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Abstract. In this note, we introduce a metric on the cone metric space and then prove that a
complete cone metric space is always a complete metric space and verify that a contractive mapping

on the cone metric space is a contractive mapping on the metric space. Hence, fixed point theorems

on cone metric space are, essentially, fixed point theorems on metric space.
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1. Introduction

Banach contraction principle plays an important role in several branches of math-
ematics and applied mathematics. For this reason, it has been extended in many
directions, for example, see [3, 11, 2, 5, 4] and references therein.

Cone metric spaces were researched by Huang and Zhang in [6]. They defined
cone metric and cone metric spaces, which generalize metric and metric spaces, and
proved some fixed point theorems for contractive mappings on these spaces. Then in
[10, 9, 7, 12, 8, 1], the authors extend some fixed point theorems on metric spaces to
cone metric spaces.

In this note, without the assumption that the cone is normal, we introduce a metric
D on the cone metric space (X, d) and then we point out that a complete cone metric
space is always a complete metric space and show that contractive mappings on a
cone metric space (X, d) are contractive on the metric space (X, D).

Consistent with Huang and Zhang [6], the following definitions and results will be
needed in the sequel.

Let E always be a real Banach space and P a subset of E. P is called a cone if:
(i) P is closed, nonempty and P 6= {0};
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(ii) ax + by ∈ P for all x, y ∈ P and non-negative real numbers a, b;
(iii) P

⋂
(−P ) = {0}.

Given a cone P ⊂ E, we can define a partial order ≤ with respect to P by x ≤ y if
and only if y − x ∈ P . x < y will stand for x ≤ y and x 6= y, while x << y indicates
that y − x ∈ intP , where intP denotes the interior of P .

In the rest of the paper, we always suppose that E is a Banach space, P is a cone
in E with intP 6= ∅ and ≤ is a partial order with respect to P .
Lemma 1.1 ([10]) Let {xn}, {yn} are two sequences in E . If xn ≤ yn for any n ∈ N ,
xn → x, yn → y, (n →∞), then x ≤ y.
Definition 1.2 ([6]) Let X be a nonempty set. Suppose the mapping d : X ×X → E
satisfies

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(y, z) for all x, y, z ∈ X.
Then d is called a cone metric on X and (X, d) is called a cone metric space.

Definition 1.3 ([6]) Let (X, d) be a cone metric space, x ∈ X and {xn} a sequence
in X. Then

(i) {xn} converges to x whenever for every c ∈ E with 0 << c there is a natural
number N such that d(xn, x) << c for all n ≥ N . we denote this by limn→∞ xn = x
or xn → x.

(ii) {xn} is a Cauchy sequence whenever for every c ∈ E with 0 << c there is a
natural number N such that d(xm, xn) << c for all m,n ≥ N .

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is convergent.
Definition 1.4 ([6]) Let (X, d) be a cone metric space. If for any sequence {xn} in
X, there is a subsequence {xni} of {xn} such that {xni} is convergent in X, then X
is called a sequentially compact cone metric space.

2. Main results

We start this section with an auxiliary result.

Lemma 2.1 Let (X, d) be a cone metric space, then

D(x, y) = inf
{u∈P |u≥d(x,y)}

‖u‖, x, y ∈ X

is a metric on X.
Proof. (1) It is obvious that D(x, y) ≥ 0.

If D(x, y) = 0, i.e., inf{u∈P |u≥d(x,y)} ‖u‖ = 0, then for arbitrary n ∈ N , there exists
un ∈ P, un ≥ d(x, y) such that ‖un‖ < 1

n .
Since un ≥ d(x, y) and un → 0(n →∞), by Lemma 1.1, we have 0 ≥ d(x, y), which

implies d(x, y) ∈ P
⋂

(−P ). Hence d(x, y) = 0 and x = y.
(2)d(x, y) = d(y, x) implies D(x, y) = D(y, x), x, y ∈ X.
(3) Let x, y, z ∈ X, then D(x, z) ≤ D(x, y) + D(y, z).
In fact, since

D(x, z) = inf
{u1∈P |u1≥d(x,z)}

‖u1‖,

D(x, y) = inf
{u2∈P |u2≥d(x,y)}

‖u2‖,
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D(y, z) = inf
{u3∈P |u3≥d(y,z)}

‖u3‖,

for arbitrary u2, u3 ∈ P, u2 ≥ d(x, y), u3 ≥ d(y, z),

u2 + u3 ≥ d(x, y) + d(y, z) ≥ d(x, z),

then
{u1 ∈ P |u1 ≥ d(x, z)} ⊃ {u2 + u3 ∈ P |u2 ≥ d(x, y), u3 ≥ d(y, z)},

which implies

inf
{u2,u3∈P |u2≥d(x,y),u3≥d(y,z)}

‖u2 + u3‖ ≥ inf
{u1∈P |u1≥d(x,z)}

‖u1‖.

Note that
inf{u2,u3∈P |u2≥d(x,y),u3≥d(y,z)} ‖u2 + u3‖

≤ inf{u2,u3∈P |u2≥d(x,y),u3≥d(y,z)} ‖u2‖+ ‖u3‖

= inf{u2∈P |u2≥d(x,y)} ‖u2‖+ inf{u3∈P |u3≥d(y,z)} ‖u3‖

,

thus

inf
{u2∈P |u2≥d(x,y)}

‖u2‖+ inf
{u3∈P |u3≥d(y,z)}

‖u3‖ ≥ inf
{u1∈P |u1≥d(x,z)}

‖u1‖,

i.e.
D(x, y) + D(y, z) ≥ D(x, z).

(1-3) show that D is a metric on X, (X, D) is a metric space. �

Theorem 2.2 The metric space (X, D) is complete if and only if the cone metric
space (X, d) is complete .
Proof. (1) If the cone metric space (X, d) is complete.

Let {xn} be a Cauchy sequence of the metric space (X, D).
For any c >> 0, there exists δ > 0, such that c + B(0, δ) ⊂ P . Note that {xn} is a

Cauchy sequence, there is N such that D(xn, xm) ≤ δ
4 for m,n > N ,i.e.,

inf
{u∈P |u≥d(xn,xm)}

‖u‖ ≤ δ

4
.

Hence there exists v ∈ P , ‖ v ‖≤ δ
2 such that d(xn, xm) ≤ v.

Note that c − v ∈ intP , thus d(xn, xm) ≤ v << c for m,n > N , which implies
{xn} is a Cauchy sequence of the cone metric space (X, d).

Since (X, d) is complete, there is x ∈ X such that limn→∞ d(xn, x) = 0.
Given c >> 0, note that c

k >> 0 for k ≥ 1, there exists Nk such that for all
n > Nk, d(x, xn) << c

k . Hence

D(xn, x) = inf
{u∈P |u≥d(xn,x)}

‖u‖ ≤ ‖c‖
k

for all n > Nk

Since ‖c‖
k → 0(k →∞), then

D(xn, x) → 0, (n →∞).

Hence the metric space (X, D) is complete.
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(2) Assume the metric space (X, D) is complete.
Let {xn} be a Cauchy sequence of the cone metric space (X, d).
Given c >> 0 and a positive number ε > 0, there is k ≥ 1, such that ‖ c

k‖ < ε.
Noting that c

k >> 0 and {xn} be a Cauchy sequence of the cone metric space
(X, d), then there exists N such that for all m,n > N , d(xm, xn) << c

k . Hence

D(xn, xm) = inf
{u∈P |u≥d(xm,xn)}

‖u‖ ≤ ‖c‖
k

< ε for all m, n > N.

which implies {xn} is a Cauchy sequence of the cone metric space (X, D).
Since (X, D) is complete, there is x ∈ X such that limn→∞ D(xn, x) = 0.
For any c >> 0, there exists δ > 0, such that c+B(0, δ) ⊂ P . For this δ > 0, there

is N such that D(xn, x) ≤ δ
4 for n > N ,i.e.,

inf
{u∈P |u≥d(xn,x)}

‖u‖ ≤ δ

4
.

Hence there exists v ∈ P , ‖ v ‖≤ δ
2 such that d(xn, x) ≤ v.

Note that c − v ∈ intP , thus d(xn, x) ≤ v << c for n > N , which implies {xn}
convergent to x in the cone metric space (X, d).

Hence the cone metric space (X, d) is complete. �

As a consequence of Theorem 2.2, we easily get the following:
Theorem 2.3 If (X, d) is a sequentially compact cone metric space, then (X, D) is
a compact metric space.

Another result of this paper says that a contractive mapping on cone metric space
is always contractive on the metric space. More precisely, we have:

Theorem 2.4 Let (X, d) be a complete cone metric space. If T : X → X satisfies
the contractive condition

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X,

where k ∈ [0, 1) is a constant, then T is a contractive mapping on (X, D),i.e.,

D(Tx, Ty) ≤ kD(x, y), for all x, y ∈ X.

Hence T has a unique fixed point in X.
Proof. In fact, let v ∈ P, v ≥ d(x, y), then kv ≥ d(Tx, Ty), which implies

{kv | v ∈ P, v ≥ d(x, y)} ⊂ {u | u ∈ P, u ≥ d(Tx, Ty)},

thus
inf

{kv|v∈P,v≥d(x,y)}
‖kv‖ ≥ inf

{u|u∈P,u≥d(Tx,Ty)}
‖u‖,

or equivalent,
k inf
{v∈P |v≥d(x,y)}

‖v‖ ≥ inf
{u∈P |u≥d(Tx,Ty)}

‖u‖,

that is
kD(x, y) ≥ D(Tx, Ty), for all x, y ∈ X,

then T has a unique fixed point in X. �
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Remark. In a similar way, we can show that the fixed point theorems established
in [1]-[6] are still true without the assumption that cone P is normal and they are, in
essence, fixed point theorems on metric spaces.
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