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1. INTRODUCTION

Equilibrium problems (EPs) have recently been received a great amount of inves-
tigation. An equilibrium problem can be formulated as finding a point x* satisfying
the property [2, 3]:

z*eC, G(*,y)>0, yeC, (1.1)
where C' is a nonempty closed convex subset of a real Hilbert space H with inner
product (-,-) and norm || - ||, respectively, and G : C' x C' — R is a so-called bifunction
function.

The solution set of EP (1.1) is denoted as EP(G); namely,
EP(G):={x € C:G(z,y) > 0Vy € C}. (1.2)

To solve EP (1.1), the following conditions on the bifunction G are assumed in
literature:

T Corresponding author.
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(A1) G(z,z) =0 for all x € C
(A2) G is monotone, i.e., G(z,y) + G(y,z) <0 for all z,y € C;
(As) for each z,y,z € C, }iné Gitz+ (1 -t)z,y) < G(z,y);

(A4) for each z € C, y — G(z,y) is convex and lower semicontinuous.

On the other hand, fixed point problems (FPPs) [11] have widely been investigated.
A fixed point problem is formulating as finding a point Z with the property:

Ti =%, (1.3)

where T': C' — C'is a (nonlinear) mapping. The solution set of (1.3) (or fixed point set
of T') is denoted as Fiz(T). Of course, to solve FPP (1.3), the (possibly noncompact)
operator T is assumed to be nonexpansive:

[Tz =Tyl <z —yl, =yeC

Recently, iterative methods have been developed to find a common solution of EPs
and FPPs; namely, find an x* with the property:

N M
e | (EPG) | (ﬂ Fi:z:(Tl)> , (1.4)
j=1 =1

where N, M > 1 are integers, and where {Gj}é»v:l and {T;}, are bifunctions and
nonexpansive mappings on C, respectively. For the sake of simplicity, we will consider
in this paper the case of a single nonexpansive (i.e., M = 1); namely, the problem of
finding an =* with the property:

N
z* € | (| EP(G)) | N Fiz(W), (1.5)

where W is a nonexpansive mapping on C.

One of the key tools to iteratively study problem (1.5) (or the more complicated
(1.4)) is Combettes and Hirstoaga’s ([9]) firmly nonexpansive mapping S, associating
with a bifunction G (see Lemma 2.2 in the next section). This enables that several
implicit or explicit iterative methods have been invented for solving (1.4) and (1.5).
For instance, Colao et al. [8] introduced an implicit method that generates a sequence
{z,} via the implicit relation:

Tp = anfa,) + (1 — an)WSrll_’nsz)n - ~S7J«\]fvynscn, (1.6)

where f : C' — C is a contraction, {«,} is a sequence in the interval (0,1), and for
each 1 < j < N, {r;,}2, is a sequence of positive real numbers, and ng,n is the
firmly nonexpansive mapping associating with the bifunction G;.

It is the purpose of this paper to extend the implicit method (1.6) to an explicit
one. Namely, we want to study the asymptotic behavior of the sequence {z,,} which,
starting with an initial guess x¢ € C, is generated by the explicit iterative algorithm:

Tpp1 = anf(rn) + (1 —a,)WSE §2 ...8N &, (1.7)

T1,n " T2,n TN,n
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Under certain conditions on the sequences {a,} and {r;,}, we will prove that the
sequence {x,} converges in norm to the unique solution z* of some variational in-
equality (to be specified in Theorem 3.5).

For some recent developments on this topic, the reader can consult with the articles
[19, 13, 14, 18, 17, 20, 5, 6, 7, 24] and the references therein. Also, we notice that
iterative methods for nonexpansive mappings have extensively been investigated, see
[21, 22, 16], the recent articles [1, 4, 10, 12, 23], and the recent survey [15].

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H. Let G :
C x C — R be a bifunction satisfying properties (A;)-(A4) listed in section one.
The following two lemmas are pertinent.

Lemma 2.1. (Blum and Oettli [3].) Let r > 0 and x € H. Then, there exists z € C

such that 1
G(z,y)—l—;(y—z,z—@ >0, vyeCdC.

Lemma 2.2. (Combettes and Hirstoaga [9].) Given r > 0. Define a mapping S, :
H—C by

Sp(x) = {zEC: G(z,y)—l—%(y—z,z—x) >0, VyEC'}, x € H. (2.1)

Then the following hold:
(a) S, is single-valued;
(b) S, is firmly nonexpansive, i.e., ||Srx — Syy||* < (Spx — Sy, x —y) for any
x,y € H;
(C) F(ST) = EP(G)7
(d) EP(G) is closed and convez.

Lemma 2.2 makes it possible to use nonexpansive mappings to iteratively approx-
imate solutions of equilibrium problems.

We need the so-called demiclosedness principle for nonexpansive mappings. Recall
that a mapping 7' : C' — H is said to be nonexpansive if ||Tz — Ty|| < ||z — y| for all
z,y € C.

Lemma 2.3. (cf. [11]) Let C be a nonempty closed conver subset of a real Hilbert
space and let T : C — H be a nonexpansive mapping. Let {x,} be a sequence in
C. Then the conditions that x,, — x weakly and x,, — Tx, — 0 strongly imply that
z="Tzx.

The following lemma, though elementary, is helpful in proving strong convergence
of sequences even in infinite-dimensional spaces.

Lemma 2.4. (c¢f. [22, 16]) Assume that {a,} is a sequence of nonnegative real
numbers such that

ant1 < (1 —vp)an + n,
where {y,} is a sequence in (0,1) and {0,} is a sequence such that
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() 70 = oo .
(ii) either imsup 6y, /v, <0 or ) " [0n] < o0.

n—oo

Then lim,, ., a,, = 0.

3. AN ExpPLICIT ITERATIVE METHOD

Suppose that N > 1 is a positive integer and {G1,Ga,- - ,Gn} are bifunctions
from C x C into R, each of which satisfies properties (A1) — (A4). Suppose, in
addition, that W : C' — C is a nonexpansive mapping with nonempty fixed point
set Fiz(W). Our problem is to solve a system of equilibrium problems coupled with
fixed point problems. More precisely, we want to find a point x* with the property:

z* e ﬁ EP(G;) | N Fix(W) = F (3.1)

upon assuming the existence of such a solution (i.e., assuming F # ().

We observe that to each G, we have a firmly nonexpansive mapping SJ which is
defined via (2.1) in Lemma 2.2. To define our iterative method, we need to take an
a-contraction f : C' — C, an initial guess 2o € C, an infinite sequence {a,}7%, in
the interval [0,1], and, for each fixed integer n > 1, a finite sequence {r;,}_; of
positive real numbers. Assume x,, has been constructed, then the next iterate x, 11
is generated by the algorithm

Tnt1 = p f(zn) + (1 — an)VVS1 Sz .. oSi\]’men. (3.2)

T1,n " T2,n
To discuss the convergence of Algorithm (3.2), we first establish several lemmas
regarding the firmly nonexpansive mapping S, given by (2.1) in Lemma 2.2 and the
sequence {z,} generated by (3.2).

Lemma 3.1. Let G : C x C — R be a bifunction satisfying properties (A1) — (Ay4)
and let S, be its associating firmly nonexpansive mapping given by (2.1) in Lemma
2.2. Then for x € H and r,v’ > 0, we have

r—r
|Srz — Srz|| < %fosrxﬂ. (3.3)

Proof. Set u= S,z and v = S.vz. Then, by (2.1), we have
G(u,v) + %(v—u,u—@ >0 and G(v,u)+ %(u—v,v—x) > 0.
Adding up these inequalities and noting that G(u,v) + G(v,u) < 0, we obtain
<U*U,%(U*IE)+%($*U» > 0.
This yields
lv—ul? < (1 — :l) (u—x,v—u)
which in turns implies

!

o —uf < ]1—7“ o — .
s
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This is (3.3). O

In the rest of the paper, we always assume F # ), and by {z,,} we always mean
the sequence generated by Algorithm (3.2). Moreover, we set

Sp =25} SF SN (3.4)

n'""Tr2mn TN,n"

Thus, Algorithm (3.2) can equivalently be rewritten as
Tn41 = anf(-rn) + (1 - an)WSnxn (35)

Lemma 3.2. We have that {x,} is bounded. Consequently, the sequences {f(xn)},
{Snxn}, {(Wzp}t and {WS,x,} are all bounded.

Proof. Take p € F to derive from (3.5) that

[2n41 = pll = llan(f(zn) —p) + (1 — an)(WSpz, — p)
< anl f(zn) = @)+ anll f(p) = pll + (1 — an) [WSpan — pll
< anallzy, — pll +anllf(p) = pll + (1 — an)llz, — p|
=[1 - (1 - a)a]|zn —pll + anll f(p) = pll

< o { o = ol = 17~}

It turns out by induction that

1
o = ol < max{leo =l 22 150) 51} v 20,
This implies that {x,} is bounded. O

In what follows, we always assume the following conditions for the sequences {a, }
and {r;, } which define Algorithm (3.2):

(Cl) lim,, o0 ap = 0;

(C2) Yooy i = 003

(Cs3) S0l — apyr] <ooand Y07 | |[Fint1 — rin| <oofor 1 <j<N;

(C4) limy, 0 rjn=1;>0for1<j<N.

Lemma 3.3. We have that

lim ||zp4+1 — 2| = 0. (3.6)

Proof. To prove (3.6), we need to estimate ||.S,12n4+1 — Snp@yn||. Towards this, we set,
foreach 1 < j < N,

yiﬂ =5 S ZTny1 and yﬁ =57

.8
Tjn+1 TN,n+1 Tjn TN, T

Due to boundedness, we can find a constant L > 0 big enough so that

L>|zns — S

T

jnﬂanH forall1<j< N andn > 0.
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Then, by definition of S; for ¢ > 1 and by Lemma 3.1, we get
||Sn+1$n+1 nmﬂ” || 1 ,,+1yn+1 rl 7,yn”

= || r1 n+1yn+1 - Srl 7,yn+1||
+ || T1, nynJrl 7‘1 nyn”

",n+1 = T1n]
< “ ||y721+1 TMH + ||yn+1 vzl
T1,n
Lirint1 — 1,
<" 4 lyh g -l (3.7)
T1,n
Similarly, we have
lyp i1 — vl = 117, nﬂynﬂ - S}, vl

= H o n+1yn+1 - SEQ nyfwrl”
+ H rznynJrl r2nyn||

|T2, +1 — T2, |
< = Clypr = Sy I+ Y11 — vall
T2,n
L T2,n+1 — T2,
< Hrani Zranl s sy, (38)
T2,n
Continue this way and observe
N N N
||yn+1 —Yn || || TN, n+1x”+1 - S’FN,nx”H

< ||S1~N,n+133n+1 - SﬁrmanrIH + ||Sr]’\1[\;,nxn+1 - Sr]’\]{;,nwn”

TN, — TN,
< [l TNl N 4 e — 2l
TN,n ’

< L|TN,n+1 - TN,nl

+ [ 2n41 — n- (3.9)
TN,n

Substituting (3.8)-(3.9) into (3.7) gives us that
o~ [rines = il
[Sn1%n41 = Snanl| < LZ M + [[2n+1 — nll- (3.10)
=1 o

By virtue of Condition (C4), we have r > 0 such that r; , > r for all j and n. Also,
we may assume that L is big enough so that

L > |\WSpxn| + || f(zn)] for all n.
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We then infer that
[Znt2 = Tnta |l = [ant1 f(@ns1) + (1 — A1) W Snp1Znta
—anf(zy) — (1 — an)WSpz,|
<N = ang1)(WSnp1ny1 — WShxy) + (i — a1 )W Snaa||
+ a1 (f (@n41) = f(2n) + (@ns1 — an) f(20)]
< (1= ans 1) [Sn41%n41 — SnZnll + any1al|Tnr1 — 2|
+ |on — an 1| [|[WSnan — f(20)||

N
Tin+1 — Ti,n|
< 1= (1= @anllans = al) + LY [T

i=1 L
+ lan = anp1|([[WSnzall + [ £ (22)])
<[ -1 -a)apti]|znsr —
|
+L (Tgm,nﬂ — o] + |an —an+1|>. (3.11)
Conditions (C1)-(C3) allow us to apply Lemma 2.4 to (3.11) to obtain (3.3). O
Lemma 3.4. We have
(i) For each 1 <j <N,
lim [z, — S7, x| = 0. (3.12)
(ii) For each 1 < j < N and with rj = lim,, o0 7j pn,
lim ||z, — SﬁjmnH =0. (3.13)
(iil) limp—oo ||2n — Way|| = 0.
Proof. (i) Since Szj,n is firmly nonexpansive, we deduce that, for each p € F,

lzn = 87, @nll® = (@0 = p) = (S, 20 — D)

Tjn Tjn

= llzn —plI? + 15

J,m

Zn = pl* = 2(xn —p, S}, 0 — D)

< lwn = plI® + 157, 20 — plI* = 2|15, 20 — I
= ||z — plI* = 1S, zn — pII*. (3.14)

We now use backward induction to prove (3.12); thus, we first prove that (3.12)
holds for j = N. To see this, we compute

|1 = Pl = llonf(zn) + (1 = @) WS}, S2 SN 2 —p|?
< anllf(wa) =l + (=) [WS), 82, SN o —pl*  (3.15)
<|IS7%, @0 = pl* + Ocn, (3.16)

where 0 is a constant such that 6 > sup, > || f(zn) — pl|*.
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Combining (3.14) and (3.16) (with j = N), and using Lemma 3.3, we get

lzn = SN, @all® < ln = plI” = |01 = pII* + 6y — 0 (as 0 — oc).

This proves (3.12) for j = N.
Assume now that (3.12) holds true for every j =1+ 1,--- , N. We next prove that
(3.12) remains true for j = I. To see this, we use (3.15) to get

1241 =l < IIS;

Tin

"'ngmxn — | + Oy, (3.17)

However, we also have

185, -+ Sy n =PI S NS, - SN w0 = Sy, @nll + (157, 20 — D
<IISHEL S =l + 187, 20— pll
1 !
<|SEEL SN wn = S |
+ ”Si:ll,nxn - aan =+ ||S£l,n$n - pH
< NS o S an =
IS a0 = 2all + 1S5, 20 — D]
Ti4+1,n" T n Tin T
N
< D NS e = wall + 1S, xn — pll- (3.18)
j=i+1
Note that, by the induction assumption, we have
N
Op = Z 157, ,&n — znll = 0 asn — oo.
j=l+1 '
Consequently, we obtain from (3.18)
185, - St @ = pI* < 1S5, @0 = pII* + 049, (3.19)

where ¢ is a constant such that § > sup,,>q(on + 2”5%,,15% —p||). Now combining
(3.14), (3.17) and (3.19), and using Lemma 3.3, we get

= Sy, 2al® < llzn —pl* — |15,

Tin

xn_pHQ

1,n

= llzn = pl* = llznsr — 2l

+ s —plI? = ISy, , - S o0 — ol
1S5, St =PI = 1ISF, 0 = pII?

< llwn = plI* = l2ns1 = plI* + b + 6oy — 0.

This completes the induction and hence we conclude that (3.12) is valid for all 1 <
j<N.
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(ii) By Lemma 3.1, the fact that 7, — r; > 0 (as n — o) and the boundedness
of {z,}, we get, for each 1 < j < N,

. . [ — .
152, en — St el < =T 0 0 (s o0).
J

This together with (3.12) implies (3.13).

(iii) It suffices to prove that ||z, +1 — Wz, | — 0 since ||zp41 — 25| — 0 by Lemma
3.6. We have via (3.5) and with Ly a constant such that Ly > || f(z,)| + ||[Wz,|| for
all n,

o[ f(zn) = Wap|| + (1 — o) [WSpzn — Way|
an Ly + ||Snn — 20| (3.20)

However, by repeatedly using the triangle inequality and (3.12), it is easily found that

|Tner — Wan| <
<

[Snzn — xn|| < ZH ,.Mxn—an —0 (asn— ).

Consequently, it follows from (3.20) that |[2,+1 — Wx,|| — 0 as required. O
We are now in a position to state and prove the main result of this paper.

Theorem 3.5. Let C' be a nonempty closed conver subset of a real Hilbert space H,
let {G; } "~ be a family of N bifunctions from C' x C into R, each of which satisfies
properties (A1)-(A4), and let W : C — C be a nonexpansive mapping. Assume
the common solution set F as defined in (3.1) is nonempty. Let f : C — C be
an a-contraction. Moreover, assume that the sequences {an} and {r;,}}_, satisfy
conditions (C1)-(Cy). Then the sequence {x,} generated by Algorithm (3.2) converges
in norm to the unique solution x* of the variational inequality (VI):

z*eF, (I-flz*,o—2")>0, xz€F. (3.21)
Alternatively, x* is the unique fized point of the contraction Ppf (i.e., x* = (Ppf)x*).

Proof. Let z* be the unique fixed point of the contraction Pgf; hence the unique
solution of VI (3.21). To prove that ,, — «* in norm, we estimate the distance from
Znt1 to z* in the following way (in the first inequality, we use the trivial inequality
llu+v[]? < |lul|? + 2(v,u + v) for all u,v € H):

[p41 = 212 = [[(1 = an)(WSnay — %) + an(f(2s) — )|
< (1 = an)(WSpan — 2)|* + 200 (f (2n) — 2", Tpp1 — 2)
< (1= an)?[|wn — 2|1 + 200 (f(2n) — f(2"), Tny1 — %)
+ 200 (f (2") — 2%, Zppq — 27)
< (1= an)?zn — *|* + 2anal|z, — a*[||znr1 — 2|
+ 200, (f (") — ¥, 2Py — ")
< (1= an)?lan — "2 + anallfon — 27| + 2nss — 2 2)

+ 20, (f(x") — 2, 2py1 — ™).
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It turns out that
(1—an)?+ ana
1—a,a

20 —(7(a") = 2", s — ")

+

2

«
1— k2 n k2
( 2000 o — a4 o |
+

(f(@") — 2™ wpy — %)

lns1 = 2** < ln — 2*||?

1—a,a
= (1= Bn)lzn — 2*|* + Ban, (3.22)
where ( )
2(1 — a)a, _
B’I’L = m = O(Oén) (aS n — OO)
and )
- - K12 *\ K
’Vn - 2(1 _ Oé) (O[nH.i?n T || +2<f(!1) ) z 7xn+1 xz >) .
By conditions (C4)-(C3), we easily find that
lim 8, =0 and Zﬁn = 00. (3.23)

n=1
Thus, in order to apply Lemma 2.4, it remains for us to prove that limsup,,_, ., 7n < 0;
equivalently,
limsup(f(z*) — «*, 2, — ") <0. (3.24)

To see (3.24), we take a subsequence {z,} of {z,} in such a way that
limsup(f(z*) — 2%, 2, —2%) = lm (f(z") — 2",z —27).
Due to boundedness, we may further assume, with no loss of generality, that x,» — &
weakly. The demiclosedness principle (Lemma 2.3) together with Lemma 3.4(ii)-(iii)
ensures that, for every 1 < j < N, & € Fiz(W)nN Fix(Sﬂj); hence, £ € F. We
therefore arrive at
limsup(f(2%) — 2°, 70 — 7%) = (f(z") — 2%, — 27) <0

due to VI (3.21).

Finally, by virtue of (3.23) and (3.24), we can apply Lemma 2.4 to the relation
(3.22) to conclude that ||z, —2*|| — 0 as n — oo. O

The case of N = 1 recovers a result of [20].

Corollary 3.6. (Theorem 3.2 of [20]) Let C be a nonempty closed convex subset of
H, G:CxC — R a bifunction satisfying (A1)-(A4), and W : C — C a nonexpansive
mapping such that EP(G) N Fix(W) # 0. Moreover, let f : C — C be a contraction.
Let {x,,} be generated by the iterative algorithm (with initial guess xo € H ):

Tn1 = oanf(rn) + (1= an)WS,, zn,



EQUILIBRIUM AND FIXED POINT PROBLEMS 235

where {ay,} C (0,1) and {r,} C (0,00) satisfy the conditions:
(C) lim a, =0 and Y,° | a, = o0;

(C2) Eff:l |y — anq1] < 00 and Z?O’Lozl |71 — Tn| < 00;
(C3) liminfr, > 0.
n—oo

Then {x,} converges in mnorm to the unique fized point of the contraction
Pppynrizw)f-
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