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Abstract. In this paper we give existence theorems of ε-fixed points for multi-functions from a
subset to another in a Banach space. Our result extends previous approximate fixed point theorems.

As a consequence we obtain new theorems of existence of best proximity pairs.
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1. Introduction

Let (E, ‖.‖) be a real Banach space, and let d(x, y) = ‖x− y‖, x, y ∈ E. Let X and
Y be subsets of E.
Given a multi-function F : X → 2Y , and ε > 0, we define the set of ε-fixed points of
F by

FIXε(F ) := {x ∈ X : d(x, F (x)) ≤ d(X, Y ) + ε}, (1.1)

where d(X, Y ) = inf{d(x, y) : x ∈ X, y ∈ Y } and d(x, F (x) = inf{d(x, y) : y ∈ F (x)}.
This concept, for Y = X, was introduced in [3]. Existence of ε-fixed points is known
in the literature as existence of approximate fixed points (see [11]).

The pair (x, F (x)) is called a best proximity pair of F if d(x, F (x)) = d(X, Y ). Some
times the fixed-point equation F (x) = x does not possess a solution, then the next
question that naturally arises is whether it is possible to find an element x in a suitable
space such that x is close to F (x) in some sense. Best proximity pair theorems are
adequate to be explored in this direction. Under suitable conditions a best proximity
theorem boils down to a fixed-point theorem. Thus, best proximity pair theorems
also serve as a generalization of fixed-point theorems. Existence theorems of best
proximity pairs were given in [4], [7], [9], and [10].

The interest to obtain theorems of existence of fixed points and approximate fixed
points is based on its usefulness in applications, as game theory and mathematical eco-
nomics (see [1]). Existence theorems of best proximity pairs imply existence theorems
of equilibrium pairs for constrained generalized games (see [8], [9], and [10]).
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In [3] the authors gave new approximate fixed point theorems for multi-functions
from a set into itself. Using the technique employed by them, we extend these the-
orems in two ways. In first place we consider multi-functions from a set to another
and in second place we substitute the assumption that X has nonempty interior by
a more general condition over a certain set X0. Our approach allow us to obtain, in
Section 2, new existence theorems of approximate fixed points which extend previous
results proved in [3](see Corollary 2.5, 2.8, and Theorem 2.9). In Section 3, we also
obtain new existence theorems of best proximity pairs.

Let A and B be subsets of E, and let F : A → 2B be a multi-function. F is called
closed (weak closed) on A if for all net xα ∈ A, converging (weakly converging) to
x ∈ X, and yα ∈ F (xα), converging (weakly converging) to y ∈ E, imply y ∈ F (x).
The multi-function F is called upper semi-continuous (weakly upper semi-continuous)
if for all x ∈ A and for all open set U (weak open) in B such that F (x) ⊂ U , there
is an open neighborhood (weak open neighborhood) V of x in A, verifying F (y) ⊂ U,
for all y ∈ V . .

In this work we consider the following subsets of E,

X0 := {x ∈ X : ∃y ∈ Y such that d(x, y) = d(X, Y )}, (1.2)

and
Y 0 := {y ∈ Y : ∃x ∈ X such that d(x, y) = d(X, Y )}. (1.3)

As usual Y denote the closure of Y with the norm topology. If X and Y are convex
sets, it is easy to prove that X0 and Y 0 are convex sets.

Definition 1.1. We say that the set X has the property (I) if for all 0 < δ < 1, there
exists x0 ∈ X such that δX + (1− δ)x0 ⊂ X.

Definition 1.2. We say that the pair (X, Y ) has the property (II) if u ∈ X and
d(u, v) = d(X, Y ) for some v ∈ Y imply u ∈ X0.

Remark 1.3. The property (I) plays an important role in this paper. The paper [3]
was the inspiration source to define it.
Suppose A ⊂ V , where V is a subspace of E, and let INTV (A) be the V -relative
interior of A i.e., {x ∈ A : ∃r > 0, with B(x, r) ∩ V ⊂ A}. Here B(x, r) is the open
ball in E, of center x and radius r. If INTV (A) 6= ∅ and A is convex, then A has the
property (I). Every convex closed nonempty set has the property (I).
For all nonempty set X, the pair (X, X) has the property (II). The property (II), in
general, is not an extremely restrictive condition.

2. Existence of approximate fixed points

In this Section we give new theorems of existence of approximate fixed points.
We begin establishing several lemmas concerning to the metric projection.

Lemma 2.1. Let E be a Banach space. If X is a bounded set then there exists r > 0
such that Y 0 ⊂ B(0, r) ∩ Y .

Proof. There is M > 0 such that ‖x‖ ≤ M for all x ∈ X. Let r = 2M + β,
where β = d(X, Y ). Let y ∈ Y be such that ‖y‖ > r. Then for all x ∈ X we have
d(x, y) ≥ r − ‖x‖ ≥ M + β. So, y /∈ Y 0. In consequence, Y 0 ⊂ B(0, r) ∩ Y . �
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Lemma 2.2. Let E be a reflexive Banach space. Suppose that X and Y are bounded
and convex sets, X0 6= ∅ and Y 0 6= ∅. If the pair (X, Y ) has the property (II), then
the metric projection PX0 : Y 0 → X0 is closed (weakly closed) on Y 0.

Proof. Since E is reflexive, it is known that the metric projection on the convex closed
set X0 is well defined, i.e.,

PX0(y) := {x ∈ X0 : d(y, x) = d(y, X0)} 6= ∅,

for all y ∈ E. Let zα ∈ Y 0 be converging (weakly converging) to z ∈ Y 0 and let
wα ∈ PX0(zα) be with wα converging (weakly converging) to w. There exists a net
uα ∈ X with d(uα, zα) = d(X, Y ). Since the pair (X, Y ) has the property (II), then
uα ∈ X0. Therefore we obtain d(zα, wα) = d(zα, X0) ≤ d(zα, uα) = d(X, Y ). As
wα − zα weakly converges to w − z, using the Lemma 27([5],p. 68), in either case
we have d(w, z) ≤ limd(wα, zα) = d(X, Y ). In consequence w ∈ PX0(z). The proof is
complete. �

Lemma 2.3. Let E be a Banach space. Suppose that X0 6= ∅, X0 compact, and
Y 0 6= ∅. Let PX0 : E → X0 be the metric projection. We have

(1) If the pair (X, Y ) has the property (II), then PX0 is closed on Y 0.
(2) PX0 is upper-semi continuous on E.

Proof. Since X0 is compact it is known that the metric projection on the compact
set X0 is well defined and with compact values. Now, the proof of that it is closed
follows as in the proof of Lemma 2.2.
Next, we prove that the projection is upper semi-continuous. Let y ∈ E and let U be
an open set such that PX0(y) ⊂ U. Since PX0(y) is compact, there is r > 0 such that

PX0(y) + r := {z ∈ E : d(z, PX0(y)) < r} ⊂ U.

Then it will be sufficient to prove that there exists s > 0, such that PX0(B(y, s)) ⊂
PX0(y)) + r. Suppose that it is not true, so there are two sequences zn ∈ E, yn ∈
PX0(zn) such that d(zn, y) < 1

n and d(yn, PX0(y) ≥ r. From the compactness of X0,

there exists a subsequence ynk
of yn with ynk

converging to a point y0 ∈ X0. Clearly,
we have d(ynk

, X0) = d(ynk
, znk

) → d(y0, y), so d(y0, y) = d(y0, X0) = 0. It is a
contradiction. �

Theorem 2.4. Let E be a reflexive Banach space. Let X and Y be convex subsets
where either X or Y is bounded. Assume X0 6= ∅, with the property (I), and that the
pair (X, Y ) has the property (II). Let F : X → 2Y be a weakly closed multi-function
with convex set values such that F (x)∩Y 0 6= ∅, x ∈ X0. Then FIXε(F ) 6= ∅, for each
ε > 0.

Proof. Let F ′ : X0 → 2Y 0
defined by F ′(x) = F (x) ∩ Y 0, x ∈ X0.

If PX0 : E → X0 is the metric projection, we also write PX0 : 2E → X0 for the
multi-function given by

PX0(A) =
⋃
a∈A

PX0(a), A ⊂ E.
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Since X0 satisfies the property (I), given λ ∈ (0, 1) there exists x0 ∈ X0 such that
Z := λX0 + (1− λ)x0 ⊂ X0.
Now, we consider the multi-function H : Z → 2Z defined by

H(x) = λPX0 ◦ F ′(x) + (1− λ)x0, x ∈ Z.

We will prove that H is weakly closed on Z. By Lemma 2.1, without loss of generality,
we can assume X0 and Y 0 bounded. Let xα ∈ Z be weakly converging x ∈ Z,
and let uα ∈ H(xα) be weakly converging to u ∈ X0. From definition of H, there
are yα ∈ F ′(xα) and tα ∈ PX0(yα) such that uα = λtα + (1 − λ)x0. Since X0 is
bounded and E is reflexive there exists a sub-net tαk

weakly converging to a point
t ∈ X0. Therefore, uαk

weakly converges to λt + (1 − λ)x0 ∈ X0. In consequence,
u = λt + (1 − λ)x0. Since yαk

∈ F (xαk
) ∩ Y 0 and Y 0 is bounded, there is a sub-

net, which we again denote by yαk
, weakly converging to a point y ∈ Y . As F is

weakly closed, y ∈ F (x), so y ∈ Y. In addition, there exists vαk
∈ X such that

d(vαk
, yαk

) = d(X, Y ). The sub-net vαk
has a sub-net, that we again denote in the

same way, weakly converging to a point v ∈ X. Thus we get

d(v, y) ≤ limd(vαk
, yαk

) = d(X, Y ),

which implies that y ∈ Y 0. We have proved that y ∈ F ′(x). By Lemma 2.2, t ∈
PX0 ◦ F ′(x), in consequence u ∈ H(x).
Next, we show that H has convex set values. In fact, let γ ∈ [0, 1] and let ti ∈
PX0 ◦ F ′(x), i = 1, 2, x ∈ X0, then there are ri ∈ F ′(x) such that ti ∈ PX0(ri). Since
F ′(x) is a convex set, γr1 + (1− γ)r2 ∈ F ′(x). Further, ri ∈ Y 0 implies that there is
bi ∈ X, with d(ri, bi) = d(X, Y ). Thus, d(ri, ti) = d(ri, X0) ≤ d(ri, bi), which implies
that d(ri, ti) = d(X, Y ). It follows that

d(γr1 + (1− γ)r2, γt1 + (1− γ)t2) = d(X, Y ).

In consequence, γt1 + (1− γ)t2 ∈ PX0(γr1 + (1− γ)r2).
Since H is a weakly closed multi-function, from a weakly compact set with convex
nonempty values into itself and E with the weak topology is a convex locally Hausdorff
vectorial space, by Glicksberg Theorem [6], H has a fixed point in Z, say x∗.
Clearly, there are y ∈ F ′(x∗) and x ∈ PX0(y) such that x∗ = λx + (1 − λ)x0. We
recall that X0 is bounded, so there is M > 0 such that ‖u‖ ≤ M , for all u ∈ X0.
Given ε > 0, we chose λ ∈ (0, 1) satisfying 1− λ < ε

2M . Then

d(x∗, x) = (1− λ)d(x0, x) ≤ 2(1− λ)M < ε. (2.1)

As y ∈ Y 0 then d(y, X0) = d(X, Y ). Finally, from (2.1) we get

d(x∗, F (x∗) ≤ d(x∗, y) ≤ d(x∗, x) + d(x, y) = d(x∗, x) + d(y, X0) ≤ ε + d(X, Y ).

�

The next Corollary was proved in [3].

Corollary 2.5. Let E be a reflexive Banach space. Let X be a convex bounded subset
of E. Assume that X has nonempty interior. Let F : X → 2X be a weakly closed
multi-function with convex nonempty set values for each x ∈ X. Then FIXε(F ) 6= ∅,
for each ε > 0.
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Proof. Here we have X = Y = X0 = Y 0. As we have observed the property (II) for
the pair (X, Y ) immediately follows. If x0 ∈ IntX, it is easy see that λX+(1−λ)x0 ⊂
X for all λ ∈ [0, 1], so X0 has the property (I). In addition, we have F (x) ∩ Y 0 6= ∅.
Then the corollary immediately follows from Theorem 2.4. �

Corollary 2.6. Let E be a reflexive Banach space. Let X and Y be convex nonempty
subsets where either X or Y is bounded. Assume that X is closed. Let F : X → 2Y be
a weakly closed multi-function with convex set values such that F (x)∩Y 0 6= ∅, x ∈ X0.
Then FIXε(F ) 6= ∅, for each ε > 0.

Proof. Clearly the pair (X, Y ) has the property (II). Let xn ∈ X be a sequence
fulfilling lim d(xn, Y ) = d(X, Y ). Since xn is bounded, there exists a subsequence,
denoted also by xn, and x ∈ X, such that xn weakly converges to x, because X
is a convex and closed set. Let δ > 0. For each n ∈ N there is yn ∈ Y such that
d(xn, yn) ≤ 1

n + d(xn, Y ). For sufficiently big n we have d(xn, yn) ≤ 1
n + δ + d(X, Y ).

Since yn is bounded, we can get a subsequence again denoted by yn, weakly converging
to y ∈ Y . Thus

d(x, Y ) = d(x, Y ) ≤ d(x, y) ≤ limd(xn, yn) ≤ δ + d(X, Y ). (2.2)

As δ > 0 is arbitrary, from (2.2) follows that d(x, y) = d(X, Y ). Therefore, x ∈ X0.
On the other hand, X0 is closed. In fact, let zn ∈ X0 be with d(zn, x) → 0, as n →∞.
Clearly z ∈ X. For each n ∈ N let yn ∈ Y be such that d(zn, yn) = d(X, Y ). As before
we can assume that yn weakly converges to y ∈ Y . Since zn − yn weakly converges
to z − y we have d(z, y) ≤ limd(zn, yn) = d(X, Y ). It follows that z ∈ X0. Finally,
since X0 is nonempty, convex and closed, it has the property (I), then we can apply
the Theorem 2.4. �

Theorem 2.7. Let E be a Banach space. Let X and Y be convex subsets where either
X or Y is bounded. Assume X0 6= ∅, with the property (I), and totally bounded. Let
F : X → 2Y be a multi-function with convex set values such that F (x) ∩ Y 0 6= ∅, x ∈
X0. We have

(1) If the pair (X, Y ) has the property (II) and F is closed, or
(2) F is upper semi-continuous,

then FIXε(F ) 6= ∅, for each ε > 0.

Proof. Let ε > 0. Let F ′ : X0 → 2Y 0
, PX0 : E → X0,M, and λ ∈ (0, 1) as in the

proof of Theorem 2.4. There exists x0 ∈ X0 such that Z := λX0 + (1− λ)x0 ⊂ X0.
Let the multi-function H : Z → 2Z be defined by H(x) = λPX0 ◦ F ′(x) + (1− λ)x0.
First, we suppose that the pair (X, Y ) has the property (II) and F is closed. By
Lemma 2.3, PX0 is closed on Y 0. Using that X0 is compact and that it has the
property (I), we can analogously prove to the proof of Theorem 2.4 that H is closed.
Suppose now F upper semi-continuous. We now consider the multi-function G : Z →
Z defined by

G(z) = λPX0(F ′(x)) + (1− λ)x0, x ∈ Z.

We will see that G is upper semi-continuous on Z. Let x ∈ Z and let U be an open
set in E such that H(x) ⊂ U . By Lemma 2.3, PX0 is upper semi-continuous on E,
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then for each y ∈ F ′(x) there exists an open neighborhood Vy of y such that

PX0(z) ⊂ 1
λ

(U − (1− λ)x0) =: C, for all z ∈ Vy.

We consider the following open set

Q =
⋃

y∈F ′(x)

Vy.

Since E is a normal topological space, there is an open set D such that

F ′(x) ⊂ D ⊂ D ⊂ Q.

F is upper semi-continuous, then there is an open neighborhood J of x such that
F ′(t) ⊂ D for all t ∈ J . So, F ′(t) ⊂ D ⊂ Q for all t ∈ J . In consequence,
PX0 ◦ F ′(t) ⊂ C for all t ∈ J , or i.e., G(t) ⊂ U for all t ∈ J. Then, G is upper
semi-continuous.
On the other hand, G(x) is closed for all x ∈ Z, it follows that G is closed (see [1]).
We have proved that both multi-functions H and G are closed. We can apply the
Glicksberg’s Theorem to H and G ([6]). Thus, G has a fixed point in Z, say x∗.
Clearly, there are y ∈ F ′(x∗) and x ∈ PX0(y) such that x∗ = λx + (1− λ)x0. Then

d(x∗, x) = (1− λ)d(x0, x) ≤ 2(1− λ)M < ε. (2.3)

In addition, for each n ∈ N we can get z ∈ F (x∗) such that d(y, z) < 1
n . As z ∈ Y 0

then d(z,X0) = d(X, Y ). Finally, from (2.3) we get

d(x∗, F (x∗)) ≤ d(x∗, z) ≤ d(x∗, x) + d(z, y) + d(y, x) ≤

≤ d(x∗, x) +
1
n

+ d(y, X0) ≤ ε +
2
n

+ d(z,X0) = ε +
2
n

+ d(X, Y ).
(2.4)

As n is arbitrary we obtain d(x∗, F (x∗)) ≤ ε + d(X, Y ).
The proof of FIXε(F ) 6= ∅, under the hypothesis (1), follows the same patterns that
the proof of Theorem 2.4, using that the multi-function H is closed. �

The next Corollary was proved in [3].

Corollary 2.8. Let E be a Banach space and let X be a convex totally bounded
set with non-empty interior. Assume that F : X → 2X is a closed or upper semi-
continuous multi-function such that F (x) is a non-empty and convex set for each
x ∈ X. Then FIXε(F ) 6= ∅ for each ε > 0.

Proof. In the Theorem 2.7 we consider X = Y = X0 = Y 0. Then X0 6= ∅ with
the property (I), and X0 is a totally bounded set. Further the pair (X, Y ) has the
property (II). Therefore the Corollary immediately follows from Theorem 2.7. �

The following Theorem was established in [3], with the assumptions IntX 6= ∅ and
E separable. As we show the last hypothesis is not necessary.

Theorem 2.9. Let E be a reflexive Banach space. Let X be a non-empty convex
subset and bounded of E fulfilling the property (I). Assume that F : X → 2X is
a weakly upper semi-continuous multi-function such that F (x) is a non-empty and
convex subset of X for each x ∈ X. Then FIXε(F ) 6= ∅ for each ε > 0.
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Proof. Let ε > 0 and let M > 0 be such that ‖x‖ ≤ M for all x ∈ X. We choose
λ ∈ (0, 1) with 1− λ < ε

2M , and x0 ∈ X satisfying

Z := λX + (1− λ)x0 ⊂ X.

Here, we consider the multi-function G : Z → 2Z , defined by G(x) = λF (x)+(1−λ)x0.
We will prove that G is weakly upper semi-continuous. Let x ∈ G and let U be a
weak open set containing to G(x). Then

F (x) ⊂ 1
λ

(U − (1− λ)x0) =: C.

Since X is weakly compact, it is normal with the weak topology. In addition, F (x)
convex implies F (x) = F (x)

w
. Thus, there is a weak open V in E such that

F (x) ⊂ V ∩X ⊂ V
w ∩X ⊂ C ∪X.

On the other hand, as F is weakly upper semi-continuous and F (x) ⊂ V , there is a
weak open neighborhood of x, say D, such that F (z) ⊂ V ∩ X for all z ∈ D ∩ X.
Therefore,

F (z) = F (z)
w
⊂ V

w ∩X ⊂ C,

for all z ∈ D ∩ X. In consequence, G(z) ⊂ U for all z ∈ D, so G is weakly upper
semi-continuous. Since G(x) is a weakly closed set for all x∈ Z we have G is weakly
closed. Then, G has a fixed point. Now, the proof follows the same patterns that the
proof of Theorem 2.4. �

Remark 2.10. To establish the Theorem 2.9 for a weakly upper semi-continuous
multi-function F : X → Y following our arguments, we need that PX0 be weakly
upper semi-continuous. However, as far as we know, the metric projection weakly
upper semi-continuous essentially implies X0 compact (see [2], Remark 1, p. 798). In
consequence, we establish the next theorem with this requirement.

Theorem 2.11. Let E be a Banach space. Let X and Y be convex subsets where
either X or Y is bounded. Assume that X0 6= ∅ with the property (I), and X0 is
a totally bounded set. Let F : X → 2Y be a weakly upper semi-continuous multi-
function with convex set values such that F (x)∩Y 0 6= ∅, x ∈ X0. Then FIXε(F ) 6= ∅,
for each ε > 0.

Proof. The proof is analogous to the proof of Theorem 2.7. �

3. Existence of best proximity pairs

In this section we will give two theorems of existence of best proximity pairs and
a theorem of existence of fixed points. They will be consequence of the existence
theorems of ε-fixed points proved in Section 2.

Theorem 3.1. Assume the hypothesis of Theorem 2.4. In addition, we suppose that
X is a closed set. Then F has a best proximity pair.
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Proof. By Lemma 2.1 we can suppose that X and Y are bounded sets. The Theorem
2.4 implies that for each n ∈ N, there is a 1/n-fixed point, say xn. On the other hand,
there exists yn ∈ F (xn) such that

d(xn, yn) ≤ d(xn, F (xn)) + 1/n,

for all n ∈ N. Then d(xn, yn) ≤ d(X, Y ) + 2/n, for all n ∈ N.
Since E is reflexive we can find subsequences xnk

and ynk
, weakly converging to

x ∈ X = X and y ∈ Y , respectively. Now, F is weakly closed, so y ∈ F (x). Further

d(x, y) ≤ limd(xnk
, ynk

) = d(X, Y ).

In consequence, d(x, F (x)) = d(X, Y ). The proof is complete. �

The proof of the following theorems are analogous to the proof of Theorem 3.1 and
we omit it.

Theorem 3.2. Assume the hypothesis of Theorem 2.9. In addition, we suppose that
X is a closed set. Then F has a fixed point, i.e., there is x ∈ X such that x ∈ F (x).

Theorem 3.3. Assume the same hypothesis of Theorem 2.11. In addition, we suppose
that X is a closed set. Then F has a best proximity pair.
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