϕ(λn
i x, λ

n
i y)

λ4n
i

= 0 (2.8)

for all x, y ∈ X, where λi = k if i = 0 and λi = 1
k if i = 1.

Theorem 2.4. Suppose that a function f : X → Y satisfies the functional inequality

‖Df(x, y)‖ ≤ ϕ(x, y) (2.9)

for all x, y ∈ X and f(0) = 0. If there exists L = L(i) < 1 such that the function

x 7−→ ψ(x) = ϕ(
x

k
, 0)

has the property

ψ(x) ≤ L.λ4
i .ψ(

x

λi
) (2.10)

for all x ∈ X, then there exists a quartic function Q : X → Y such that the inequality

‖f(x)−Q(x)‖ ≤

{
L

2(1−L) , i=0;
1

2(1−L) , i=1; (2.11)

holds for all x ∈ X.
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Proof. Consider
X := {g : g : X → Y, g(0) = 0}

and introduce the generalized metric on X,

d(g, h) = inf{M ∈ (0,∞) : ‖g(x)− h(x)‖ ≤Mψ(x), x ∈ X}.
Let {gn} be a Cauchy sequence in (X, d). According to the definition of Cauchy
sequences, there exists, for any given ε > 0, a positive integer Nε such that d(gm, gn) ≤
ε for all m,n ≥ Nε. By considering the definition of the generalized metric d, we see
that

∀ε > 0 ∃Nε ∈ N ∀m,n ≥ Nε ∀x ∈ X : ‖gm(x)− gn(x)‖ ≤Mψ(x) (2.12)

If x is any given point of X, (2.12) implies that {gn(x)} is a Cauchy sequence in Y.
Since Y is complete, {gn(x)} converges in Y for each x ∈ X. Hence we can define a
function g : X → Y

g(x) = lim
n→∞

gn(x) (2.13)

for any x ∈ X. We have g ∈ X and limn gn = g.
Now we define a function T : X → X by

Tg(x) =
1
λ4

i

g(λix)

for all x ∈ X. Note that for all g, h ∈ X,
d(g, h) < M =⇒ ‖g(x)− h(x)‖ ≤Mψ(x), x ∈ X

=⇒ ‖ 1
λ4

i

g(λix)−
1
λ4

i

h(λix)‖ ≤
1
λ4

i

Mψ(λix), x ∈ X,

=⇒ ‖ 1
λ4

i

g(λix)−
1
λ4

i

h(λix)‖ ≤ LMψ(x), x ∈ X,

=⇒ d(Tg, Th) ≤ LM.

Hence we see that
d(Tg, Th) ≤ Ld(g, h)

for all g, h ∈ X, that is, T is a strictly self-mapping of X with the Lipschitz constant
L.
If we put y = 0 in (2.9) and use (2.10) with the case i = 0, then we see that

‖2f(kx)− 2k4f(x)‖ ≤ ϕ(x, 0) (2.14)

which is reduced to

‖f(x)− 1
k4
f(kx)‖ ≤ 1

2k4
ψ(kx) ≤ L

2
ψ(x)

for all x ∈ x, that is, d(f, Tf) ≤ L
2 = L1

2 < ∞. If we substitute x := x
k in (2.14) and

use (2.10) with the case i = 1, then we see that

‖2f(x)− 2k4f(
x

k
)‖ ≤ ϕ(

x

k
, 0)

which is reduced to
‖f(x)− k4f(

x

k
)‖ ≤ 1

2
ψ(x)
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for all x ∈ X, that is, d(f, Tf) ≤ 1
2 = L0

2 <∞.
Now, from the fixed point alternative in both cases, it follows that there exists a fixed
point Q of T in X such that

Q(x) = lim
n→∞

f(λn
i x)

λ4n
i

(2.15)

for all x ∈ X since limn→∞ d(Tnf,Q) = 0.
To show that the function Q : X → Y is quartic, let us replace x and y by λn

i x and
λn

i y in (2.9), respectively, and divide by λ4n
i . Then it follows from (2.8) and (2.15)

that

‖DQ(x, y)‖ = lim
n→∞

‖Df(λn
i x, λ

n
i y)‖

λ4n
i

≤ ϕ(λn
i x, λ

n
i y)

λ4n
i

= 0

for all x, y ∈ X, that is, Q satisfies the functional equation (1.2). Thus Lemma 2.1
guarantees that Q is quartic.
According to the fixed point alternative, Since Q is the unique fixed point of T in the
set X∗ = {g ∈ X : d(f, g) <∞}, Q is the unique mapping such that

‖f(x)−Q(x)‖ ≤Mψ(x)

for all x ∈ X and some M > 0. Again using the fixed point alternative, we have

d(f,Q) ≤ 1
1− L

d(f, Tf),

and so obtain the inequality

d(f,Q) ≤ L1−i

2(1− L)

which yields the inequality (2.11). This completes the proof of the theorem. �

From Theorem 2.4, we obtain the following corollary concerning the generalized
Hyers-Ulam stability of the functional equation (1.2).

Corollary 2.5. Let X and Y be a normed space and a Banach space, respectively.
Let p ≥ 0 be given with p 6= 4. Assume that δ ≥ 0 and ε ≥ 0 are fixed. Suppose that a
mapping f : X → Y satisfies the functional inequality

‖Df(x, y)‖ ≤ δ + ε(‖x‖p + ‖y‖p) (2.16)

for all x, y ∈ X. Furthermore, assume that f(0) = 0 and δ = 0 in (2.16) for the case
p > 4. Then there exists a unique quartic mapping Q : X → Y such that the inequality

‖f(x)−Q(x)‖ ≤ δ

2(k4−p − 1)
+

ε

2(k4 − kp)
‖x‖p (2.17)

holds for all x ∈ X, where p < 4, or the inequality

‖f(x)−Q(x)‖ ≤ ε

2(kp − k4)
‖x‖p (2.18)

holds for all x ∈ x, where p > 4.
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Proof. Let ϕ(x, y) := δ + ε(‖x‖p + ‖y‖p) for all x, y ∈ x. then it follows that

ϕ(λn
i x, λ

n
i y)

λ4n
i

=
δ

λ4n
i

+ (λn
i )p−4ε(‖x‖p + ‖y‖p) −→ 0

as n −→ ∞, where p < 4 if i = 0 and p > 4 if i = 1, we see that the inequality
(2.10) holds with either L = kp−4 or L = 1

kp−4 . Now the inequality (2.11) yields the
inequalities (2.17) and (2.18) which complete the proof of the corollary. �

The following corollary is the generalized Hyers-Ulam stability of the functional
equation (1.2).

Corollary 2.6. Let X and Y be a normed space and a Banach space, respectively.
Assume that θ ≥ 0 is fixed. suppose that a mapping f : X → Y satisfies the functional
inequality

‖Df(x, y)‖ ≤ θ (2.19)
for all x, y ∈ X. then there exists a unique quartic mapping Q : X → Y such that the
inequality

‖f(x)−Q(x)‖ ≤ θ

4(k4 − 1)
(2.20)

for all x ∈ X.

Proof. In Corollary 2.5, putting δ := 0, p := 0 and ε := θ
2 , we obtain the conclusion

of the corollary. �

Acknowledgements. The second author was supported by Basic Science Research
Program through the National Research Foundation of Korea funded by the Ministry
of Education, Science and Technology (NRF-2009-0070788). Also, the third author
would like to thank the office of gifted students at Semnan University for its financial
support.

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan,

2 (1950), 64-66.
[2] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. AMS, 57 (1951),

223-237.
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[5] L. Cădariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach,

Grazer Mathematische Berichte, 346(2004), 43-52.
[6] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27(1984),

76-86.

[7] J. Chung, P.K. Sahoo, On the general solution of aquartic functional equation, Bull. Korean
Math. Soc., 40(2003), 565-576.

[8] J.B. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized
complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305-309.

[9] G.L. Forti, Hyers-Ulam stability of functional equations inseveral variables, Aequationes Math.,

50(1995), 143-190.



272 M. ESHAGHI GORDJI, CHOONKIL PARK AND M.B. SAVADKOUHI

[10] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14(1991), 431-434.
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