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1. Introduction

Equilibrium problems (EPs) have recently been received a great amount of inves-
tigation. An equilibrium problem can be formulated as finding a point x∗ satisfying
the property [2, 3]:

x∗ ∈ C, G(x∗, y) ≥ 0, y ∈ C, (1.1)
where C is a nonempty closed convex subset of a real Hilbert space H with inner
product 〈·, ·〉 and norm ‖ · ‖, respectively, and G : C×C → R is a so-called bifunction
function.

The solution set of EP (1.1) is denoted as EP(G); namely,

EP(G) := {x ∈ C : G(x, y) ≥ 0 ∀y ∈ C}. (1.2)

To solve EP (1.1), the following conditions on the bifunction G are assumed in
literature:
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(A1) G(x, x) = 0 for all x ∈ C;
(A2) G is monotone, i.e., G(x, y) + G(y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y, z ∈ C, lim

t→0
G(tz + (1− t)x, y) ≤ G(x, y);

(A4) for each x ∈ C, y 7→ G(x, y) is convex and lower semicontinuous.

On the other hand, fixed point problems (FPPs) [11] have widely been investigated.
A fixed point problem is formulating as finding a point x̂ with the property:

T x̂ = x̂, (1.3)

where T : C → C is a (nonlinear) mapping. The solution set of (1.3) (or fixed point set
of T ) is denoted as Fix(T ). Of course, to solve FPP (1.3), the (possibly noncompact)
operator T is assumed to be nonexpansive:

‖Tx− Ty‖ ≤ ‖x− y‖, x, y ∈ C.

Recently, iterative methods have been developed to find a common solution of EPs
and FPPs; namely, find an x∗ with the property:

x∗ ∈

 N⋂
j=1

EP (Gj)

⋂(
M⋂
l=1

Fix(Tl)

)
, (1.4)

where N,M ≥ 1 are integers, and where {Gj}N
j=1 and {Tl}M

l=1 are bifunctions and
nonexpansive mappings on C, respectively. For the sake of simplicity, we will consider
in this paper the case of a single nonexpansive (i.e., M = 1); namely, the problem of
finding an x∗ with the property:

x∗ ∈

 N⋂
j=1

EP (Gj)

 ∩ Fix(W ), (1.5)

where W is a nonexpansive mapping on C.
One of the key tools to iteratively study problem (1.5) (or the more complicated

(1.4)) is Combettes and Hirstoaga’s ([9]) firmly nonexpansive mapping Sr associating
with a bifunction G (see Lemma 2.2 in the next section). This enables that several
implicit or explicit iterative methods have been invented for solving (1.4) and (1.5).
For instance, Colao et al. [8] introduced an implicit method that generates a sequence
{xn} via the implicit relation:

xn = αnf(xn) + (1− αn)WS1
r1,n

S2
r2,n

· · ·SN
rN,n

xn, (1.6)

where f : C → C is a contraction, {αn} is a sequence in the interval (0, 1), and for
each 1 ≤ j ≤ N , {rj,n}∞n=1 is a sequence of positive real numbers, and Sj

rj,n
is the

firmly nonexpansive mapping associating with the bifunction Gj .
It is the purpose of this paper to extend the implicit method (1.6) to an explicit

one. Namely, we want to study the asymptotic behavior of the sequence {xn} which,
starting with an initial guess x0 ∈ C, is generated by the explicit iterative algorithm:

xn+1 = αnf(xn) + (1− αn)WS1
r1,n

S2
r2,n

· · ·SN
rN,n

xn. (1.7)
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Under certain conditions on the sequences {αn} and {rj,n}, we will prove that the
sequence {xn} converges in norm to the unique solution x∗ of some variational in-
equality (to be specified in Theorem 3.5).

For some recent developments on this topic, the reader can consult with the articles
[19, 13, 14, 18, 17, 20, 5, 6, 7, 24] and the references therein. Also, we notice that
iterative methods for nonexpansive mappings have extensively been investigated, see
[21, 22, 16], the recent articles [1, 4, 10, 12, 23], and the recent survey [15].

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Let G :
C × C → R be a bifunction satisfying properties (A1)-(A4) listed in section one.

The following two lemmas are pertinent.

Lemma 2.1. (Blum and Oettli [3].) Let r > 0 and x ∈ H. Then, there exists z ∈ C
such that

G(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Lemma 2.2. (Combettes and Hirstoaga [9].) Given r > 0. Define a mapping Sr :
H → C by

Sr(x) =
{

z ∈ C : G(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
, x ∈ H. (2.1)

Then the following hold:
(a) Sr is single-valued;
(b) Sr is firmly nonexpansive, i.e., ‖Srx − Sry‖2 ≤ 〈Srx − Sry, x − y〉 for any

x, y ∈ H;
(c) F (Sr) = EP (G);
(d) EP (G) is closed and convex.

Lemma 2.2 makes it possible to use nonexpansive mappings to iteratively approx-
imate solutions of equilibrium problems.

We need the so-called demiclosedness principle for nonexpansive mappings. Recall
that a mapping T : C → H is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all
x, y ∈ C.

Lemma 2.3. (cf. [11]) Let C be a nonempty closed convex subset of a real Hilbert
space and let T : C → H be a nonexpansive mapping. Let {xn} be a sequence in
C. Then the conditions that xn → x weakly and xn − Txn → 0 strongly imply that
x = Tx.

The following lemma, though elementary, is helpful in proving strong convergence
of sequences even in infinite-dimensional spaces.

Lemma 2.4. (cf. [22, 16]) Assume that {αn} is a sequence of nonnegative real
numbers such that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
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(i)
∑∞

n=1 γn = ∞;
(ii) either lim sup

n→∞
δn/γn ≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ αn = 0.

3. An Explicit Iterative Method

Suppose that N ≥ 1 is a positive integer and {G1, G2, · · · , GN} are bifunctions
from C × C into R, each of which satisfies properties (A1) − (A4). Suppose, in
addition, that W : C → C is a nonexpansive mapping with nonempty fixed point
set Fix(W ). Our problem is to solve a system of equilibrium problems coupled with
fixed point problems. More precisely, we want to find a point x∗ with the property:

x∗ ∈

 m⋂
j=1

EP(Gj)

 ∩ Fix(W ) =: F (3.1)

upon assuming the existence of such a solution (i.e., assuming F 6= ∅).
We observe that to each Gj , we have a firmly nonexpansive mapping Sj

r which is
defined via (2.1) in Lemma 2.2. To define our iterative method, we need to take an
α-contraction f : C → C, an initial guess x0 ∈ C, an infinite sequence {αn}∞n=0 in
the interval [0, 1], and, for each fixed integer n ≥ 1, a finite sequence {rj,n}N

j=1 of
positive real numbers. Assume xn has been constructed, then the next iterate xn+1

is generated by the algorithm

xn+1 = αnf(xn) + (1− αn)WS1
r1,n

S2
r2,n

· · ·SN
rN,n

xn. (3.2)

To discuss the convergence of Algorithm (3.2), we first establish several lemmas
regarding the firmly nonexpansive mapping Sr given by (2.1) in Lemma 2.2 and the
sequence {xn} generated by (3.2).

Lemma 3.1. Let G : C × C → R be a bifunction satisfying properties (A1) − (A4)
and let Sr be its associating firmly nonexpansive mapping given by (2.1) in Lemma
2.2. Then for x ∈ H and r, r′ > 0, we have

‖Sr′x− Srx‖ ≤
|r − r′|

r
‖x− Srx‖. (3.3)

Proof. Set u = Srx and v = Sr′x. Then, by (2.1), we have

G(u, v) +
1
r
〈v − u, u− x〉 ≥ 0 and G(v, u) +

1
r′
〈u− v, v − x〉 ≥ 0.

Adding up these inequalities and noting that G(u, v) + G(v, u) ≤ 0, we obtain

〈v − u,
1
r
(u− x) +

1
r′

(x− v)〉 ≥ 0.

This yields

‖v − u‖2 ≤
(

1− r′

r

)
〈u− x, v − u〉

which in turns implies

‖v − u‖ ≤
∣∣∣∣1− r′

r

∣∣∣∣ ‖u− x‖.
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This is (3.3). �

In the rest of the paper, we always assume F 6= ∅, and by {xn} we always mean
the sequence generated by Algorithm (3.2). Moreover, we set

Sn = S1
r1,n

S2
r2,n

· · ·SN
rN,n

. (3.4)

Thus, Algorithm (3.2) can equivalently be rewritten as

xn+1 = αnf(xn) + (1− αn)WSnxn. (3.5)

Lemma 3.2. We have that {xn} is bounded. Consequently, the sequences {f(xn)},
{Snxn}, {Wxn} and {WSnxn} are all bounded.

Proof. Take p ∈ F to derive from (3.5) that

‖xn+1 − p‖ = ‖αn(f(xn)− p) + (1− αn)(WSnxn − p)‖
≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖+ (1− αn)‖WSnxn − p‖
≤ αnα‖xn − p‖+ αn‖f(p)− p‖+ (1− αn)‖xn − p‖
= [1− (1− α)αn]‖xn − p‖+ αn‖f(p)− p‖

≤ max
{
‖xn − p‖, 1

1− α
‖f(p)− p‖

}
.

It turns out by induction that

‖xn − p‖ ≤ max
{
‖x0 − p‖, 1

1− α
‖f(p)− p‖

}
, ∀n ≥ 0.

This implies that {xn} is bounded. �

In what follows, we always assume the following conditions for the sequences {αn}
and {rj,n} which define Algorithm (3.2):

(C1) limn→∞ αn = 0;
(C2)

∑∞
n=1 αn = ∞;

(C3)
∑∞

n=1 |αn − αn+1| < ∞ and
∑∞

n=1 |ri,n+1 − ri,n| < ∞ for 1 ≤ j ≤ N ;
(C4) limn→∞ rj,n = rj > 0 for 1 ≤ j ≤ N .

Lemma 3.3. We have that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.6)

Proof. To prove (3.6), we need to estimate ‖Sn+1xn+1−Snxn‖. Towards this, we set,
for each 1 ≤ j ≤ N ,

yj
n+1 := Sj

rj,n+1
· · ·SN

rN,n+1
xn+1 and yj

n := Sj
rj,n

· · ·SN
rN,n

xn.

Due to boundedness, we can find a constant L > 0 big enough so that

L ≥ ‖xn+1 − Sj
rj,n+1

xn+1‖ for all 1 ≤ j ≤ N and n ≥ 0.
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Then, by definition of Si for i ≥ 1 and by Lemma 3.1, we get

‖Sn+1xn+1 − Snxn‖ = ‖S1
r1,n+1

y2
n+1 − S1

r1,n
y2

n‖

≤ ‖S1
r1,n+1

y2
n+1 − S1

r1,n
y2

n+1‖

+ ‖S1
r1,n

y2
n+1 − S1

r1,n
y2

n‖

≤ |r1,n+1 − r1,n|
r1,n

‖y2
n+1 − S1

r1,n
‖+ ‖y2

n+1 − y2
n‖

≤ L|r1,n+1 − r1,n|
r1,n

+ ‖y2
n+1 − y2

n‖. (3.7)

Similarly, we have

‖y2
n+1 − y2

n‖ = ‖S2
r2,n+1

y3
n+1 − S1

r2,n
y3

n‖

≤ ‖S2
r2,n+1

y3
n+1 − S2

r2,n
y3

n+1‖

+ ‖S2
r2,n

y3
n+1 − S1

r2,n
y3

n‖

≤ |r2,n+1 − r2,n|
r2,n

‖y3
n+1 − S2

r2,n
‖+ ‖y3

n+1 − y3
n‖

≤ L|r2,n+1 − r2,n|
r2,n

+ ‖y3
n+1 − y3

n‖. (3.8)

Continue this way and observe

‖yN
n+1 − yN

n ‖ = ‖SN
rN,n+1

xn+1 − SN
rN,n

xn‖

≤ ‖SN
rN,n+1

xn+1 − SN
rN,n

xn+1‖+ ‖SN
rN,n

xn+1 − SN
rN,n

xn‖

≤ |rN,n+1 − rN,n|
rN,n

‖xn+1 − SN
rN,n

xn+1‖+ ‖xn+1 − xn‖

≤ L|rN,n+1 − rN,n|
rN,n

+ ‖xn+1 − xn‖. (3.9)

Substituting (3.8)-(3.9) into (3.7) gives us that

‖Sn+1xn+1 − Snxn‖ ≤ L
N∑

j=1

|rj,n+1 − rj,n|
rj,n

+ ‖xn+1 − xn‖. (3.10)

By virtue of Condition (C4), we have r > 0 such that rj,n ≥ r for all j and n. Also,
we may assume that L is big enough so that

L ≥ ‖WSnxn‖+ ‖f(xn)‖ for all n.
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We then infer that

‖xn+2 − xn+1‖ = ‖αn+1f(xn+1) + (1− αn+1)WSn+1xn+1

− αnf(xn)− (1− αn)WSnxn‖
≤ ‖(1− αn+1)(WSn+1xn+1 −WSnxn) + (αn − αn+1)WSnxn‖

+ [αn+1(f(xn+1)− f(xn)) + (αn+1 − αn)f(xn)]

≤ (1− αn+1)‖Sn+1xn+1 − Snxn‖+ αn+1α‖xn+1 − xn‖
+ |αn − αn+1|‖WSnxn − f(xn)‖

≤ [1− (1− α)αn+1]‖xn+1 − xn‖+ L
N∑

i=1

|ri,n+1 − ri,n|
ri,n

+ |αn − αn+1|(‖WSnxn‖+ ‖f(xn)‖)
≤ [1− (1− α)αn+1]‖xn+1 − xn‖

+ L

(
1
r

N∑
i=1

|ri,n+1 − ri,n|+ |αn − αn+1|

)
. (3.11)

Conditions (C1)-(C3) allow us to apply Lemma 2.4 to (3.11) to obtain (3.3). �

Lemma 3.4. We have
(i) For each 1 ≤ j ≤ N ,

lim
n→∞

‖xn − Sj
rj,n

xn‖ = 0. (3.12)

(ii) For each 1 ≤ j ≤ N and with rj = limn→∞ rj,n,

lim
n→∞

‖xn − Sj
rj

xn‖ = 0. (3.13)

(iii) limn→∞ ‖xn −Wxn‖ = 0.

Proof. (i) Since Sj
rj,n

is firmly nonexpansive, we deduce that, for each p ∈ F ,

‖xn − Sj
rj,n

xn‖2 = ‖(xn − p)− (Sj
rj,n

xn − p)‖2

= ‖xn − p‖2 + ‖Sj
rj,n

xn − p‖2 − 2〈xn − p, Sj
rj,n

xn − p〉

≤ ‖xn − p‖2 + ‖Sj
rj,n

xn − p‖2 − 2‖Sj
rj,n

xn − p‖2

= ‖xn − p‖2 − ‖Sj
rj,n

xn − p‖2. (3.14)

We now use backward induction to prove (3.12); thus, we first prove that (3.12)
holds for j = N . To see this, we compute

‖xn+1 − p‖2 = ‖αnf(xn) + (1− αn)WS1
r1,n

S2
r2,n

· · ·SN
rN,n

xn − p‖2

≤ αn‖f(xn)− p‖2 + (1− αn)‖WS1
r1,n

S2
r2,n

· · ·SN
rN,n

xn − p‖2 (3.15)

≤ ‖SN
rN,n

xn − p‖2 + θαn, (3.16)

where θ is a constant such that θ ≥ supn≥0 ‖f(xn)− p‖2.
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Combining (3.14) and (3.16) (with j = N), and using Lemma 3.3, we get

‖xn − SN
rN,n

xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + θαn → 0 (as n →∞).

This proves (3.12) for j = N .
Assume now that (3.12) holds true for every j = l + 1, · · · , N . We next prove that

(3.12) remains true for j = l. To see this, we use (3.15) to get

‖xn+1 − p‖2 ≤ ‖Sl
rl,n

· · ·SN
rN,n

xn − p‖2 + θαn. (3.17)

However, we also have

‖Sl
rl,n

· · ·SN
rN,n

xn − p‖ ≤ ‖Sl
rl,n

· · ·SN
rN,n

xn − Sl
rl,n

xn‖+ ‖Sl
rl,n

xn − p‖

≤ ‖Sl+1
rl+1,n

· · ·SN
rN,n

xn − xn‖+ ‖Sl
rl,n

xn − p‖

≤ ‖Sl+1
rl+1,n

· · ·SN
rN,n

xn − Sl+1
rl+1,n

xn‖

+ ‖Sl+1
rl+1,n

xn − xn‖+ ‖Sl
rl,n

xn − p‖

≤ ‖Sl+2
rl+2,n

· · ·SN
rN,n

xn − xn‖

+ ‖Sl+1
rl+1,n

xn − xn‖+ ‖Sl
rl,n

xn − p‖
...

≤
N∑

j=l+1

‖Sj
rj,n

xn − xn‖+ ‖Sl
rl,n

xn − p‖. (3.18)

Note that, by the induction assumption, we have

σn :=
N∑

j=l+1

‖Sj
rj,n

xn − xn‖ → 0 as n →∞.

Consequently, we obtain from (3.18)

‖Sl
rl,n

· · ·SN
rN,n

xn − p‖2 ≤ ‖Sl
rl,n

xn − p‖2 + σnδ, (3.19)

where δ is a constant such that δ ≥ supn≥0(σn + 2‖Sl
rl,n

xn − p‖). Now combining
(3.14), (3.17) and (3.19), and using Lemma 3.3, we get

‖xn − Sl
rl,n

xn‖2 ≤ ‖xn − p‖2 − ‖Sl
rl,n

xn − p‖2

= ‖xn − p‖2 − ‖xn+1 − p‖2

+ ‖xn+1 − p‖2 − ‖Sl
rl,n

· · ·SN
rN,n

xn − p‖2

+ ‖Sl
rl,n

· · ·SN
rN,n

xn − p‖2 − ‖Sl
rl,n

xn − p‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + θαn + δσn → 0.

This completes the induction and hence we conclude that (3.12) is valid for all 1 ≤
j ≤ N .
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(ii) By Lemma 3.1, the fact that rj,n → rj > 0 (as n → ∞) and the boundedness
of {xn}, we get, for each 1 ≤ j ≤ N ,

‖Sj
rj,n

xn − Sj
rj

xn‖ ≤
|rj,n − rj |

rj
‖xn − Sj

rj
xn‖ → 0 (as n →∞).

This together with (3.12) implies (3.13).
(iii) It suffices to prove that ‖xn+1−Wxn‖ → 0 since ‖xn+1−xn‖ → 0 by Lemma

3.6. We have via (3.5) and with L1 a constant such that L1 ≥ ‖f(xn)‖+ ‖Wxn‖ for
all n,

‖xn+1 −Wxn‖ ≤ αn‖f(xn)−Wxn‖+ (1− αn)‖WSnxn −Wxn‖
≤ αnL1 + ‖Snxn − xn‖ (3.20)

However, by repeatedly using the triangle inequality and (3.12), it is easily found that

‖Snxn − xn‖ ≤
N∑

j=1

‖Sj
rj,n

xn − xn‖ → 0 (as n →∞).

Consequently, it follows from (3.20) that ‖xn+1 −Wxn‖ → 0 as required. �

We are now in a position to state and prove the main result of this paper.

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H,
let {Gj}N

j=1 be a family of N bifunctions from C × C into R, each of which satisfies
properties (A1)-(A4), and let W : C → C be a nonexpansive mapping. Assume
the common solution set F as defined in (3.1) is nonempty. Let f : C → C be
an α-contraction. Moreover, assume that the sequences {αn} and {rj,n}N

j=1 satisfy
conditions (C1)-(C4). Then the sequence {xn} generated by Algorithm (3.2) converges
in norm to the unique solution x∗ of the variational inequality (VI):

x∗ ∈ F, 〈(I − f)x∗, x− x∗〉 ≥ 0, x ∈ F. (3.21)

Alternatively, x∗ is the unique fixed point of the contraction PF f (i.e., x∗ = (PF f)x∗).

Proof. Let x∗ be the unique fixed point of the contraction PF f ; hence the unique
solution of VI (3.21). To prove that xn → x∗ in norm, we estimate the distance from
xn+1 to x∗ in the following way (in the first inequality, we use the trivial inequality
‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉 for all u, v ∈ H):

‖xn+1 − x∗‖2 = ‖(1− αn)(WSnxn − x∗) + αn(f(xn)− x∗)‖2

≤ ‖(1− αn)(WSnxn − x∗)‖2 + 2αn〈f(xn)− x∗, xn+1 − x∗〉
≤ (1− αn)2‖xn − x∗‖2 + 2αn〈f(xn)− f(x∗), xn+1 − x∗〉

+ 2αn〈f(x∗)− x∗, xn+1 − x∗〉
≤ (1− αn)2‖xn − x∗‖2 + 2αnα‖xn − x∗‖‖xn+1 − x∗‖

+ 2αn〈f(x∗)− x∗, xn+1 − x∗〉
≤ (1− αn)2‖xn − x∗‖2 + αnα(‖xn − x∗‖2 + ‖xn+1 − x∗‖2)

+ 2αn〈f(x∗)− x∗, xn+1 − x∗〉.
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It turns out that

‖xn+1 − x∗‖2 ≤ (1− αn)2 + αnα

1− αnα
‖xn − x∗‖2

+
2αn

1− αnα
〈f(x∗)− x∗, xn+1 − x∗〉

=
(

1− 2(1− α)αn

1− ααn

)
‖xn − x∗‖2 +

α2
n

1− αnα
‖xn − x∗‖2

+
2αn

1− αnα
〈f(x∗)− x∗, xn+1 − x∗〉

= (1− βn)‖xn − x∗‖2 + βnγn, (3.22)

where

βn =
2(1− α)αn

1− ααn
= O(αn) (as n →∞)

and
γn =

1
2(1− α)

(
αn‖xn − x∗‖2 + 2〈f(x∗)− x∗, xn+1 − x∗〉

)
.

By conditions (C1)-(C3), we easily find that

lim
n→∞

βn = 0 and
∞∑

n=1

βn = ∞. (3.23)

Thus, in order to apply Lemma 2.4, it remains for us to prove that lim supn→∞ γn ≤ 0;
equivalently,

lim sup
n→∞

〈f(x∗)− x∗, xn − x∗〉 ≤ 0. (3.24)

To see (3.24), we take a subsequence {xn′} of {xn} in such a way that

lim sup
n→∞

〈f(x∗)− x∗, xn − x∗〉 = lim
n′→∞

〈f(x∗)− x∗, xn′ − x∗〉.

Due to boundedness, we may further assume, with no loss of generality, that xn′ → x̂
weakly. The demiclosedness principle (Lemma 2.3) together with Lemma 3.4(ii)-(iii)
ensures that, for every 1 ≤ j ≤ N , x̂ ∈ Fix(W ) ∩ Fix(Sj

rj
); hence, x̂ ∈ F . We

therefore arrive at

lim sup
n→∞

〈f(x∗)− x∗, xn − x∗〉 = 〈f(x∗)− x∗, x̂− x∗〉 ≤ 0

due to VI (3.21).
Finally, by virtue of (3.23) and (3.24), we can apply Lemma 2.4 to the relation

(3.22) to conclude that ‖xn − x∗‖ → 0 as n →∞. �

The case of N = 1 recovers a result of [20].

Corollary 3.6. (Theorem 3.2 of [20]) Let C be a nonempty closed convex subset of
H, G : C×C → R a bifunction satisfying (A1)-(A4), and W : C → C a nonexpansive
mapping such that EP (G) ∩ Fix(W ) 6= ∅. Moreover, let f : C → C be a contraction.
Let {xn} be generated by the iterative algorithm (with initial guess x0 ∈ H):

xn+1 = αnf(xn) + (1− αn)WSrnxn,
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where {αn} ⊂ (0, 1) and {rn} ⊂ (0,∞) satisfy the conditions:
(C1) lim

n→∞
αn = 0 and

∑∞
n=1 αn = ∞;

(C2)
∑∞

n=1 |αn − αn+1| < ∞ and
∑∞

n=1 |rn+1 − rn| < ∞;
(C3) lim inf

n→∞
rn > 0.

Then {xn} converges in norm to the unique fixed point of the contraction
PEP (G)∩Fix(W )f .

Acknowledgement. The first author was supported in part by the National Science
Foundation of China under Grant no. 10771050. The third author was supported in
part by NSC 97-2628-M-110-003-MY3 (Taiwan).

References

[1] A. Aleyner, S. Reich, Approximating common fixed points of nonexpansive mappings in Banach

spaces, Fixed Point Theory, 10(2009), No. 1, 3-17.

[2] M. Bianchi, S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim.
Theory Appl., 90(1996), 31-43.

[3] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems,
Math. Student, 63(1994), 123-145.
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