AN EXPLICIT ITERATIVE METHOD FOR FINDING A COMMON SOLUTION OF EQUILIBRIUM AND FIXED POINT PROBLEMS

RUDONG CHEN*, QINWEI FAN* AND HONG-KUN XU**, \dagger
Dedicated to Wataru Takahashi on the occasion of his retirement
*Department of Mathematics, Tianjin Polytechnic University
Tianjin 300160, China
E-mails: tjcrd@yahoo.com.cn; fanqinwei2008@yahoo.com.cn
**Department of Applied Mathematics, National Sun Yat-sen University
Kaohsiung 80424, Taiwan
and
Department of Mathematics, College of Science King Saud University, Riyadh 11451, Saudi Arabia
E-mail: xuhk@math.nsysu.edu.tw

Abstract

We provide an iterative method for finding a common solution of a finite family of equilibrium problems and of a fixed point problem, and prove its strong convergence. Our method extends an implicit method of Colao, et al. (Nonlinear Anal. 71 (2009), no. 7-8, 2708-2715) to an explicit method (in the case of a single nonexpansive mapping). Key Words and Phrases: Equilibrium problem, fixed point, iterative method, nonexpansive mapping, projection, variational inequality. 2010 Mathematics Subject Classification: 47H09, 47H10, 47J20, 49J30.

1. Introduction

Equilibrium problems (EPs) have recently been received a great amount of investigation. An equilibrium problem can be formulated as finding a point x^{*} satisfying the property $[2,3]$:

$$
\begin{equation*}
x^{*} \in C, \quad G\left(x^{*}, y\right) \geq 0, \quad y \in C \tag{1.1}
\end{equation*}
$$

where C is a nonempty closed convex subset of a real Hilbert space H with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, respectively, and $G: C \times C \rightarrow \mathbb{R}$ is a so-called bifunction function.

The solution set of $\mathrm{EP}(1.1)$ is denoted as $\operatorname{EP}(G)$; namely,

$$
\begin{equation*}
\operatorname{EP}(G):=\{x \in C: G(x, y) \geq 0 \forall y \in C\} \tag{1.2}
\end{equation*}
$$

To solve EP (1.1), the following conditions on the bifunction G are assumed in literature:

[^0]$\left(A_{1}\right) G(x, x)=0$ for all $x \in C$;
$\left(A_{2}\right) G$ is monotone, i.e., $G(x, y)+G(y, x) \leq 0$ for all $x, y \in C$;
$\left(A_{3}\right)$ for each $x, y, z \in C, \lim _{t \rightarrow 0} G(t z+(1-t) x, y) \leq G(x, y)$;
$\left(A_{4}\right)$ for each $x \in C, y \mapsto G(x, y)$ is convex and lower semicontinuous.
On the other hand, fixed point problems (FPPs) [11] have widely been investigated. A fixed point problem is formulating as finding a point \hat{x} with the property:
\[

$$
\begin{equation*}
T \hat{x}=\hat{x} \tag{1.3}
\end{equation*}
$$

\]

where $T: C \rightarrow C$ is a (nonlinear) mapping. The solution set of (1.3) (or fixed point set of T) is denoted as Fix (T). Of course, to solve FPP (1.3), the (possibly noncompact) operator T is assumed to be nonexpansive:

$$
\|T x-T y\| \leq\|x-y\|, \quad x, y \in C .
$$

Recently, iterative methods have been developed to find a common solution of EPs and FPPs; namely, find an x^{*} with the property:

$$
\begin{equation*}
x^{*} \in\left(\bigcap_{j=1}^{N} E P\left(G_{j}\right)\right) \bigcap\left(\bigcap_{l=1}^{M} F i x\left(T_{l}\right)\right) \tag{1.4}
\end{equation*}
$$

where $N, M \geq 1$ are integers, and where $\left\{G_{j}\right\}_{j=1}^{N}$ and $\left\{T_{l}\right\}_{l=1}^{M}$ are bifunctions and nonexpansive mappings on C, respectively. For the sake of simplicity, we will consider in this paper the case of a single nonexpansive (i.e., $M=1$); namely, the problem of finding an x^{*} with the property:

$$
\begin{equation*}
x^{*} \in\left(\bigcap_{j=1}^{N} E P\left(G_{j}\right)\right) \cap F i x(W) \tag{1.5}
\end{equation*}
$$

where W is a nonexpansive mapping on C.
One of the key tools to iteratively study problem (1.5) (or the more complicated (1.4)) is Combettes and Hirstoaga's ([9]) firmly nonexpansive mapping S_{r} associating with a bifunction G (see Lemma 2.2 in the next section). This enables that several implicit or explicit iterative methods have been invented for solving (1.4) and (1.5). For instance, Colao et al. [8] introduced an implicit method that generates a sequence $\left\{x_{n}\right\}$ via the implicit relation:

$$
\begin{equation*}
x_{n}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) W S_{r_{1, n}}^{1} S_{r_{2, n}}^{2} \cdots S_{r_{N, n}}^{N} x_{n}, \tag{1.6}
\end{equation*}
$$

where $f: C \rightarrow C$ is a contraction, $\left\{\alpha_{n}\right\}$ is a sequence in the interval $(0,1)$, and for each $1 \leq j \leq N,\left\{r_{j, n}\right\}_{n=1}^{\infty}$ is a sequence of positive real numbers, and $S_{r_{j, n}}^{j}$ is the firmly nonexpansive mapping associating with the bifunction G_{j}.

It is the purpose of this paper to extend the implicit method (1.6) to an explicit one. Namely, we want to study the asymptotic behavior of the sequence $\left\{x_{n}\right\}$ which, starting with an initial guess $x_{0} \in C$, is generated by the explicit iterative algorithm:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) W S_{r_{1, n}}^{1} S_{r_{2, n}}^{2} \cdots S_{r_{N, n}}^{N} x_{n} \tag{1.7}
\end{equation*}
$$

Under certain conditions on the sequences $\left\{\alpha_{n}\right\}$ and $\left\{r_{j, n}\right\}$, we will prove that the sequence $\left\{x_{n}\right\}$ converges in norm to the unique solution x^{*} of some variational inequality (to be specified in Theorem 3.5).

For some recent developments on this topic, the reader can consult with the articles $[19,13,14,18,17,20,5,6,7,24]$ and the references therein. Also, we notice that iterative methods for nonexpansive mappings have extensively been investigated, see $[21,22,16]$, the recent articles $[1,4,10,12,23]$, and the recent survey [15].

2. Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. Let G : $C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying properties $\left(A_{1}\right)-\left(A_{4}\right)$ listed in section one.

The following two lemmas are pertinent.
Lemma 2.1. (Blum and Oettli [3].) Let $r>0$ and $x \in H$. Then, there exists $z \in C$ such that

$$
G(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \quad \forall y \in C
$$

Lemma 2.2. (Combettes and Hirstoaga [9].) Given $r>0$. Define a mapping S_{r} : $H \rightarrow C$ by

$$
\begin{equation*}
S_{r}(x)=\left\{z \in C: G(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in C\right\}, \quad x \in H \tag{2.1}
\end{equation*}
$$

Then the following hold:
(a) S_{r} is single-valued;
(b) S_{r} is firmly nonexpansive, i.e., $\left\|S_{r} x-S_{r} y\right\|^{2} \leq\left\langle S_{r} x-S_{r} y, x-y\right\rangle$ for any $x, y \in H$;
(c) $F\left(S_{r}\right)=E P(G)$;
(d) $E P(G)$ is closed and convex.

Lemma 2.2 makes it possible to use nonexpansive mappings to iteratively approximate solutions of equilibrium problems.

We need the so-called demiclosedness principle for nonexpansive mappings. Recall that a mapping $T: C \rightarrow H$ is said to be nonexpansive if $\|T x-T y\| \leq\|x-y\|$ for all $x, y \in C$.

Lemma 2.3. (cf. [11]) Let C be a nonempty closed convex subset of a real Hilbert space and let $T: C \rightarrow H$ be a nonexpansive mapping. Let $\left\{x_{n}\right\}$ be a sequence in C. Then the conditions that $x_{n} \rightarrow x$ weakly and $x_{n}-T x_{n} \rightarrow 0$ strongly imply that $x=T x$.

The following lemma, though elementary, is helpful in proving strong convergence of sequences even in infinite-dimensional spaces.

Lemma 2.4. (cf. [22, 16]) Assume that $\left\{\alpha_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
\alpha_{n+1} \leq\left(1-\gamma_{n}\right) \alpha_{n}+\delta_{n}
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence such that
(i) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(ii) either $\limsup _{n \rightarrow \infty} \delta_{n} / \gamma_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} \alpha_{n}=0$.

3. An Explicit Iterative Method

Suppose that $N \geq 1$ is a positive integer and $\left\{G_{1}, G_{2}, \cdots, G_{N}\right\}$ are bifunctions from $C \times C$ into \mathbb{R}, each of which satisfies properties $\left(A_{1}\right)-\left(A_{4}\right)$. Suppose, in addition, that $W: C \rightarrow C$ is a nonexpansive mapping with nonempty fixed point set Fix (W). Our problem is to solve a system of equilibrium problems coupled with fixed point problems. More precisely, we want to find a point x^{*} with the property:

$$
\begin{equation*}
x^{*} \in\left(\bigcap_{j=1}^{m} \operatorname{EP}\left(G_{j}\right)\right) \cap F i x(W)=: F \tag{3.1}
\end{equation*}
$$

upon assuming the existence of such a solution (i.e., assuming $F \neq \emptyset$).
We observe that to each G_{j}, we have a firmly nonexpansive mapping S_{r}^{j} which is defined via (2.1) in Lemma 2.2. To define our iterative method, we need to take an α-contraction $f: C \rightarrow C$, an initial guess $x_{0} \in C$, an infinite sequence $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ in the interval $[0,1]$, and, for each fixed integer $n \geq 1$, a finite sequence $\left\{r_{j, n}\right\}_{j=1}^{N}$ of positive real numbers. Assume x_{n} has been constructed, then the next iterate x_{n+1} is generated by the algorithm

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) W S_{r_{1, n}}^{1} S_{r_{2, n}}^{2} \cdots S_{r_{N, n}}^{N} x_{n} \tag{3.2}
\end{equation*}
$$

To discuss the convergence of Algorithm (3.2), we first establish several lemmas regarding the firmly nonexpansive mapping S_{r} given by (2.1) in Lemma 2.2 and the sequence $\left\{x_{n}\right\}$ generated by (3.2).

Lemma 3.1. Let $G: C \times C \rightarrow \mathbb{R}$ be a bifunction satisfying properties $\left(A_{1}\right)-\left(A_{4}\right)$ and let S_{r} be its associating firmly nonexpansive mapping given by (2.1) in Lemma 2.2. Then for $x \in H$ and $r, r^{\prime}>0$, we have

$$
\begin{equation*}
\left\|S_{r^{\prime}} x-S_{r} x\right\| \leq \frac{\left|r-r^{\prime}\right|}{r}\left\|x-S_{r} x\right\| \tag{3.3}
\end{equation*}
$$

Proof. Set $u=S_{r} x$ and $v=S_{r^{\prime}} x$. Then, by (2.1), we have

$$
G(u, v)+\frac{1}{r}\langle v-u, u-x\rangle \geq 0 \quad \text { and } \quad G(v, u)+\frac{1}{r^{\prime}}\langle u-v, v-x\rangle \geq 0
$$

Adding up these inequalities and noting that $G(u, v)+G(v, u) \leq 0$, we obtain

$$
\left\langle v-u, \frac{1}{r}(u-x)+\frac{1}{r^{\prime}}(x-v)\right\rangle \geq 0 .
$$

This yields

$$
\|v-u\|^{2} \leq\left(1-\frac{r^{\prime}}{r}\right)\langle u-x, v-u\rangle
$$

which in turns implies

$$
\|v-u\| \leq\left|1-\frac{r^{\prime}}{r}\right|\|u-x\|
$$

This is (3.3).
In the rest of the paper, we always assume $F \neq \emptyset$, and by $\left\{x_{n}\right\}$ we always mean the sequence generated by Algorithm (3.2). Moreover, we set

$$
\begin{equation*}
S_{n}=S_{r_{1, n}}^{1} S_{r_{2, n}}^{2} \cdots S_{r_{N, n}}^{N} \tag{3.4}
\end{equation*}
$$

Thus, Algorithm (3.2) can equivalently be rewritten as

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) W S_{n} x_{n} . \tag{3.5}
\end{equation*}
$$

Lemma 3.2. We have that $\left\{x_{n}\right\}$ is bounded. Consequently, the sequences $\left\{f\left(x_{n}\right)\right\}$, $\left\{S_{n} x_{n}\right\},\left\{W x_{n}\right\}$ and $\left\{W S_{n} x_{n}\right\}$ are all bounded.

Proof. Take $p \in F$ to derive from (3.5) that

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\alpha_{n}\left(f\left(x_{n}\right)-p\right)+\left(1-\alpha_{n}\right)\left(W S_{n} x_{n}-p\right)\right\| \\
& \leq \alpha_{n}\left\|f\left(x_{n}\right)-f(p)\right\|+\alpha_{n}\|f(p)-p\|+\left(1-\alpha_{n}\right)\left\|W S_{n} x_{n}-p\right\| \\
& \leq \alpha_{n} \alpha\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\|+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\| \\
& =\left[1-(1-\alpha) \alpha_{n}\right]\left\|x_{n}-p\right\|+\alpha_{n}\|f(p)-p\| \\
& \leq \max \left\{\left\|x_{n}-p\right\|, \frac{1}{1-\alpha}\|f(p)-p\|\right\} .
\end{aligned}
$$

It turns out by induction that

$$
\left\|x_{n}-p\right\| \leq \max \left\{\left\|x_{0}-p\right\|, \frac{1}{1-\alpha}\|f(p)-p\|\right\}, \quad \forall n \geq 0
$$

This implies that $\left\{x_{n}\right\}$ is bounded.
In what follows, we always assume the following conditions for the sequences $\left\{\alpha_{n}\right\}$ and $\left\{r_{j, n}\right\}$ which define Algorithm (3.2):
$\left(C_{1}\right) \lim _{n \rightarrow \infty} \alpha_{n}=0$;
(C2) $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
$\left(C_{3}\right) \sum_{n=1}^{\infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty$ and $\sum_{n=1}^{\infty}\left|r_{i, n+1}-r_{i, n}\right|<\infty$ for $1 \leq j \leq N$;
$\left(C_{4}\right) \lim _{n \rightarrow \infty} r_{j, n}=r_{j}>0$ for $1 \leq j \leq N$.
Lemma 3.3. We have that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.6}
\end{equation*}
$$

Proof. To prove (3.6), we need to estimate $\left\|S_{n+1} x_{n+1}-S_{n} x_{n}\right\|$. Towards this, we set, for each $1 \leq j \leq N$,

$$
y_{n+1}^{j}:=S_{r_{j, n+1}}^{j} \cdots S_{r_{N, n}}^{N} x_{n+1} \quad \text { and } \quad y_{n}^{j}:=S_{r_{j, n}}^{j} \cdots S_{r_{N, n}}^{N} x_{n} .
$$

Due to boundedness, we can find a constant $L>0$ big enough so that

$$
L \geq\left\|x_{n+1}-S_{r_{j, n+1}}^{j} x_{n+1}\right\| \quad \text { for all } 1 \leq j \leq N \text { and } n \geq 0
$$

Then, by definition of S_{i} for $i \geq 1$ and by Lemma 3.1, we get

$$
\begin{align*}
\left\|S_{n+1} x_{n+1}-S_{n} x_{n}\right\|= & \left\|S_{r_{1, n+1}}^{1} y_{n+1}^{2}-S_{r_{1, n}}^{1} y_{n}^{2}\right\| \\
\leq & \left\|S_{r_{1, n+1}}^{1} y_{n+1}^{2}-S_{r_{1, n}}^{1} y_{n+1}^{2}\right\| \\
& +\left\|S_{r_{1, n}}^{1} y_{n+1}^{2}-S_{r_{1, n}}^{1} y_{n}^{2}\right\| \\
\leq & \frac{\left|r_{1, n+1}-r_{1, n}\right|}{r_{1, n}}\left\|y_{n+1}^{2}-S_{r_{1, n}}^{1}\right\|+\left\|y_{n+1}^{2}-y_{n}^{2}\right\| \\
\leq & \frac{L\left|r_{1, n+1}-r_{1, n}\right|}{r_{1, n}}+\left\|y_{n+1}^{2}-y_{n}^{2}\right\| . \tag{3.7}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
\left\|y_{n+1}^{2}-y_{n}^{2}\right\|= & \left\|S_{r_{2, n+1}}^{2} y_{n+1}^{3}-S_{r_{2, n}}^{1} y_{n}^{3}\right\| \\
\leq & \left\|S_{r_{2, n+1}}^{2} y_{n+1}^{3}-S_{r_{2, n}}^{2} y_{n+1}^{3}\right\| \\
& +\left\|S_{r_{2, n}}^{2} y_{n+1}^{3}-S_{r_{2, n}}^{1} y_{n}^{3}\right\| \\
\leq & \frac{\left|r_{2, n+1}-r_{2, n}\right|}{r_{2, n}}\left\|y_{n+1}^{3}-S_{r_{2, n}}^{2}\right\|+\left\|y_{n+1}^{3}-y_{n}^{3}\right\| \\
\leq & \frac{L\left|r_{2, n+1}-r_{2, n}\right|}{r_{2, n}}+\left\|y_{n+1}^{3}-y_{n}^{3}\right\| . \tag{3.8}
\end{align*}
$$

Continue this way and observe

$$
\begin{align*}
\left\|y_{n+1}^{N}-y_{n}^{N}\right\| & =\left\|S_{r_{N, n+1}}^{N} x_{n+1}-S_{r_{N, n}}^{N} x_{n}\right\| \\
& \leq\left\|S_{r_{N, n+1}}^{N} x_{n+1}-S_{r_{N, n}}^{N} x_{n+1}\right\|+\left\|S_{r_{N, n}}^{N} x_{n+1}-S_{r_{N, n}}^{N} x_{n}\right\| \\
& \leq \frac{\left|r_{N, n+1}-r_{N, n}\right|}{r_{N, n}}\left\|x_{n+1}-S_{r_{N, n}}^{N} x_{n+1}\right\|+\left\|x_{n+1}-x_{n}\right\| \\
& \leq \frac{L\left|r_{N, n+1}-r_{N, n}\right|}{r_{N, n}}+\left\|x_{n+1}-x_{n}\right\| . \tag{3.9}
\end{align*}
$$

Substituting (3.8)-(3.9) into (3.7) gives us that

$$
\begin{equation*}
\left\|S_{n+1} x_{n+1}-S_{n} x_{n}\right\| \leq L \sum_{j=1}^{N} \frac{\left|r_{j, n+1}-r_{j, n}\right|}{r_{j, n}}+\left\|x_{n+1}-x_{n}\right\| \tag{3.10}
\end{equation*}
$$

By virtue of Condition (C_{4}), we have $r>0$ such that $r_{j, n} \geq r$ for all j and n. Also, we may assume that L is big enough so that

$$
L \geq\left\|W S_{n} x_{n}\right\|+\left\|f\left(x_{n}\right)\right\| \quad \text { for all } n
$$

We then infer that

$$
\begin{align*}
\left\|x_{n+2}-x_{n+1}\right\|= & \| \alpha_{n+1} f\left(x_{n+1}\right)+\left(1-\alpha_{n+1}\right) W S_{n+1} x_{n+1} \\
& -\alpha_{n} f\left(x_{n}\right)-\left(1-\alpha_{n}\right) W S_{n} x_{n} \| \\
\leq & \left\|\left(1-\alpha_{n+1}\right)\left(W S_{n+1} x_{n+1}-W S_{n} x_{n}\right)+\left(\alpha_{n}-\alpha_{n+1}\right) W S_{n} x_{n}\right\| \\
& +\left[\alpha_{n+1}\left(f\left(x_{n+1}\right)-f\left(x_{n}\right)\right)+\left(\alpha_{n+1}-\alpha_{n}\right) f\left(x_{n}\right)\right] \\
\leq & \left(1-\alpha_{n+1}\right)\left\|S_{n+1} x_{n+1}-S_{n} x_{n}\right\|+\alpha_{n+1} \alpha\left\|x_{n+1}-x_{n}\right\| \\
& +\left|\alpha_{n}-\alpha_{n+1}\right|\left\|W S_{n} x_{n}-f\left(x_{n}\right)\right\| \\
\leq & {\left[1-(1-\alpha) \alpha_{n+1}\right]\left\|x_{n+1}-x_{n}\right\|+L \sum_{i=1}^{N} \left\lvert\, \frac{r_{i, n+1}-r_{i, n} \mid}{r_{i, n}}\right. } \\
& +\left|\alpha_{n}-\alpha_{n+1}\right|\left(\left\|W S_{n} x_{n}\right\|+\left\|f\left(x_{n}\right)\right\|\right) \\
\leq & {\left[1-(1-\alpha) \alpha_{n+1}\right]\left\|x_{n+1}-x_{n}\right\| } \\
& +L\left(\frac{1}{r} \sum_{i=1}^{N}\left|r_{i, n+1}-r_{i, n}\right|+\left|\alpha_{n}-\alpha_{n+1}\right|\right) \tag{3.11}
\end{align*}
$$

Conditions $\left(C_{1}\right)-\left(C_{3}\right)$ allow us to apply Lemma 2.4 to (3.11) to obtain (3.3).

Lemma 3.4. We have

(i) For each $1 \leq j \leq N$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-S_{r_{j, n}}^{j} x_{n}\right\|=0 \tag{3.12}
\end{equation*}
$$

(ii) For each $1 \leq j \leq N$ and with $r_{j}=\lim _{n \rightarrow \infty} r_{j, n}$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-S_{r_{j}}^{j} x_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

(iii) $\lim _{n \rightarrow \infty}\left\|x_{n}-W x_{n}\right\|=0$.

Proof. (i) Since $S_{r_{j, n}}^{j}$ is firmly nonexpansive, we deduce that, for each $p \in F$,

$$
\begin{align*}
\left\|x_{n}-S_{r_{j, n}}^{j} x_{n}\right\|^{2} & =\left\|\left(x_{n}-p\right)-\left(S_{r_{j, n}}^{j} x_{n}-p\right)\right\|^{2} \\
& =\left\|x_{n}-p\right\|^{2}+\left\|S_{r_{j, n}}^{j} x_{n}-p\right\|^{2}-2\left\langle x_{n}-p, S_{r_{j, n}}^{j} x_{n}-p\right\rangle \\
& \leq\left\|x_{n}-p\right\|^{2}+\left\|S_{r_{j, n}}^{j} x_{n}-p\right\|^{2}-2\left\|S_{r_{j, n}}^{j} x_{n}-p\right\|^{2} \\
& =\left\|x_{n}-p\right\|^{2}-\left\|S_{r_{j, n}}^{j} x_{n}-p\right\|^{2} . \tag{3.14}
\end{align*}
$$

We now use backward induction to prove (3.12); thus, we first prove that (3.12) holds for $j=N$. To see this, we compute

$$
\begin{align*}
\left\|x_{n+1}-p\right\|^{2} & =\left\|\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) W S_{r_{1, n}}^{1} S_{r_{2, n}}^{2} \cdots S_{r_{N, n}}^{N} x_{n}-p\right\|^{2} \\
& \leq \alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\left(1-\alpha_{n}\right)\left\|W S_{r_{1, n}}^{1} S_{r_{2, n}}^{2} \cdots S_{r_{N, n}}^{N} x_{n}-p\right\|^{2} \tag{3.15}\\
& \leq\left\|S_{r_{N, n}}^{N} x_{n}-p\right\|^{2}+\theta \alpha_{n} \tag{3.16}
\end{align*}
$$

where θ is a constant such that $\theta \geq \sup _{n \geq 0}\left\|f\left(x_{n}\right)-p\right\|^{2}$.

Combining (3.14) and (3.16) (with $j=N$), and using Lemma 3.3, we get

$$
\left\|x_{n}-S_{r_{N, n}}^{N} x_{n}\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\theta \alpha_{n} \rightarrow 0 \quad(\text { as } n \rightarrow \infty)
$$

This proves (3.12) for $j=N$.
Assume now that (3.12) holds true for every $j=l+1, \cdots, N$. We next prove that (3.12) remains true for $j=l$. To see this, we use (3.15) to get

$$
\begin{equation*}
\left\|x_{n+1}-p\right\|^{2} \leq\left\|S_{r_{l, n}}^{l} \cdots S_{r_{N, n}}^{N} x_{n}-p\right\|^{2}+\theta \alpha_{n} \tag{3.17}
\end{equation*}
$$

However, we also have

$$
\begin{align*}
&\left\|S_{r_{l, n}}^{l} \cdots S_{r_{N, n}}^{N} x_{n}-p\right\| \leq\left\|S_{r_{l, n}}^{l} \cdots S_{r_{N, n}}^{N} x_{n}-S_{r_{l, n}}^{l} x_{n}\right\|+\left\|S_{r_{l, n}}^{l} x_{n}-p\right\| \\
& \leq\left\|S_{r_{l+1, n}}^{l+1} \cdots S_{r_{N, n}}^{N} x_{n}-x_{n}\right\|+\left\|S_{r_{l, n}}^{l} x_{n}-p\right\| \\
& \leq\left\|S_{r_{l+1, n}}^{l+1} \cdots S_{r_{N, n}}^{N} x_{n}-S_{r_{l+1, n}}^{l+1} x_{n}\right\| \\
&+\left\|S_{r_{l+1, n}}^{l+1} x_{n}-x_{n}\right\|+\left\|S_{r_{l, n}}^{l} x_{n}-p\right\| \\
& \leq\left\|S_{r_{l+2, n}}^{l+2} \cdots S_{r_{N, n}}^{N} x_{n}-x_{n}\right\| \\
&+\left\|S_{r_{l+1, n}}^{l+1} x_{n}-x_{n}\right\|+\left\|S_{r_{l, n}}^{l} x_{n}-p\right\| \\
& \vdots \tag{3.18}\\
& \leq \sum_{j=l+1}^{N}\left\|S_{r_{j, n}}^{j} x_{n}-x_{n}\right\|+\left\|S_{r_{l, n}}^{l} x_{n}-p\right\| .
\end{align*}
$$

Note that, by the induction assumption, we have

$$
\sigma_{n}:=\sum_{j=l+1}^{N}\left\|S_{r_{j, n}}^{j} x_{n}-x_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Consequently, we obtain from (3.18)

$$
\begin{equation*}
\left\|S_{r_{l, n}}^{l} \cdots S_{r_{N, n}}^{N} x_{n}-p\right\|^{2} \leq\left\|S_{r_{l, n}}^{l} x_{n}-p\right\|^{2}+\sigma_{n} \delta, \tag{3.19}
\end{equation*}
$$

where δ is a constant such that $\delta \geq \sup _{n \geq 0}\left(\sigma_{n}+2\left\|S_{r_{l, n}}^{l} x_{n}-p\right\|\right)$. Now combining (3.14), (3.17) and (3.19), and using Lemma 3.3, we get

$$
\begin{aligned}
\left\|x_{n}-S_{r_{l, n}}^{l} x_{n}\right\|^{2} \leq & \left\|x_{n}-p\right\|^{2}-\left\|S_{r_{l, n}}^{l} x_{n}-p\right\|^{2} \\
= & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2} \\
& +\left\|x_{n+1}-p\right\|^{2}-\left\|S_{r_{l, n}}^{l} \cdots S_{r_{N, n}}^{N} x_{n}-p\right\|^{2} \\
& +\left\|S_{r_{l, n}}^{l} \cdots S_{r_{N, n}}^{N} x_{n}-p\right\|^{2}-\left\|S_{r_{l, n}}^{l} x_{n}-p\right\|^{2} \\
\leq & \left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2}+\theta \alpha_{n}+\delta \sigma_{n} \rightarrow 0 .
\end{aligned}
$$

This completes the induction and hence we conclude that (3.12) is valid for all $1 \leq$ $j \leq N$.
(ii) By Lemma 3.1, the fact that $r_{j, n} \rightarrow r_{j}>0$ (as $\left.n \rightarrow \infty\right)$ and the boundedness of $\left\{x_{n}\right\}$, we get, for each $1 \leq j \leq N$,

$$
\left\|S_{r_{j, n}}^{j} x_{n}-S_{r_{j}}^{j} x_{n}\right\| \leq \frac{\left|r_{j, n}-r_{j}\right|}{r_{j}}\left\|x_{n}-S_{r_{j}}^{j} x_{n}\right\| \rightarrow 0 \quad(\text { as } n \rightarrow \infty)
$$

This together with (3.12) implies (3.13).
(iii) It suffices to prove that $\left\|x_{n+1}-W x_{n}\right\| \rightarrow 0$ since $\left\|x_{n+1}-x_{n}\right\| \rightarrow 0$ by Lemma 3.6. We have via (3.5) and with L_{1} a constant such that $L_{1} \geq\left\|f\left(x_{n}\right)\right\|+\left\|W x_{n}\right\|$ for all n,

$$
\begin{align*}
\left\|x_{n+1}-W x_{n}\right\| & \leq \alpha_{n}\left\|f\left(x_{n}\right)-W x_{n}\right\|+\left(1-\alpha_{n}\right)\left\|W S_{n} x_{n}-W x_{n}\right\| \\
& \leq \alpha_{n} L_{1}+\left\|S_{n} x_{n}-x_{n}\right\| \tag{3.20}
\end{align*}
$$

However, by repeatedly using the triangle inequality and (3.12), it is easily found that

$$
\left\|S_{n} x_{n}-x_{n}\right\| \leq \sum_{j=1}^{N}\left\|S_{r_{j, n}}^{j} x_{n}-x_{n}\right\| \rightarrow 0 \quad(\text { as } n \rightarrow \infty)
$$

Consequently, it follows from (3.20) that $\left\|x_{n+1}-W x_{n}\right\| \rightarrow 0$ as required.
We are now in a position to state and prove the main result of this paper.
Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H, let $\left\{G_{j}\right\}_{j=1}^{N}$ be a family of N bifunctions from $C \times C$ into \mathbb{R}, each of which satisfies properties $\left(A_{1}\right)-\left(A_{4}\right)$, and let $W: C \rightarrow C$ be a nonexpansive mapping. Assume the common solution set F as defined in (3.1) is nonempty. Let $f: C \rightarrow C$ be an α-contraction. Moreover, assume that the sequences $\left\{\alpha_{n}\right\}$ and $\left\{r_{j, n}\right\}_{j=1}^{N}$ satisfy conditions $\left(C_{1}\right)-\left(C_{4}\right)$. Then the sequence $\left\{x_{n}\right\}$ generated by Algorithm (3.2) converges in norm to the unique solution x^{*} of the variational inequality (VI):

$$
\begin{equation*}
x^{*} \in F, \quad\left\langle(I-f) x^{*}, x-x^{*}\right\rangle \geq 0, \quad x \in F . \tag{3.21}
\end{equation*}
$$

Alternatively, x^{*} is the unique fixed point of the contraction $P_{F} f$ (i.e., $\left.x^{*}=\left(P_{F} f\right) x^{*}\right)$.
Proof. Let x^{*} be the unique fixed point of the contraction $P_{F} f$; hence the unique solution of VI (3.21). To prove that $x_{n} \rightarrow x^{*}$ in norm, we estimate the distance from x_{n+1} to x^{*} in the following way (in the first inequality, we use the trivial inequality $\|u+v\|^{2} \leq\|u\|^{2}+2\langle v, u+v\rangle$ for all $\left.u, v \in H\right)$:

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2}= & \left\|\left(1-\alpha_{n}\right)\left(W S_{n} x_{n}-x^{*}\right)+\alpha_{n}\left(f\left(x_{n}\right)-x^{*}\right)\right\|^{2} \\
\leq & \left\|\left(1-\alpha_{n}\right)\left(W S_{n} x_{n}-x^{*}\right)\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle f\left(x_{n}\right)-f\left(x^{*}\right), x_{n+1}-x^{*}\right\rangle \\
& +2 \alpha_{n}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} \alpha\left\|x_{n}-x^{*}\right\|\left\|x_{n+1}-x^{*}\right\| \\
& +2 \alpha_{n}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+\alpha_{n} \alpha\left(\left\|x_{n}-x^{*}\right\|^{2}+\left\|x_{n+1}-x^{*}\right\|^{2}\right) \\
& +2 \alpha_{n}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle .
\end{aligned}
$$

It turns out that

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \frac{\left(1-\alpha_{n}\right)^{2}+\alpha_{n} \alpha}{1-\alpha_{n} \alpha}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\frac{2 \alpha_{n}}{1-\alpha_{n} \alpha}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
= & \left(1-\frac{2(1-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}}\right)\left\|x_{n}-x^{*}\right\|^{2}+\frac{\alpha_{n}^{2}}{1-\alpha_{n} \alpha}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\frac{2 \alpha_{n}}{1-\alpha_{n} \alpha}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
= & \left(1-\beta_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+\beta_{n} \gamma_{n} \tag{3.22}
\end{align*}
$$

where

$$
\beta_{n}=\frac{2(1-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}}=O\left(\alpha_{n}\right) \quad(\text { as } n \rightarrow \infty)
$$

and

$$
\gamma_{n}=\frac{1}{2(1-\alpha)}\left(\alpha_{n}\left\|x_{n}-x^{*}\right\|^{2}+2\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle\right) .
$$

By conditions $\left(C_{1}\right)-\left(C_{3}\right)$, we easily find that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta_{n}=0 \quad \text { and } \quad \sum_{n=1}^{\infty} \beta_{n}=\infty \tag{3.23}
\end{equation*}
$$

Thus, in order to apply Lemma 2.4, it remains for us to prove that $\limsup _{n \rightarrow \infty} \gamma_{n} \leq 0$; equivalently,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, x_{n}-x^{*}\right\rangle \leq 0 \tag{3.24}
\end{equation*}
$$

To see (3.24), we take a subsequence $\left\{x_{n^{\prime}}\right\}$ of $\left\{x_{n}\right\}$ in such a way that

$$
\limsup _{n \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, x_{n}-x^{*}\right\rangle=\lim _{n^{\prime} \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, x_{n^{\prime}}-x^{*}\right\rangle
$$

Due to boundedness, we may further assume, with no loss of generality, that $x_{n^{\prime}} \rightarrow \hat{x}$ weakly. The demiclosedness principle (Lemma 2.3) together with Lemma 3.4(ii)-(iii) ensures that, for every $1 \leq j \leq N, \hat{x} \in \operatorname{Fix}(W) \cap \operatorname{Fix}\left(S_{r_{j}}^{j}\right)$; hence, $\hat{x} \in F$. We therefore arrive at

$$
\limsup _{n \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, x_{n}-x^{*}\right\rangle=\left\langle f\left(x^{*}\right)-x^{*}, \hat{x}-x^{*}\right\rangle \leq 0
$$

due to VI (3.21).
Finally, by virtue of (3.23) and (3.24), we can apply Lemma 2.4 to the relation (3.22) to conclude that $\left\|x_{n}-x^{*}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

The case of $N=1$ recovers a result of [20].
Corollary 3.6. (Theorem 3.2 of [20]) Let C be a nonempty closed convex subset of $H, G: C \times C \rightarrow \mathbb{R}$ a bifunction satisfying $\left(A_{1}\right)-\left(A_{4}\right)$, and $W: C \rightarrow C$ a nonexpansive mapping such that $E P(G) \cap \operatorname{Fix}(W) \neq \emptyset$. Moreover, let $f: C \rightarrow C$ be a contraction. Let $\left\{x_{n}\right\}$ be generated by the iterative algorithm (with initial guess $x_{0} \in H$):

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\left(1-\alpha_{n}\right) W S_{r_{n}} x_{n},
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ satisfy the conditions:
$\left(C_{1}\right) \lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$;
$\left(C_{2}\right) \sum_{n=1}^{n \rightarrow \infty}\left|\alpha_{n}-\alpha_{n+1}\right|<\infty$ and $\sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$;
$\left(C_{3}\right) \liminf _{n \rightarrow \infty} r_{n}>0$.
Then $\left\{x_{n}\right\}$ converges in norm to the unique fixed point of the contraction $P_{E P(G) \cap F i x(W)} f$.

Acknowledgement. The first author was supported in part by the National Science Foundation of China under Grant no. 10771050. The third author was supported in part by NSC 97-2628-M-110-003-MY3 (Taiwan).

References

[1] A. Aleyner, S. Reich, Approximating common fixed points of nonexpansive mappings in Banach spaces, Fixed Point Theory, 10(2009), No. 1, 3-17.
[2] M. Bianchi, S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90(1996), 31-43.
[3] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1994), 123-145.
[4] L. C. Ceng, A. Petruşel, J. C. Yao, Weak convergence theorem by a modified extragradient method for nonexpansive mappings and monotone mappings, Fixed Point Theory, 9 (2008), No. 1, 73-87.
[5] L C. Ceng, J. C. Yao, Hybrid viscosity approximation schemes for equilibrium problem and fixed point problens of infinitely many nonexpansive mappings, Appl. Math. Comp., 198(2008), 729-741.
[6] F. Cianciaruso, G. Marino, L. Muglia, Ishikawa iterations for equilibrium and fixed point problems for nonexpansive mappings in Hilbert spaces, Fixed Point Theory, 9(2008), No. 2, 449-464.
[7] V. Colao, G. Marino, H.K. Xu, An iterative method for finding common solutions of equilibrium and fixed point problems, J. Math. Anal. Appl., 344(2008), 340352.
[8] V. Colao, G. Lopez-Acedo, G. Marino, An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings, Nonlinear Anal., 71 (2009), No. 7-8, 2708-2715.
[9] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.
[10] Y.L. Cui, X. Liu, Notes on Browder's and Halpern's methods for nonexpansive mappings, Fixed Point Theory, 10(2009), No. 1, 89-98.
[11] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, in: Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.
[12] S. He, H.K. Xu, Variational Inequalities Governed by Boundedly Lipschitzian and Strongly Monotone Operators, Fixed Point Theory, 10(2009), No. 2, 245-258.
[13] A.N. Iusem, W. Sosa, New existence results for equilibrium problems, Nonlinear Anal., 52(2003), No. 2, 621-635.
[14] A.N. Iusem, W. Sosa, Iterative algorithms for equilibrium problems, Optimization, 52(2003), No. 3, 301-316.
[15] G. Lopez, V. Martin-Marquez, H.K. Xu, Halpern's iteration for nonexpansive mappings, in "Nonlinear Analysis and Optimization I: Nonlinear Analysis," Contemporary Mathematics, vol. 513, 2010, 211-230.
[16] G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318 (2006), 43-52.
[17] J.W. Peng, J.C. Yao, A modified $C Q$ method for equilibrium problems, fixed points and variational inequality, Fixed Point Theory, 9(2008), No. 2, 515-531.
[18] S. Plubtieng, R. Punpaeng, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 336(2007), 455-469.
19] K. Shimoji, W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., 5(2001), 387-404.
[20] S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331(2007), 506-515.
[21] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256.
[22] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116 (2003), 659-678.
[23] H.K. Xu, An alternative regularization method for nonexpansive mappings with applications, in "Nonlinear Analysis and Optimization I: Nonlinear Analysis," Contemporary Mathematics, vol. 513, 2010, 239-263.
[24] Y. Yao, Y.C. Liou, C. Lee, M.M. Wong, Convergence Theorem for Equilibrium Problems and Fixed Point Problems, Fixed Point Theory, 10(2009), No. 2, 347-363.

Received: December 31, 2009; Accepted: May 2, 2010.

[^0]: ${ }^{\dagger}$ Corresponding author.

