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1. Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H and
Q : H → 2H be a multi-valued mapping. Let ϕ : C → R be a real-valued function and
Φ : H×C×C → R be an equilibrium-like function, that is, Φ(w, u, v)+Φ(w, v, u) = 0
for all (w, u, v) ∈ H × C × C. The generalized equilibrium problem is to find u ∈ C
and w ∈ Qu such that

GEP : Φ(w, u, v) + ϕ(v)− ϕ(u) ≥ 0, ∀v ∈ C. (1.1)

In case of (1.1), we will denote by u ∈ GEP (C,Q,Φ, ϕ).
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In particular, if ϕ ≡ 0 and Φ(w, u, v) = E(u, v) where E : C × C → R, then
problem (1.1) becomes the following equilibrium problem (for short, (EP )), which is
to find x∗ ∈ C such that

EP : E(x∗, v) ≥ 0, ∀v ∈ C.

It is well known that the equilibrium problems (EP ) which were introduced by
Blum and Oettli [2] and Noor and Oettli [10] in 1994 have had a great impact and
influence in the development of several branches of pure and applied sciences. Hence
collectively, equilibrium problems cover a vast range of applications. Consequently,
since the problem (1.1) is a generalization of the equilibrium problems (EP ), studying
the generalized equilibrium problem (GEP ) is very useful.

Equally important to the equilibrium problems, we also have the problem of find-
ing the fixed points of the nonlinear mappings. It is natural to construct a unified
approach for these problems. In this direction, several authors have introduced some
iterative schemes for finding a common element of a set of the solutions of the equi-
librium problems and a set of the fixed points of nonlinear mappings, for examples,
see [12, 16, 17, 20] and the references therein.

On the other hand, the optimization problems are of very interesting and have been
studying by many authors. A kind of such problems is the following optimization
problem (for shot, OP ):

OP : min
x∈C

µ

2
〈Ax, x〉+

1
2
‖x− u‖2 − h(x), (1.2)

where C =
⋂∞

i=1 Ci, when C1, C2, ... are infinitely many closed convex subsets on H
such that

⋂∞
i=1 Ci 6= ∅, u ∈ H, µ ≥ 0 is a real number, A is a strongly positive bounded

linear operator on H and h is a potential function for γf (that is, h′(x) = γf(x) for all
x ∈ H). For more detailed accounts on optimization problems and related problems,
we refer to [1, 5, 19, 20].

Inspired by the recent research work going on in this interesting field, we will
introduce a general iterative method for finding a solution of the problem (1.2) to
the set of common element of the set of solutions for the problem (1.1) and the set
of fixed points of an finite family of nonexpansive mappings. Under some suitable
conditions, strong convergence theorems are established in the framework of Hilbert
space. The results obtained in this paper can be viewed as an important extension of
the previously known results.

2. Preliminaries

Now we give some the basic definitions.

Definition 2.1. A mapping T : C → C is said to be nonexpansive mapping if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

If T is a mapping, we denote the set of fixed points of T by F (T ), that is, F (T ) =
{x ∈ C : Tx = x}.
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Definition 2.2. A mapping f : C → C is called contractive if there exists a constant
α ∈ (0, 1) such that

‖fx− fy‖ ≤ α‖x− y‖, ∀x, y ∈ C.

Definition 2.3. A bounded linear operator A on a Hilbert space H is said to be
strongly positive if there exists a constant γ > 0 such that

〈Ax, x〉 ≥ γ‖x‖2 ∀x, y ∈ H.

In order to proof our main result, we also need the following concepts.

2.1. W - mapping. Let T1, T2, ... be infinite mappings of C into itself. In this paper,
we consider the mapping Wn defined by

Un,n+1 = I,

Un,n = λnTnUn,n+1 + (1− λn)I,

Un,n−1 = λn−1Tn−1Un,n + (1− λn−1)I,

...

Un,k = λkTkUn,k+1 + (1− λk)I,

Un,k−1 = λk−1Tk−1Un,k + (1− λk−1)I,

...

Un,2 = λ2T2Un,3 + (1− λ2)I,

Wn = Un,1 = λ1T1Un,2 + (1− λ1)I, (2.1)

where λ1, λ2, · · · be real numbers such that 0 ≤ λi ≤ 1 for every i ∈N. Note that, the
mapping Wn is a nonexpansive mapping provided T1, T2, ... are infinite family of non-
expansive mappings. Moreover, we have the following lemmas, which are important
tools for proving our main results.

Lemma 2.4. [14] Let C be a nonempty closed convex subset of a strictly convex
Banach space E. Let T1, T2, · · · be nonexpansive mappings of C into itself such that⋂∞

n=1 F (Tn) 6= ∅ and λ1, λ2, · · · be real numbers such that 0 < λn ≤ b < 1 for any
n ≥ 1. Then, for every x ∈ C and k ∈ N, the limit limn→∞ Un,kx exists.

Using Lemma 2.4, one can define the mapping W of C into itself as follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x, ∀x ∈ C. (2.2)

Such a mapping W is called the W -mapping generated by T1, T2, . . . and λ1, λ2, . . . .

Based on Lemma 2.4, throughout this paper, we will assume that 0 < λn ≤ b < 1 for
each n ≥ 1 for some b ∈ R.

Lemma 2.5. [14] Let C be a nonempty closed convex subset of a strictly convex
Banach space E. Let T1, T2, · · · be non-expansive mappings of C into itself such that⋂∞

n=1 F (Tn) 6= ∅. Then F (W ) =
⋂∞

n=1 F (Tn).
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Lemma 2.6. ([6]) Let C be a nonempty closed convex subset of a Hilbert space H,
{Ti : C → C} be a family of infinitely non-expansive mappings with

⋂∞
i=1 F (Ti) 6= ∅.

If K is any bounded subset of C, then

lim
n→∞

sup
x∈K

‖Wx−Wnx‖ = 0.

2.2. Auxiliary generalized equilibrium problem and the hybrid iterative
scheme. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
ϕ : C → R be a real-valued function, Q : H → H a mapping and Φ : H×C ×C → R
be an equilibrium-like function. Let r be a positive number. For a given point x ∈ H,
we consider the problem of finding y ∈ C such that

Φ(Qx, y, z) + ϕ(z)− ϕ(y) +
1
r
〈y − x, z − y〉 ≥ 0 ∀z ∈ C,

which is known as the auxiliary generalized equilibrium problem. Related to such a
problem, for each r > 0, we consider a mapping S(r) : H → C which is defined by

x 7→ {y ∈ C : Φ(Qx, y, z) + ϕ(z)− ϕ(y) +
1
r
〈y − x, z − y〉 ≥ 0, ∀z ∈ C}. (2.3)

Now let ϕ1, ϕ2 : C → R be real-valued functions, Q1, Q2 : H → H be nonlinear
mappings and Φ1,Φ2 : H×C ×C → R be equilibrium-like functions. For each r > 0,
let S

(r)
1 and S

(r)
2 be denoted for mappings defined as (2.3) generated by Φ1, Q1, ϕ1

and Φ2, Q2, ϕ2, respectively. We will assume the following condition:

Condition (∆):

(a) S
(r)
i is a single-valued mapping, for each i = 1, 2;

(b) for each i = 1, 2, the mapping S
(r)
i is firmly nonexpansive (that is, for any

u, v ∈ H, ‖S(r)
i (u)− S

(r)
i (v)‖ ≤ 〈S(r)

i (u)− S
(r)
i (v), u− v〉);

(c) F (S(r)
i ) = GEP (C,Φi, Qi, ϕi), for each i = 1, 2.

Assuming that the Condition (∆) is satisfied, we can introduce the following hybrid
algorithm:

Algorithm (I). Let µ > 0, γ > 0, r > 0 be three constants. Let f be a contraction
of H into itself and let A be a strongly positive bounded linear operator on H. For
given u, x0 ∈ H, we define the sequence {xn} by8><

>:
un = S

(r)
1 (xn), vn = S

(r)
2 (xn)

yn = δun + (1− δ)vn

xn+1 = αn(u + γf(xn)) + βnxn + ((1− βn)I − αn(I + µA)) Wnyn,

(2.4)

where δ ∈ (0, 1) and {αn}, {βn} are real sequences in [0, 1] and Wn is the W -mapping
defined by (2.1). Of course, we will use the Algorithm (I) to obtain our main results
in this paper. To do this, we also need the following lemmas.

Lemma 2.7. [20] Let C be a nonempty closed convex subset of a real Hilbert space
H. If x∗ is a solution to the optimization problem (1.2) then

〈u + (γf − (I + µA))x∗, x− x∗〉 ≤ 0,
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for all x ∈ C.

Lemma 2.8. [11] Each Hilbert space H satisfies Opial’s condition, i.e., for any se-
quence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖,

hold for any y ∈ H such that y 6= x.

Lemma 2.9. [3] Let E be a uniformly convex Banach space, C be a nonempty closed
convex subset of E and S : C → C be a non-expansive mapping. Then I − S is
demi-closed at zero.

Lemma 2.10. [4] Let C be a closed convex subset of a strictly convex Banach space E.
Let {Tn : n ∈ N} be a family of non-expansive mappings on C with

⋂∞
n=1 F (Tn) 6= ∅.

Let {λn} be a sequence of positive numbers with
∑∞

n=1 λn = 1. Then a mapping S on
C defined by

Sx =
∞∑

n=1

λnTnx

for all x ∈ C is well defined, non-expansive and F (S) =
⋂∞

n=1 F (Tn).

Lemma 2.11. [15] Let {xn} and {ln} be bounded sequences in a Banach space E and
bn be a sequence in [0, 1] with

0 < lim inf
n→∞

bn ≤ lim sup
n→∞

bn < 1.

Suppose that xn+1 = (1− bn)ln + bnxn for all n ≥ 1 and

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖ln − xn‖ = 0.

Lemma 2.12. [18] Assume that {θn} is a sequence of nonnegative real numbers such
that

θn+1 ≤ (1− an)θn + δn, ∀n ≥ 1,

where {an} is a sequence in (0, 1) and {δn} is a sequence such that
(i)

∑∞
n=1 an = ∞;

(ii) lim sup
n→∞

δn

an
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ θn = 0.

3. main results

Now we are in position to prove our main results.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Let f be a contraction of H into itself with coefficient α ∈ (0, 1) and let A be a strongly
positive bounded linear operator on H with coefficient γ > 0. Let T1, T2, . . . be an
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infinite family of nonexpansive mappings of C into itself. Let ϕ1, ϕ2 : C → R be real-
valued functions, Q1, Q2 : H → H be nonlinear mappings and Φ1,Φ2 : H×C×C → R
be equilibrium-like functions. Assume that the Condition (∆) is satisfied and

Ω =
∞⋂

i=1

(F (Ti) ∩GEP (C,Φ1, Q1, ϕ1) ∩GEP (C,Φ2, Q2, ϕ2)) 6= ∅.

Let u ∈ H be fixed, and {xn} be a sequence generated by Algorithm(I). If the following
control conditions are satisfied:

(i) 0 < γ < (1 + µ)γ/α;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1,

Then the sequence {xn} converges strongly to x∗ ∈ Ω which solve the optimization
problem (1.2).

Proof. Step 1. We show that {xn} is a bounded sequence.
Let p ∈ Ω. We see that

‖yn − p‖ = ‖δun + (1− δ)vn − p‖

= δ‖S(r)
1 xn − S

(r)
1 p‖+ (1− δ)‖S(r)

2 xn − S
(r)
2 p‖

≤ δ‖xn − p‖+ (1− δ)‖xn − p‖ = ‖xn − p‖.
(3.1)

On the other hand, since A is a linear bounded self-adjoint operator on H, then
‖A‖ = sup {|〈Au, u〉| : u ∈ H, ‖u‖ = 1} .

Now, without loss of generality we may assume that αn ≤ (1 − βn)(1 + µ‖A‖)−1.
Observe that

〈(1− βn)I − αn(I + µA)u, u〉 = 1− βn − αn − αnµ〈Au, u〉
≥ 1− βn − αn − αnµ‖A‖
≥ 0.

This means, (1− βn)I − αn(I + µA) is positive. It follows that

‖(1− βn)I − αn(I + µA)‖ = sup{〈((1− βn)I − αn(I + µA))u, u〉 : u ∈ H, ‖u‖ = 1}
= sup{1− βn − αn − αnµ〈Au, u〉 : u ∈ H, ‖u‖ = 1}
≤ 1− βn − αn − αnµγ.
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Set Ã = (I + µA). Thus, by (3.1), we have

‖xn+1 − p‖

= ‖αn(u + γf(xn)) + βnxn + [(1− βn)I − αn
eA]Wnyn − p‖

= ‖αnu + αn(γf(xn)− eAp) + βn(xn − p) + [(1− βn)I − αn
eA](Wnyn − p)‖

≤ (1− βn − αn − αnµγ)‖yn − p‖+ βn‖xn − p‖+ αn‖u‖+ αn‖γf(xn)− eAp‖

≤ (1− αn − αnµγ)‖xn − p‖+ αn‖u‖+ αnγ‖f(xn)− f(p)‖+ αn‖γf(p)− eAp‖

≤ (1− αn − αnµγ)‖xn − p‖+ αn‖u‖+ αnγα‖xn − p‖+ αn‖γf(p)− eAp‖

= [1− ((1 + µ)γ − γα)αn]‖xn − p‖+ ((1 + µ)γ − γα)αn
‖γf(p)− eAp‖+ ‖u‖

(1 + µ)γ − γα
. (3.2)

It follows from (3.2) and induction that

‖xn − p‖ ≤ max

{
‖x0 − p‖, ‖γf(p)− Ãp‖+ ‖u‖

(1 + µ)γ − γα

}
, ∀n ≥ 0.

Therefore, {xn} is bounded and {yn}, {Wnxn}, {Wnyn} and {f(xn)} are also
bounded.

Step 2. We show that ‖xn+1 − xn‖ → 0.
Define a sequence {zn} in H by zn = xn+1−βnxn

1−βn
for all n ≥ 0. Observe that, from

the definition of zn, we have

zn+1 − zn =
xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn

=
αn+1(u + γf(xn+1)) + ((1− βn+1)I − αn+1Ã)Wn+1yn+1

1− βn+1

− αn(u + γf(xn)) + ((1− βn)I − αnÃ)Wnyn

1− βn

=
αn+1

1− βn+1
(u + γf(xn+1))−

αn

1− βn
(u + γf(xn))

+ Wn+1yn+1 −Wnyn +
αn

1− βn
ÃWnyn −

αn+1

1− βn+1
ÃWn+1yn+1

=
αn+1

1− βn+1
[u + γf(xn+1)− ÃWn+1yn+1] +

αn

1− βn
[ÃWnyn − u− γf(xn)]

+ Wn+1yn+1 −Wn+1yn + Wn+1yn −Wnyn.
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It follows that

‖zn+1 − zn‖ − ‖xn+1 − xn‖

≤ αn+1

1− βn+1
(‖u‖+ ‖γf(xn+1)‖+ ‖ eAWn+1yn+1‖)

+
αn

1− βn
(‖u‖+ ‖ eAWnyn‖+ ‖γf(xn)‖) + ‖Wn+1yn+1 −Wn+1yn‖

+ ‖Wn+1yn −Wnyn‖ − ‖xn+1 − xn‖

≤ αn+1

1− βn+1
(‖u‖+ ‖γf(xn+1)‖+ ‖ eAWn+1yn+1‖)

+
αn

1− βn
(‖u‖+ ‖ eAWnyn‖+ ‖γf(xn)‖) + ‖Wn+1yn −Wnyn‖

+ ‖yn+1 − yn‖ − ‖xn+1 − xn‖. (3.3)

From (2.1), since Wn, Tn and Un,i are all nonexpansive mappings, we have

‖Wn+1yn −Wnyn‖ = ‖λ1T1Un+1,2yn − λ1T1Un,2yn‖
≤ λ1‖Un+1,2yn − Un,2yn‖
= λ1‖λ2T2Un+1,3yn − λ2T2Un,3yn‖
≤ λ1λ2‖Un+1,3yn − Un,3yn‖
≤ · · ·
≤ λ1λ2 · · ·λn‖Un+1,n+1yn − Un,n+1yn‖

≤ M

nY
i=1

λi, (3.4)

where M = supn{‖Un+1,n+1yn − Un,n+1yn‖}. Meanwhile, by the nonexpansiveness
of S

(r)
1 and S

(r)
2 , we get

‖yn+1 − yn‖ = ‖δun+1 + (1− δ)vn+1 − [δun + (1− δ)vn]‖
≤ δ‖un+1 − un‖+ (1− δ)‖vn+1 − vn‖

= δ‖S(r)
1 xn+1 − S

(r)
1 xn‖+ (1− δ)‖S(r)

2 xn+1 − S
(r)
2 xn‖

≤ δ‖xn+1 − xn‖+ (1− δ)‖xn+1 − xn‖
= ‖xn+1 − xn‖, (3.5)

Substituting (3.4) and (3.5) into (3.3), we obtain

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤
αn+1

1− βn+1
(‖u‖+ ‖γf(xn+1)‖+ ‖ eAWn+1yn+1‖)

+
αn

1− βn
(‖u‖+ ‖ eAWnyn‖+ ‖γf(xn)‖) + M

nY
i=1

λi,

which implies that lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. Hence, by Lemma
2.11, we have limn→∞ ‖zn − xn‖ = 0. Consequently, it follows that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖zn − xn‖ = 0. (3.6)

Step 3. We show ‖Wyn − yn‖ → 0 as n →∞.
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Note that, from (2.4), we have

‖xn −Wnyn‖ ≤‖xn − xn+1‖+ ‖xn+1 −Wnyn‖

≤‖xn − xn+1‖+ αn‖u + γf(xn)− eAWnyn‖+ βn‖xn −Wnyn‖,

that is,

‖xn −Wnyn‖ ≤
1

1− βn
‖xn − xn+1‖+

αn

1− βn
‖u + γf(xn)−AWnyn‖. (3.7)

It follows from the conditions (ii), (iii) and (3.6) that

lim
n→∞

‖xn −Wnyn‖ = 0. (3.8)

Since S
(r)
1 and S

(r)
2 are firmly nonexpansive mappings, we have

‖yn − p‖2 = ‖δun + (1− δ)vn − p‖2

= δ‖S(r)
1 xn − S

(r)
1 p‖2 + (1− δ)‖S(r)

2 xn − S
(r)
2 p‖2

≤ δ〈S(r)
1 xn − S

(r)
1 p, xn − p〉+ (1− δ)〈S(r)

2 xn − S
(r)
2 p, xn − p〉

≤ δ〈un − p, xn − p〉+ (1− δ)〈vn − p, xn − p〉
= 〈yn − p, xn − p〉

=
1

2
(‖yn − p‖2 + ‖xn − p‖2 − ‖xn − yn‖2),

that is, ‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2. Therefore, we have

‖xn+1 − p‖2

=‖αn(u + γf(xn)− eAp) + βn(xn −Wnyn) + (I − αn
eA)(Wnyn − p)‖2

≤‖(I − αn
eA)(Wnyn − p) + βn(xn −Wnyn)‖2 + 2αn〈u + γf(xn)− eAp, xn+1 − p〉

≤[‖(I − αn
eA)(Wyn − p)‖+ βn‖xn −Wnyn‖]2 + 2αn‖u + γf(xn)− eAp‖‖xn+1 − p‖

≤[(1− αn − αnµγ)‖yn − p‖+ βn‖xn −Wnyn‖]2 + 2αn‖γf(xn)− eAp‖‖xn+1 − p‖

=(1− αn − αnµγ)2‖yn − p‖2 + β2
n‖xn −Wnyn‖2

+ 2(1− αn − αnµγ)βn‖yn − p‖‖xn −Wnyn‖+ 2αn‖u + γf(xn)− eAp‖‖xn+1 − p‖

≤(1− αn − αnµγ)2{‖xn − p‖2 − ‖xn − yn‖2}+ 2(1− αn − αnµγ)βn‖yn − p‖‖xn −Wnyn‖

+ 2αn‖u + γf(xn)− eAp‖‖xn+1 − p‖+ β2
n‖xn −Wnyn‖2

=(1− 2αn(1 + µ)γ + αn(1 + µ)2γ2)‖xn − p‖2 − (1− αn(1 + µ)γ)2‖xn − yn‖2

+ β2
n‖xn −Wnyn‖2 + 2(1− αn − αnµγ)βn‖yn − p‖‖xn −Wnyn‖

+ 2αn‖u + γf(xn)− eAp‖‖xn+1 − p‖

≤‖xn − p‖2 + αn(1 + µ)2γ2‖xn − p‖2 + β2
n‖xn −Wnyn‖2 − (1− αn − αnµγ)2‖xn − yn‖2

+ 2(1− αn − αnµγ)βn‖yn − p‖‖xn −Wnyn‖+ 2αn‖u + γf(xn)− eAp‖‖xn+1 − p‖. (3.9)
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This implies that

(1− αn − αnµγ)2‖xn − yn‖2

≤‖xn − p‖2 − ‖xn+1 − p‖2 + αn(1 + µ)2γ2‖xn − p‖2 + β2
n‖xn −Wnyn‖2

+ 2αn‖u + γf(xn)− eAp‖‖xn+1 − p‖
+ 2(1− αn − αnµγ)βn‖yn − p‖‖xn −Wnyn‖

≤(‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖+ αn(1 + µ)2γ2‖xn − p‖2

+ β2
n‖xn −Wnyn‖2 + 2(1− αn − αnµγ)βn‖yn − p‖‖xn −Wnzn‖

+ 2αn‖u + γf(xn)− eAp‖‖xn+1 − p‖. (3.10)

Therefore, it follows from (3.8), (3.9) and (3.10) that

lim
n→∞

‖xn − yn‖ = 0. (3.11)

Since, ‖Wnyn − yn‖ ≤ ‖Wnyn − xn‖+ ‖xn − yn‖, it follows that

lim
n→∞

‖Wnyn − yn‖ = 0. (3.12)

Now, ‖Wyn − yn‖ ≤ ‖Wyn −Wnyn‖+ ‖Wnyn − yn‖. This together with Lemma 2.6,
we obtain

lim
n→∞

‖Wyn − yn‖ = 0. (3.13)

Step 4. We show lim sup
n→∞

〈(u + γf − [I + µA]x∗, xn − x∗〉 ≤ 0, where x∗ ∈ Ω is a

solution of the optimization problem (1.2).
Since {yn} is a bounded sequence, we can find a subsequence {ynj} of {yn} and

q ∈ H such that ynj → q weakly, and

lim
j→∞

〈(u+γf − [I +µA]x∗, ynj −x∗〉 = lim sup
n→∞

〈(u+γf − [I +µA]x∗, yn−x∗〉. (3.14)

Moreover, since {xn} is a bounded sequence and limn→∞ ‖xn − yn‖ = 0, we see that
the corresponding subsequence {xnj} of {xn} also converges weakly to q ∈ H.

Now, let us define a mapping D : H → H by

Dx = δS
(r)
1 x + (1− δ)S(r)

2 x, ∀x ∈ H.

From Lemma 2.10, we know that D is a nonexpansive mapping with

F (D) = F (S(r)
1 ) ∩ F (S(r)

2 ).

Observe that,
lim

j→∞
‖xnj

−Dxnj
‖ = 0. (3.15)

Indeed, it is easy to see that ‖ynj
−Dxnj

‖ = 0 for all j ∈ N and it follows that

‖xnj −Dxnj‖ ≤ ‖xnj − ynj‖+ ‖ynj −Dxnj‖ = ‖xnj − ynj‖,

and, by (3.11), we obtain (3.15). Consequently, thanks to Lemma 2.9, we have q ∈
F (D).
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Next, we show that q ∈ F (W ) =
⋂∞

i=1 F (Ti). Assume that q /∈ F (W ). From
Opial’s condition (Lemma 2.8), we have

lim inf
j→∞

‖ynj
− q‖ < lim inf

j→∞
‖yni

−Wq‖

≤ lim inf
j→∞

(‖ynj −Wynj‖+ ‖Wynj −Wq‖)

≤ lim inf
j→∞

(‖ynj
−Wynj

‖+ ‖ynj
− q‖). (3.16)

Thus, it follows from (3.13) that lim infi→∞ ‖yni − q‖ < lim infi→∞ ‖yni − q‖, which
is a contradiction, and so q ∈ F (W ) =

⋂∞
i=1 F (Ti). Hence, q ∈ Ω. Consequently, by

Lemma 2.7 and (3.14), we have

lim sup
n→∞

〈(u + [γf − (I + µA)]x∗, xn − x∗〉 = lim sup
n→∞

〈(u + [γf − (I + µA)]x∗, yn − x∗〉

= lim
j→∞

〈(u + [γf − (I + µA)]x∗, ynj − x∗〉

= 〈u + [γf − (I + µA)]x∗, q − x∗〉
≤ 0. (3.17)

Step 5. We prove {xn} converges strongly to x∗ ∈ Ω, where x∗ is a solution of the
optimization problem (1.2).

Consider,

‖xn+1 − x∗‖2 =‖αn(u + γf(xn)−Ax∗) + βn(xn − x∗) + ((1− βn)I − αn
eA)(Wnyn − x∗)‖2

≤‖βn(xn − x∗) + ((1− βn)I − αn
eA)(Wnyn − x∗)‖2

+ 2αn〈u + γf(xn)− eAx∗, xn+1 − x∗〉

≤[‖((1− βn)I − αn
eA)(Wnyn − x∗)‖+ ‖βn(xn − x∗)‖]2

+ 2αnγ〈f(xn)− f(x∗), xn+1 − x∗〉

+ 2αn〈u + γf(x∗)− eAx∗, xn+1 − x∗〉

≤[(1− βn − αn(1 + µ)γ)‖yn − x∗‖+ βn‖xn − x∗‖]2

+ 2αnγα‖xn − x∗‖‖xn+1 − x∗‖

+ 2αn〈u + γf(x∗)− eAx∗, xn+1 − x∗〉

≤(1− αn(1 + µ)γ)2‖xn − x∗‖2 + αnγα{‖xn − x∗‖2 + ‖xn+1 − x∗‖2}

+ 2αn〈u + γf(x∗)− eAx∗, xn+1 − x∗〉,

this means,

‖xn+1 − x∗‖2 ≤1− 2αn(1 + µ)γ + α2
n(1 + µ)2γ2 + αnγα

1− αnγα
‖xn − x∗‖2

+
2αn

1− αnγα
〈u + γf(x∗)− eAx∗, xn+1 − x∗〉

=

�
1− 2((1 + µ)γ − γα)αn

1− αnγα

�
‖xn − x∗‖2 +

((1 + µ)αnγ)2

1− αnγα
‖xn − x∗‖2

+
2αn

1− αnγα
〈γu + f(x∗)− eAx∗, xn+1 − x∗〉
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≤
�
1− 2((1 + µ)γ − γα)αn

1− αnγα

�
‖xn − x∗‖2 +

2((1 + µ)γ − γα)αn

1− αnγα

×
�

αn(1 + µ)γ2M

2((1 + µ)γ − γα)
+

1

(1 + µ)γ − γα
〈u + γf(x∗)− eAx∗, xn+1 − x∗〉

�
=(1− κn)‖xn − x∗‖2 + κnσn,

where

R = sup{‖xn − x∗‖2 : n ≥ 1}, κn =
2((1 + µ)γ − γα)αn

1− αnγα
,

σn =
αn(1 + µ)γ2R

2((1 + µ)γ − γα)
+

1
(1 + µ)γ − γα

〈u + γf(x∗)− Ãx∗, xn+1 − x∗〉.

It is easy to see that
∑∞

n=1 κn = ∞ and lim supn→∞ σn ≤ 0. Hence, by Lemma 2.12,
we conclude that the sequence {xn} converges strongly to x∗. This completes the
proof. �

On the other hand, as an applications of our main results, we consider the following
convex feasibility problem (CFP ):

find a point x ∈
N⋂

i=1

Ci,

where N ≥ 1 is an integer and each Ci is assumed to be the set of solutions of the
generalized equilibrium problem with the bi-function Φi for i = 1, 2, . . . , N. There is
a considerable investigation on CFP in the setting of Hilbert spaces which captures
applications in various disciplines such as image restoration ([7, 9]), computer tomog-
raphy ([13]) and radiation therapy treatment planning ([8]). In fact, using technique
as in Theorem 3.1, we can obtain the following result.

Theorem 3.2. Let C be a nonempty closed and convex subset of a Hilbert space H.
Let f : C → C be a contraction with the coefficient α ∈ (0, 1). Let ϕi : C → R be
real-valued function, Qi : C → H be nonlinear mapping and Φi : H× C × C → R be
an equilibrium-like function for each i = 1, 2, . . . , N . Assume that the Condition (∆)
is satisfied and

Ω =
N⋂

i=1

GEP (C,Φi, Qi, ϕi) 6= ∅.

Let {xn} be a sequence generated by the following algorithm:8>>>>>>>>>>>><
>>>>>>>>>>>>:

x1 ∈ C,

Φ1(Qxn, u(n,1), z) + ϕ(z)− ϕ(u(n,1)) + 1
r
〈u(n,1) − xn, z − u(n,1)〉 ≥ 0, ∀z ∈ C,

Φ2(Qxn, u(n,2), z) + ϕ(z)− ϕ(u(n,2)) + 1
r
〈u(n,2) − xn, z − u(n,2)〉 ≥ 0, ∀z ∈ C,

...

ΦN (Qxn, u(n,N), z) + ϕ(z)− ϕ(u(n,N)) + 1
r
〈u(n,N) − xn, z − u(n,N)〉 ≥ 0, ∀z ∈ C,

yn =
PN

i=1 δiu(n,i),

xn+1 = αnf(xn) + βnxn + (1− βn − αn)yn, ∀n ≥ 1,
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where r > 0 be fixed and δi ∈ (0, 1) for each i = 1, 2, . . . , N such that
∑N

i=1 δi = 1.
If {αn}, {βn} are sequences in (0, 1) satisfying the following control conditions:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} converge strongly to x∗ ∈ Ω.
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