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Abstract. In this paper we construct a new hybrid extragradient method for finding a common
element of the fixed point set of an asymptotically strict pseudo-contraction in the intermediate

sense and the solution set of the variational inequality for an inverse-strongly monotone mapping in

a Hilbert space. A strong convergence theorem of the proposed method is established and some of
its special cases are also discussed.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let C be
a nonempty subset of H. A mapping T : C → H is L-Lipschitz continuous (L > 0)
if ‖Tx − Ty‖ ≤ L‖x − y‖, for all x, y ∈ C. We denote by I the identity mapping
of H. Recently, Sahu, Xu and Yao [16] introduced the class of asymptotically strict
pseudo-contractions in the intermediate sense which are not necessarily Lipschitzian.
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Definition 1.1. A mapping S : C → H is an asymptotically κ-strict pseudo-
contraction in the intermediate sense with sequence {γn} if there exist a constant
κ ∈ [0, 1) and a sequence {γn} ⊂ [0,∞) with lim

n→∞
γn = 0 such that

lim sup
n→∞

sup
x,y∈C

[‖Snx−Sny‖2−(1+γn)‖x−y‖2−κ‖(I−Sn)x−(I−Sn)y‖2] ≤ 0. (1.1)

Throughout the paper we assume that

cn := max{0, sup
x,y∈C

[‖Snx− Sny‖2 − (1 + γn)‖x− y‖2 − κ‖(I − Sn)x− (I − Sn)y‖2]}.

Then cn ≥ 0, for all n ∈ N, lim
n→∞

cn = 0 and (1.1) reduces to the relation

‖Snx− Sny‖2 ≤ (1 + γn)‖x− y‖2 + κ‖(I − Sn)x− (I − Sn)y‖2 + cn, (1.2)

for all n ∈ N and x, y ∈ C. In particular, when cn ≡ 0 (1.2), S is an asymptotically
κ-strict pseudo-contraction with sequence {γn} introduced by Kim and Xu [8].

The variational inequality problem for a mapping A : C → H due to Stampacchia
[18] is to find an element x̄ ∈ C such that 〈Ax̄, y − x̄〉 ≥ 0, for all y ∈ C. The
set of solutions of this variational inequality problem is denoted by Ω(A,C). The
purpose of this paper is to establish an iterative method to approximate an element
of F (S)∩Ω(A,C), where F (S) = {x ∈ C : Sx = x} denotes the set of fixed points of
a self-mapping S of C.

A mapping A is α-inverse-strongly monotone [10] if there exists a positive constant
α such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, for all x, y ∈ C.

Iiduka and Takahashi [6] constructed the following iterative scheme to generate a
sequence converging strongly to an element of F (S) ∩ Ω(A,C), where S is a nonex-
pansive mapping and A is an inverse-strongly monotone mapping: given an arbitrary
x0 ∈ C,

xn+1 = αnx0 + (1− αn)SPC(xn − λnAxn).

Zeng and Yao [22] proposed a new iterative method for a nonexpansive mapping S and
a monotone and Lipschitz continuous mapping A and obtained a weak convergence
theorem: given an arbitrary x0 ∈ C,{

yn = PC(xn − λnAxn),
xn+1 = αnx0 + (1− αn)SPC(xn − λnAyn).

In this paper, based on the extragradient method [9] and the modified Mann iteration
[7, 8, 11, 12, 17], a new hybrid extragradient method for an asymptotically strict
pseudo-contraction in the intermediate sense S : C → C and an inverse-strongly
monotone mapping A : C → H in a Hilbert space is defined as follows: given a fixed
x0 ∈ C and an arbitrary x1 ∈ C, yn = PC(xn − λnAxn),

tn = µnx0 + (1− µn)PC(yn − λnAyn),
xn+1 = (1− αn − βn)xn + αntn + βnSntn.
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Using this iteration, we obtain strong convergence of the sequence {xn} with limit
PF (S)∩Ω(A,C)x0; see Section 3. Further, as an application, we study some special cases
of this theorem in Section 4. Those results also extend some recent results; see, e.g.,
[2, 3, 5, 6, 22].

2. Preliminaries

We denote by ⇀ and → weak convergence and strong convergence, respectively.
Let C be a nonempty subset of a real Hilbert space H. A mapping A : C → H is
monotone if 〈Ax − Ay, x − y〉 ≥ 0, for all x, y ∈ C. An α-inverse-strongly monotone
mapping is monotone and (1/α)-Lipschitz continuous.

A mapping S : C → C is called a κ-strict pseudo-contraction, introduced by
Browder and Petryshyn [1], if there exists a constant κ ∈ [0, 1) such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + κ‖(I − S)x− (I − S)y)‖2, for all x, y ∈ C.

A 0-strict pseudo-contraction is nonexpansive and an asymptotically 0-strict pseudo-
contraction is asymptotically nonexpansive [4]. A mapping T : C → C is uniformly
L-Lipschitzian (L > 0) if ‖Tnx−Tny‖ ≤ L‖x− y‖, for all n ∈ N and for all x, y ∈ C.
It is noticeable that every asymptotically κ-strict pseudo-contraction with sequence

{γn} is uniformly L-Lipschitzian with L = sup
{

κ+
√

1+(1−κ)γn

1+κ : n ≥ 1
}

, see [8].

A multi-valued mapping T : H → 2H is monotone if for all x, y ∈ H, f ∈ Tx and
g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal
if its graph G(T ) is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping T is maximal if and only if whenever
(x, f) ∈ H × H, 〈x − y, f − g〉 ≥ 0, for all (y, g) ∈ G(T ), implies f ∈ Tx. Let
A : C → H be a monotone and Lipschitz continuous mapping and let NCv be the
normal cone to C at v ∈ C, i.e., NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, for all u ∈ C}.
Define

Tv =
{

Av + NCv, if v ∈ C,
∅, if v 6∈ C.

Then T is maximal monotone, and 0 ∈ Tv if and only if v ∈ Ω(A,C); see [14].
Suppose that C is a nonempty closed convex subset of a real Hilbert space H,

Then for every point x ∈ H there exists a unique nearest point in C, denoted by
PCx, such that ‖x − PCx‖ ≤ ‖x − y‖, for all y ∈ C. The mapping PC is called the
metric projection of H onto C. We recall some properties of the metric projection in
a Hilbert space.

Lemma 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
(i) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉, for all x, y ∈ H.
(ii) 〈x− PCx, PCx− y〉 ≥ 0, for all x ∈ H, y ∈ C.
(iii) (see [19]) Given x ∈ H and y ∈ C, then y = PCx if and only if

〈x− y, y − z〉 ≥ 0, for all z ∈ C.

Notice that, if A : C → H is a monotone mapping, it follows from Lemma 2.1(ii)
that

u ∈ Ω(A,C) ⇐⇒ u = PC(I − λA)u, for all λ > 0.
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We will need the following lemmas to prove our main results.

Lemma 2.2. [13] Let X be an inner product space. For all x, y, z ∈ X and all
α, β, γ ∈ [0, 1] with α + β + γ = 1, we have

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 −αβ‖x− y‖2 −αγ‖x− z‖2 − βγ‖y− z‖2.

Lemma 2.3. [20, Lemma 2.5] Let {sn} be a nonnegative sequence such that

sn+1 ≤ (1− αn)sn + αnβn + γn, for all n ≥ 1,

where {αn}, {βn} and {γn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1],
∞∑

n=1
αn = ∞, or equivalently,

∞∏
n=1

(1− αn) = 0;

(ii) lim sup
n→∞

βn ≤ 0;

(iii) γn ≥ 0 and
∞∑

n=1
γn < ∞.

Then lim
n→∞

sn = 0.

Lemma 2.4. [16, Lemma 2.6] Let C be a nonempty subset of a Hilbert space and let
S : C → C be an asymptotically κ-strict pseudo-contraction in the intermediate sense
with sequence {γn}. Then, for all x, y ∈ C and n ≥ 1, we have that

‖Snx− Sny‖ ≤ 1
1− κ

[
κ‖x− y‖+

√
[1 + (1− κ)γn]‖x− y‖2 + (1− κ)cn

]
.

Lemma 2.5. [16, Lemma 2.7] Let C be a nonempty subset of a Hilbert space and let
S : C → C be a uniformly continuous and asymptotically strict pseudo-contraction in
the intermediate sense. Let {xn} be a sequence in C such that lim

n→∞
‖xn − xn+1‖ = 0

and lim
n→∞

‖xn − Snxn‖ = 0. Then lim
n→∞

‖xn − Sxn‖ = 0.

Lemma 2.6. (Demiclosedness principle [16, Proposition 3.1]) Let C be a nonempty
closed convex subset of a Hilbert space and let S : C → C be a continuous and
asymptotically strict pseudo-contraction in the intermediate sense. Then I − S is
demiclosed at zero in the sense that if {xn} is a sequence in C such that xn ⇀ x ∈ C
and lim sup

m→∞
lim sup

n→∞
‖xn − Smxn‖ = 0, then (I − S)x = 0.

Lemma 2.7. [16, Proposition 3.2]) Let C be a nonempty closed convex subset of a
Hilbert space and let S : C → C be a continuous and asymptotically strict pseudo-
contraction in the intermediate sense. Then F (S) is closed and convex.

3. Strong Convergence Theorem

In this section we shall present a strong convergence theorem for a new hybrid
iterative method to find a common element of the fixed point set of an asymptoti-
cally strict pseudo-contraction in the intermediate sense and the solution set of the
variational inequality for an inverse-strongly monotone mapping.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H,
A : C → H a ρ-inverse-strongly monotone mapping, and S : C → C a uniformly
continuous and asymptotically κ-strict pseudo-contraction in the intermediate sense

with sequence {γn} such that F (S) ∩ Ω(A,C) 6= ∅ and
∞∑

n=1
γn < ∞. Let {xn}, {yn}

and {tn} be the sequences generated by: given a fixed x0 ∈ C and an arbitrary x1 ∈ C,

 yn = PC(xn − λnAxn),
tn = µnx0 + (1− µn)PC(yn − λnAyn),
xn+1 = (1− αn − βn)xn + αntn + βnSntn,

(3.1)

where {λn} ⊂ [0,∞) and {µn}, {αn}, {βn} ⊂ [0, 1] are such that αn + βn ≤ 1.
Suppose that the following conditions hold:
(i) {λn} ⊂ [a, b], for some a, b ∈ (0, 2ρ);

(ii) lim
n→∞

µn = 0,
∞∑

n=1
µn = ∞;

(iii) {αn} ⊂ [κ + ε, 1], {βn} ⊂ [δ, 1], for some ε, δ ∈ (0, 1),
∞∑

n=1
βncn < ∞;

(iv) the series
∞∑

n=1
|λn+1 − λn|,

∞∑
n=1

|µn+1 − µn|,
∞∑

n=1
|αn+1 − αn| and

∞∑
n=1

|βn+1 − βn|
are convergent;
(v) lim

n→∞
sup
u∈D

‖Sn+1u− Snu‖ = 0, for every bounded subset D of C.

Then {xn}, {yn} and {tn} converge strongly to the point PF (S)∩Ω(A,C)x0.

Proof. For x, y ∈ C, since λn < 2ρ, we have

‖(I − λnA)x− (I − λnA)y‖2

= ‖x− y‖2 − 2λn〈x− y, Ax−Ay〉+ λ2
n‖Ax−Ay‖2

≤ ‖x− y‖2 + λn(λn − 2ρ)‖Ax−Ay‖2 ≤ ‖x− y‖2 (3.2)

which shows that I−λnA is nonexpansive. Note that the set F (S)∩Ω(A,C) is closed
and convex by Lemma 2.7 and [21, Lemma 3.1]. The proof is divided into five steps.

Step 1. We will prove that {xn} is bounded. Let p ∈ F (S) ∩ Ω(A,C) and zn =
PC(yn−λnAyn). Then p = PC(p−λnAp), 〈Ap, yn−p〉 ≥ 0 and 〈Ayn−Ap, yn−p〉 ≥ 0,
for all n. We have

‖yn − p‖2 = ‖PC(xn − λnAxn)− PC(p− λnAp)‖ ≤ ‖xn − p‖,
‖zn − p‖2 = ‖PC(yn − λnAyn)− PC(p− λnAp)‖ ≤ ‖yn − p‖ ≤ ‖xn − p‖,
‖tn − p‖2 ≤ µn‖x0 − p‖2 + (1− µn)‖zn − p‖2 ≤ max{‖x0 − p‖2, ‖xn − p‖2}. (3.3)
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Recall that κ < αn. By Lemma 2.2, we obtain from (1.2), (3.1) and (3.3) that

‖xn+1 − p‖2 ≤ (1− αn − βn)‖xn − p‖2 + αn‖tn − p‖2 + βn‖Sntn − p‖2

− αnβn‖tn − Sntn‖2

≤ (1− αn − βn)‖xn − p‖2 + (αn + βn + γn)‖tn − p‖2

+ βn(κ− αn)‖tn − Sntn‖2 + βncn

≤ (1− αn − βn)‖xn − p‖2 + (αn + βn + γn)‖tn − p‖2 + βncn

≤ (1 + γn)
[
max

{
‖x0 − p‖2, ‖xn − p‖2

}
+ βncn

]
. (3.4)

Next we shall prove by induction that for all n ≥ 1,

‖xn+1 − p‖2 ≤

 n∏
j=1

(1 + γj)

[
max

{
‖x0 − p‖2, ‖x1 − p‖2

}
+

n∑
i=1

βici

]
. (3.5)

Indeed, if n = 1, (3.4) yields (3.5). Suppose that (3.5) holds for some integer n ≥ 1.
Then by (3.4) and the induction hypothesis,

‖xn+2 − p‖2 ≤ (1 + γn+1)
[
max{‖x0 − p‖2, ‖xn+1 − p‖2}+ βn+1cn+1

]
≤ (1 + γn+1)


 n∏

j=1

(1 + γj)

 [
max{‖x0 − p‖2, ‖x1 − p‖2}

+
n∑

i=1

βici

]
+ βn+1cn+1

}

≤

n+1∏
j=1

(1 + γj)

[
max{‖x0 − p‖2, ‖x1 − p‖2}+

n+1∑
i=1

βici

]
.

Hence (3.5) holds for for n + 1.
Using the inequality 1 + t ≤ et, for t ≥ 0, we derive from (3.5) that

‖xn+1 − p‖2 ≤ e

nP

j=1
γj

[
max{‖x0 − p‖2, ‖x1 − p‖2}+

n∑
i=1

βici

]

≤ e

∞P

j=1
γj

[
max{‖x0 − p‖2, ‖x1 − p‖2}+

∞∑
i=1

βici

]
, n ∈ N.

Since
∑

γn < ∞ and
∑

βncn < ∞, {xn} is bounded, and so are {yn}, {zn} and {tn}.
Step 2. We will prove that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.6)

Since {xn} and {yn} are bounded and A is Lipschitz continuous, {Axn} and {Ayn}
are bounded. Lemma 2.4 states that

‖Sntn − p‖ ≤ 1
1− κ

[
κ‖tn − p‖+

√
[1 + (1− κ)γn]‖tn − p‖2 + (1− κ)cn

]
,
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and thus {Sntn} is also bounded. Therefore there exists a positive number M such
that {‖zn‖}, {‖tn‖}, {‖Axn‖}, {‖Ayn‖}, and {‖Sntn‖} are all bounded by M . Since
PC and I − λn+1A are nonexpansive, it follows that

‖yn+1 − yn‖ ≤ ‖PC(I − λn+1A)xn+1 − PC(I − λn+1A)xn‖
+ ‖PC(I − λn+1A)xn − PC(I − λnA)xn‖

≤ ‖xn+1 − xn‖+ |λn+1 − λn|‖Axn‖
≤ ‖xn+1 − xn‖+ M |λn+1 − λn|

and similarly,

‖zn+1 − zn‖ = ‖PC(I − λn+1A)yn+1 − PC(I − λnA)yn‖
≤ ‖yn+1 − yn‖+ |λn+1 − λn|‖Ayn‖
≤ ‖xn+1 − xn‖+ 2M |λn+1 − λn|.

Hence

‖tn+1 − tn‖ = ‖µn+1x0 + (1− µn+1)zn+1 − µnx0 − (1− µn)zn‖
≤ |µn+1 − µn|‖x0‖+ (1− µn+1)‖zn+1 − zn‖+ |µn+1 − µn|‖zn‖
≤ ‖zn+1 − zn‖+ |µn+1 − µn|(‖x0‖+ ‖zn‖)
≤ ‖xn+1 − xn‖+ K|λn+1 − λn|+ K|µn+1 − µn|, (3.7)

where K = 2M + ‖x0‖. From (3.7) and

xn+1 = (1− αn − βn)xn + αntn + βnSntn,

xn = (1− αn−1 − βn−1)xn−1 + αn−1tn−1 + βn−1S
ntn−1,

we compute

‖xn+1 − xn‖
≤ (1− αn − βn)‖xn − xn−1‖+ (|αn − αn−1|+ |βn − βn−1|)‖xn−1‖

+ αn‖tn − tn−1‖+ |αn − αn−1|‖tn−1‖
+ βn‖Sntn − Sn−1tn−1‖+ |βn − βn−1|‖Sn−1tn−1‖

≤ (1− βn)‖xn − xn−1‖+ (|αn − αn−1|+ |βn − βn−1|)‖xn−1‖
+ Kαn|λn − λn−1|+ Kαn|µn − µn−1|+ |αn − αn−1|‖tn−1‖
+ βn‖Sntn − Sn−1tn−1‖+ |βn − βn−1|‖Sn−1tn−1‖

≤ (1− βn)‖xn − xn−1‖+ βn‖Sntn − Sn−1tn−1‖+ K|λn − λn−1|
+ K|µn − µn−1|+ 2K|αn − αn−1|+ 2K|βn − βn−1|.

Lemma 2.3 asserts from Conditions (iii)-(v) that lim
n→∞

‖xn+1−xn‖ = 0, and therefore

by (3.7),

lim
n→∞

‖tn+1 − tn‖ = 0. (3.8)

Step 3. Observe that limn→∞ ‖Sxn − xn‖ = 0.
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To see this, we need to prove that lim
n→∞

‖xn − Snxn‖ = 0. Indeed, it follows from

(3.3) that

(αn + βn)‖tn − p‖2 ≤ µn‖x0 − p‖2 + (αn + βn)‖xn − p‖2.

Since βn(αn − κ) ≥ εδ, the inequality (3.4) yields

εδ‖tn − Sntn‖2

≤ (1− αn − βn)‖xn − p‖2 − ‖xn+1 − p‖2 + (αn + βn + γn)‖tn − p‖2 + βncn

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + µn‖x0 − p‖2 + γn‖tn − p‖2 + βncn

≤ (‖xn − p‖+ ‖xn+1 − p‖)(‖xn − p‖ − ‖xn+1 − p‖) + µn‖x0 − p‖2

+ γn‖tn − p‖2 + βncn

≤ (‖xn − p‖+ ‖xn+1 − p‖)‖xn+1 − xn‖+ µn‖x0 − p‖2 + γn‖tn − p‖2 + βncn.

Therefore (3.6) implies that

lim
n→∞

‖tn − Sntn‖ = 0. (3.9)

From the definition of xn+1, we have

(αn + βn)‖tn − xn‖ = ‖(xn+1 − xn)− βn(Sntn − tn)‖
≤ ‖xn+1 − xn‖+ βn‖Sntn − tn‖.

Since αn + βn ≥ ε + δ, it follows from (3.6) and (3.9) that

lim
n→∞

‖tn − xn‖ = 0. (3.10)

By Lemma 2.4,

‖Sntn − Snxn‖

≤ 1
1− κ

[
κ‖tn − xn‖+

√
[1 + (1− κ)γn]‖tn − xn‖2 + (1− κ)cn

]
→ 0, as n →∞,

which, together with (3.9) and (3.10), implies that

‖xn − Snxn‖ ≤ ‖xn − tn‖+ ‖tn − Sntn‖+ ‖Sntn − Snxn‖ → 0, as n →∞.

Using (3.6) and Lemma 2.5, we obtain lim
n→∞

‖xn − Sxn‖ = 0.

Step 4. We shall prove that lim
n→∞

‖xn− yn‖ = 0. According to (3.2) and (3.3), we
have

‖tn − p‖2 ≤ µn‖x0 − p‖2 + (1− µn)‖zn − p‖2

≤ µn‖x0 − p‖2 + (1− µn)‖PC(yn − λnAyn)− PC(p− λnAp)‖2

≤ µn‖x0 − p‖2 + (1− µn)[‖yn − p‖2 + λn(λn − 2ρ)‖Ayn −Ap‖2]
≤ µn‖x0 − p‖2 + ‖yn − p‖2 + a(b− 2ρ)(1− µn)‖Ayn −Ap‖2

≤ µn‖x0 − p‖2 + ‖xn − p‖2 + a(b− 2ρ)(1− µn)‖Ayn −Ap‖2.
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Combining this inequality with (3.4) yields

‖xn+1 − p‖2 ≤ (1 + γn)‖xn − p‖2 + µn(αn + βn + γn)‖x0 − p‖2

+ a(b− 2ρ)(1− µn)(αn + βn + γn)‖Ayn −Ap‖2 + βncn

which asserts that

a(2ρ− b)(1− µn)(αn + βn + γn)‖Ayn −Ap‖2

≤ (1 + γn)‖xn − p‖2 − ‖xn+1 − p‖2 + µn(αn + βn + γn)‖x0 − p‖2 + βncn

≤ γn‖xn − p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)(‖xn − xn+1‖)
+ µn(αn + βn + γn)‖x0 − p‖2 + βncn.

Since µn → 0, αn + βn ≥ ε + δ and a, b ∈ (0, 2ρ), we obtain from (3.6) that

lim
n→∞

‖Ayn −Ap‖ = 0. (3.11)

Now, apply Lemma 2.1(i) to get

‖zn − p‖2 = ‖PC(yn − λnAyn)− PC(p− λnAp)‖2

≤ 〈(yn − λnAyn)− (p− λnAp), zn − p〉

=
1
2

[
‖(yn − λnAyn)− (p− λnAp)‖2 + ‖zn − p‖2

−‖(yn − λnAyn)− (p− λnAp)− (zn − p)‖2
]

≤ 1
2

[
‖yn − p‖2 + ‖zn − p‖2 − ‖yn − zn‖2 + 2λn〈yn − zn, Ayn −Ap〉

−λ2
n‖Ayn −Ap‖2

]
which shows that

‖zn − p‖2 ≤ ‖yn − p‖2 − ‖yn − zn‖2 + 2λn〈yn − zn, Ayn −Ap〉
− λ2

n‖Ayn −Ap‖2.

Using this inequality, by (3.3) we have

‖tn − p‖2 ≤ µn‖x0 − p‖2 + (1− µn)‖zn − p‖2

≤ µn‖x0 − p‖2 + ‖xn − p‖2 − ‖yn − zn‖2 + 2λn〈yn − zn, Ayn −Ap〉
− λ2

n‖Ayn −Ap‖2,

which, together with (3.10) and (3.11), yields

‖yn − zn‖2 ≤ µn‖x0 − p‖2 + ‖xn − p‖2 − ‖tn − p‖2 + 2λn〈yn − zn, Ayn −Ap〉
− λ2

n‖Ayn −Ap‖2

≤ µn‖x0 − p‖2 + (‖xn − p‖+ ‖tn − p‖)‖xn − tn‖
− λ2

n‖Ayn −Ap‖2 → 0, as n →∞.

Since µn → 0, we have ‖tn − zn‖ = µn‖x0 − zn‖ → 0. Consequently, ‖xn − yn‖ ≤
‖xn − tn‖+ ‖tn − zn‖+ ‖zn − yn‖ → 0, as claimed.
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Step 5. Claim that lim
n→∞

‖xn − x∗‖ = 0, where x∗ = PF (S)∩Ω(A,C)x0. To see

this, we need to show that lim sup
n→∞

〈x0 − x∗, xn − x∗〉 ≤ 0. Choose a subsequence

{xnj
} of {xn} such that lim supn→∞〈x0 − x∗, xn − x∗〉 = limj→∞〈x0 − x∗, xnj

− x∗〉.
Since {xn} is bounded, we may assume without loss generality that {xnj

} converges
weakly to a point x̂ ∈ C, and thus {ynj

} also converges weakly to x̂. Since A is
Lipschitz continuous and ‖xn − yn‖ → 0, we obtain ‖Axn − Ayn‖ → 0. Now, we
show that x̂ ∈ F (S) ∩ Ω(A,C) from which it follows that 〈x0 − x∗, x̂ − x∗〉 ≤ 0 by
Lemma 2.1(iii). Since S is uniformly continuous and lim

n→∞
‖xn − Sxn‖ = 0, we have

lim
n→∞

‖xn − Smxn‖ = 0, for all m ∈ N; hence x̂ ∈ F (S) by Lemma 2.6. To prove

x̂ ∈ Ω(A,C), define a multi-valued function T : H → 2H by

Tv =
{

Av + NCv, if v ∈ C,
∅, if v 6∈ C.

Then T is maximal monotone. Let (v, w) ∈ G(T ) so that w ∈ Tv and w−Av ∈ NCv.
Hence

〈v − u, w −Av〉 ≥ 0, for all u ∈ C. (3.12)

On the other hand, since yn = PC(xn − λnAxn), by Lemma 2.1(iii), we have that
〈xn − λnAxn − yn, yn − v〉 ≥ 0, v ∈ C, or equivalently,〈

v − yn, Axn +
1
λn

(yn − xn)
〉
≥ 0, v ∈ C. (3.13)

If we put u = ynj in (3.12), then the monotonicity of A and (3.13) imply that

〈v − ynj
, w〉 ≥ 〈v − ynj

, Av〉

≥ 〈v − ynj
, Av〉 −

〈
v − ynj

, Axnj
+

1
λni

(ynj
− xnj

)
〉

= 〈v − ynj , Av −Aynj 〉+ 〈v − ynj , Aynj −Axnj 〉

−
〈

v − ynj
,

1
λnj

(ynj
− xnj

)
〉

≥ 〈v − ynj
, Aynj

−Axnj
〉 −

〈
v − ynj

,
1

λnj

(ynj
− xnj

)
〉

.

Then take the limit as j → ∞ to get 〈v − x̂, w〉 ≥ 0. Since T is maximal monotone,
x̂ ∈ T−10 and hence x̂ ∈ Ω(A,C). This shows that x̂ ∈ F (S) ∩ Ω(A,C) and so
〈x0 − x∗, x̂− x∗〉 ≤ 0. Therefore

lim sup
n→∞

〈x0 − x∗, xn − x∗〉 = 〈x0 − x∗, x̂− x∗〉 ≤ 0. (3.14)

We have

‖tn − x∗‖2 = ‖µn(x0 − x∗) + (1− µn)(zn − x∗)‖2

≤ (1− µn)2‖zn − x∗‖2 + 2〈µn(x0 − x∗), tn − x∗〉
≤ (1− µn)‖xn − x∗‖2 + 2µn〈x0 − x∗, tn − x∗〉,
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and so by (3.4) this implies that

‖xn+1 − x∗‖2

≤ (1− αn − βn)‖xn − x∗‖2 + (1− µn)(αn + βn)‖xn − x∗‖2

+ 2µn(αn + βn)〈x0 − x∗, tn − x∗〉+ γn‖tn − x∗‖2 + βncn

= [1− µn(αn + βn)]‖xn − x∗‖2 + µn(αn + βn)[2〈x0 − x∗, tn − x∗〉]
+ γn‖tn − x∗‖2 + βncn.

By hypotheses,
∑

µn(αn + βn) = ∞,
∑

γn < ∞ and
∑

βncn < ∞. Moreover, it
follows from (3.14) that

lim sup
n→∞

〈x0 − x∗, tn − x∗〉 ≤ lim
n→∞

〈x0 − x∗, tn − xn〉+ lim sup
n→∞

〈x0 − x∗, xn − x∗〉

≤ 0.

We conclude from Lemma 2.3 that lim
n→∞

‖xn − x∗‖ = 0 and hence {yn} and {tn} also
converge strongly to x∗. This completes the proof. �

4. Applications

In this section we apply Theorem 3.1 to demonstrate some special cases.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space
H, T : C → C a τ -strict pseudo-contraction and S : C → C a uniformly continuous
and asymptotically κ-strict pseudo-contraction in the intermediate sense with sequence

{γn} such that F (S) ∩ F (T ) 6= ∅ and
∞∑

n=1
γn < ∞. Let {xn}, {yn} and {tn} be the

sequences defined by (3.1), where A = I − T . Suppose that Conditions (i)-(v) as in
Theorem 3.1 hold, where ρ = (1− τ)/2. Then {xn}, {yn} and {tn} converge strongly
to the point PF (S)∩F (T )x0.

Proof. Observe that A is a [(1 − τ)/2]-inverse-strongly monotone mapping. Indeed,
since for all x, y ∈ C,

‖Tx− Ty‖2 = ‖(I −A)x− (I −A)y)‖2

= ‖x− y‖2 + ‖Ax−Ay‖2 − 2〈Ax−Ay, x− y〉

and
‖Tx− Ty‖2 ≤ ‖x− y‖2 + τ‖(I − T )x− (I − T )y)‖2,

it follows that

〈Ax−Ay, x− y〉 ≥ 1
2
(1− τ)‖Ax−Ay‖2.

For any λ > 0, by (2.1) we have

Tu = u ⇐⇒ u = u− λAu = PC(u− λAu)

⇐⇒ 〈Au, y − u〉 ≥ 0, for all y ∈ C.

The desired conclusion follows from Theorem 3.1. �
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We remark that Condition (v) in Theorem 3.1 is not required, in particular, if S
is nonexpansive.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H,
T : C → C a τ -strict pseudo-contraction and S : C → C a nonexpansive mapping
such that F (S) ∩ F (T ) 6= ∅. Let {xn}, {yn} and {tn} be the sequences generated by:
given a fixed x0 ∈ C and an arbitrary x1 ∈ C, yn = PC(xn − λnAxn),

tn = µnx0 + (1− µn)PC(yn − λnAyn),
xn+1 = (1− αn − βn)xn + αntn + βnStn,

where A = I − T , {λn} ⊂ [0,∞), and {µn}, {αn}, {βn} are sequences in [0, 1] such
that αn + βn ≤ 1. Suppose that Conditions (i)-(iv) as in Theorem 3.1 hold, where
ρ = (1−τ)/2. Then {xn}, {yn} and {tn} converge strongly to the point PF (S)∩F (T )x0.

Proof. The proof is the same as that of Theorem 3.1 when κ = 0, γn = 0 and cn = 0,
and hence is omitted. �

It is well known (see [15]) that if B : H → 2H is a maximal monotone mapping,
then for each u ∈ H and λ > 0 there is a unique z ∈ H such that u ∈ (I + λB)(z).
The (single-valued) function JB

λ := (I + λB)−1 thus defined is called the resolvent of
B of parameter λ. The mapping JB

λ : H → H is nonexpansive and JB
λ (z) = z if and

only if 0 ∈ B(z).

Theorem 4.3. Let H be a real Hilbert space, A : H → H a ρ-inverse-strongly
monotone mapping, B : H → 2H a maximal monotone mapping and JB

r the resolvent
of B, for r > 0, such that A−10∩B−10 6= ∅. Let {xn}, {yn} and {tn} be the sequences
generated by: given a fixed x0 ∈ H and an arbitrary x1 ∈ H, yn = xn − λnAxn,

tn = µnx0 + (1− µn)(yn − λnAyn),
xn+1 = (1− αn − βn)xn + αntn + βnJB

r tn,

where {λn} ⊂ [0,∞), and {µn}, {αn}, {βn} are sequences in [0, 1] such that αn+βn ≤
1. Suppose that Conditions (i)-(iv) as in Theorem 3.1 hold. Then {xn}, {yn} and
{tn} converge strongly to the point PA−10∩B−10x0.

Proof. This is the case of Theorem 3.1 when S = JB
r and PH = I such that κ = 0,

γn = 0 and cn = 0. Then Ω(A,C) = A−10 and F (JB
r ) = B−10 and so the desired

result follows. �
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