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LU-CHUAN CENG∗, ADRIAN PETRUŞEL∗∗, SILVIU SZENTESI∗∗∗ AND JEN-CHIH YAO∗∗∗∗

Dedicated to Wataru Takahashi on the occasion of his retirement

∗Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

E-mail: zenglc@hotmail.com

∗∗Department of Mathematics, Babeş-Bolyai University Cluj-Napoca
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Abstract. Let X be a uniformly convex Banach space with a uniformly Gâteaux differentiable

norm, let C be a nonempty closed convex subset of X and let T = {Tt : t ∈ G} be a one-parameter
family of Lipschitz pseudocontractions on C such that each Tt : C → X satisfies the weakly inward

condition. For any contraction f : C → C, it is shown that the path t 7→ xt, t ∈ [0, 1), in C, denoted

by xt = αtTtxt + (1− αt)f(xt) is continuous and strongly converges to a common fixed point of T ,
which is the unique solution of some variational inequality. On the other hand, if T = {Tt : t ∈ G}
is a family of uniformly Lipschitz pseudocontractive self-mappings on C, it is also shown that the

iteration process:
x0 ∈ C, xn+1 = βn(αnTrnxn + (1− αn)xn) + (1− βn)f(xn), n ≥ 0,

strongly converges to the common fixed point of T , which is the unique solution of the same varia-

tional inequality.
Key Words and Phrases: Viscosity approximation method, fixed point problem, variational

inequality, Lipschitz pseudocontraction, strong convergence, smooth and uniformly convex Banach
space.
2000 Mathematics Subject Classification: 49J40, 47H10, 47J25, 47H09.

The paper was presented at The 9th International Conference on Fixed Point Theory and Its

Applications, July 16-22, 2009, National Changhua University of Education, Changhua, Taiwan
(R.O.C.).

For the first author, this research was partially supported by the National Science Foundation of

China (10771141), Ph.D. Program Foundation of Ministry of Education of China (20070270004),
Science and Technology Commission of Shanghai Municipality grant (075105118) and Shanghai

Leading Academic Discipline Project (S30405). The third author thanks for the financial support
provided from National Council of Research of Higher Education in Romania (CNCSIS) by ”Planul

National, PN II (2007 - 2013) - Programul IDEI-1239”. For the forth author, this research was
partially supported by a grant from the grant NSC 98-2115-M-110-001.

203



204 LU-CHUAN CENG, SILVIU SZENTESI AND JEN-CHIH YAO,

1. Introduction

Let X be a real Banach space with norm ‖ · ‖ and let X∗ be its dual. The value of
x∗ ∈ X∗ at x ∈ X will be denoted by 〈x, x∗〉. The (normalized) duality mapping J
from X into the family of nonempty (by Hahn-Banach theorem) weak-star compact
subsets of its dual X∗ is defined by

J(x) = {ϕ ∈ X∗ : 〈x, ϕ〉 = ‖x‖2 = ‖ϕ‖2}, for all x ∈ X.

It is known that the norm of X is said to be Gâteaux differentiable (and X is said to
be smooth) if

lim
t→0

‖x+ ty‖ − ‖x‖
t

(1.1)

exists for each x, y in U = {x ∈ X : ‖x‖ = 1} the unit sphere of X. It is said to be
uniformly Gâteaux differentiable if for each y ∈ U , this limit is attained uniformly for
x ∈ U . Finally, the norm is said to be uniformly Fréchet differentiable (and X is said
to be uniformly smooth) if the limit in (1.1) is attained uniformly for (x, y) ∈ U ×U .
Since the dual X∗ of X is uniformly convex if and only if the norm of X is uniformly
Fréchet differentiable, every Banach space with a uniformly convex dual is reflexive
and has a uniformly Gâteaux differentiable norm. The converse implication is false.
A discussion of these and related concepts may be found in [5].

Recall also that if X is smooth then J is single-valued and continuous from the
norm topology of X to the weak star topology of X∗, i.e., norm-to-weak∗ continuous.
It is also well-known that if X has a uniformly Gâteaux differentiable norm, then J is
uniformly continuous on bounded subsets of X form the strong topology of X to the
weak star topology of X∗, i.e., uniformly norm-to-weak∗ continuous on each bounded
subset of X. Moreover, if X is uniformly smooth then J is uniformly continuous on
bounded subsets of X form the strong topology of X to the strong topology of X∗,
i.e., uniformly norm-to-norm continuous on each bounded subset of X. See [5] for
more details.

Let T be a mapping with domain D(T ) and range R(T ) in X. Denote by Fix(T )
the set of all fixed points of T , that is, Fix(T ) := {x ∈ D(T ) : Tx = x}. Following
Morales [13], T is called strongly pseudocontractive if for some constant k < 1 and
for all x, y ∈ D(T ),

(λ− k)‖x− y‖ ≤ ‖(λI − T )x− (λI − T )y‖

for all λ > k; while T is called a pseudocontraction if the last inequality holds for
k = 1. The mapping T is called Lipschitz if there exists L ≥ 0 such that ‖Tx−Ty‖ ≤
L‖x − y‖, for all x, y ∈ D(T ). The mapping T is called nonexpansive if L = 1 and
is called a (strict) contraction if L < 1. We use Π C to denote the collection of all
contractions on C with a suitable contractive constant α ∈ [0, 1), that is,

ΠC := {f : C → C, a contraction with a suitable contractive constant}.

It is clear that every nonexpansive mapping is a pseudocontraction. The converse
is not true in general. A counterexample can be found, e.g., in [22]. It follows
from a result of Kato [11] that T is pseudocontractive if and only if there exists
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j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2, for all x, y ∈ D(T ).

Let D be a nonempty subset of C. A retraction from C to D is a mapping Q :
C → D such that Qx = x for all x ∈ D. A retraction Q from C to D is nonexpansive
if Q is nonexpansive (i.e., ‖Qx − Qy‖ ≤ ‖x − y‖ for all x, y ∈ C). A retraction Q
from C to D is sunny if Q satisfies the property: Q(Qx+ t(x−Qx)) = Qx for each
x ∈ C and t ≥ 0 whenever Qx+ t(x−Qx) ∈ C. A retraction Q from C to D is sunny
nonexpansive if Q is both sunny and nonexpansive.

It is well known that in a smooth Banach space X, a retraction Q from C to D is
a sunny nonexpansive retraction from C to D if and only if the following inequality
holds:

〈x−Qx, J(y −Qx)〉 ≤ 0, for all x ∈ C, for all y ∈ D.
If C is a nonempty closed convex subset of a Hilbert space H, then the nearest point
projection PC from H onto C is a sunny nonexpansive retraction. This however is not
true for Banach spaces. It is known that if C is a closed convex subset of a uniformly
smooth Banach space X and there is a nonexpansive retraction from X to C, then
this retraction is sunny. See [17, 18, 21] for more details.

Let G be an unbounded subset of [0,∞) such that t + h ∈ G for all t, h ∈ G
and t − h ∈ G for all t, h ∈ G with t > h (for instance, G = [0,∞) or G = N, the
set of nonnegative integers). Recall that a one-parameter family T = {Tt : t ∈ G}
of self-mappings of C is said to be a nonexpansive semigroup on C if the following
conditions are satisfied:

(H1) T0x = x, for all x ∈ C;
(H2) Tt+sx = TtTsx, for all t, s ∈ G, x ∈ C;
(H3) for each x ∈ C, Ttx is continuous in t ∈ G when G has the relative topology

of [0,∞);
(H4) for each t ∈ G, there holds ‖Ttx− Tty‖ ≤ ‖x− y‖, for all x, y ∈ C.
Denote by F the set of common fixed points of T , i.e., F = {x ∈ C : Tsx =

x, for all s ∈ G}.
Very recently, Yao and Noor [26] considered the viscosity approximation method

for finding a common fixed point of a nonexpansive semigroup on a nonempty closed
convex subset C of a reflexive Banach space X. They proved that the approxi-
mate solutions converge strongly to a common fixed point Q(f) of the nonexpansive
semigroup, which is just a solution of some variational inequality under some mild
conditions.

In [26], Yao and Noor also studied the existence of Q(f) ∈ F with f ∈ ΠC , which
solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, for all p ∈ F.

Let f ∈ ΠC and {αs}s∈G be a net in the interval (0, 1) such that lim
s→∞

αs = 0.
By Banach’s contraction principle, for each s ∈ G we have a unique point zs ∈ C
satisfying the equation

zs = αsf(zs) + (1− αs)Tszs. (1.2)
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Theorem 1.1. ([26], Theorem 2) Let X be a reflexive Banach space with a uni-
formly Gâteaux differentiable norm. Suppose that every weakly compact convex subset
of X has the fixed point property for nonexpansive mappings. Let C be a nonempty
closed convex subset of X. Assume that F 6= ∅ and that T is uniformly asymptotically
regular on bounded subsets of C, that is, for each bounded subset C̃ of C and each
r ∈ G, there holds

lim
s∈G,s→∞

sup
x∈ eC

‖TrTsx− Tsx‖ = 0, uniformly in r ∈ G. (UARC)

Then the net {zs} defined by (1.2) converges strongly to a point in F . If we define
Q : ΠC → F by

Q(f) = lim
s→∞

zs, f ∈ ΠC , (1.3)

then Q(f) solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.
In particular, if f = u ∈ C is a constant, then the limit (1.3) defines the sunny
nonexpansive retraction Q from C to F with

〈Q(u)− u, J(Q(u)− p)〉 ≤ 0, u ∈ C, p ∈ F.

Theorem 1.2. ([26], Theorem 3) Let X be a reflexive Banach space with a uni-
formly Gâteaux differentiable norm. Suppose that every weakly compact convex subset
of X has the fixed point property for nonexpansive mappings and X has a weakly
sequentially continuous duality mapping. Let C be a nonempty closed convex subset
of X. Let {αn}, {βn} and {γn} be three sequences in (0, 1) and {rn} be a sequence
in G. Let {αn} satisfy the control conditions (C1), (C2). Assume:

(i) αn + βn + γn = 1;
(ii) 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1;

(iii) rn →∞ (n→∞);
(iv) T is a semigroup such that F 6= ∅ and satisfies the uniformly asymptotically

regular condition

lim
r∈G,r→∞

sup
x∈ eC

‖TsTrx− Trx‖ = 0, uniformly in s ∈ G, (UARC)

where C̃ is any bounded subset of C. Then the sequence {xn} generated by{
x0 ∈ C chosen arbitrarily,
xn+1 = αnf(xn) + βnxn + γnTrn

xn,
(1.4)

converges strongly to Q(f) ∈ F , where Q(f) is a solution of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

It is worth pointing out that there actually are the same requirements in the proof
of main results of Yao and Noor [26] (see the proof of Theorems 1-3 in [26]), that is, T =
{Tt : t ∈ G} is a nonexpansive semigroup on C. We remark that the commutativity
for the family T of nonexpansive mappings has played an important role in the proof
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of those main results of [26]. Their iterative algorithm is an important extension of
the viscosity approximation method studied by many authors in the recent literature;
see [1, 15, 24, 8, 2, 3, 4]. In the meantime, their results can be viewed as significant
improvement and refinement of the corresponding results of Halpern [7], Reich [18],
Moudafi [15], Xu [24] and some others.

On the other hand, Udomene [22] very recently investigated the path convergence,
approximation of fixed points and variational solutions of Lipschitz pseudocontrac-
tions in Banach spaces.

Theorem 1.3 ([22], Theorem 6) Let X be a reflexive Banach space with a uniformly
Gâteaux differentiable norm, let C be a nonempty closed convex subset of X, let
T : C → X be a continuous pseudocontraction satisfying the weakly inward condition
and let f ∈ ΠC . Suppose that every nonempty closed convex bounded subset of C has
the fixed point property for nonexpansive self-mappings. If there exists u0 ∈ C such
that the set

B = {x ∈ C : Tx = u0 + λ(x− u0) for some λ > 1} (1.5)

is bounded, then the path {xt}, t ∈ [0, 1), described by

xt = tTxt + (1− t)f(xt)

converges strongly to a fixed point x∗ ∈ Fix(T ), which is the unique solution of the
variational inequality

〈(I − f)x∗, J(x∗ − p)〉 ≤ 0, p ∈ Fix(T ).

Theorem 1.4 ([22], Theorem 10) Let C be a nonempty closed convex subset of a
real reflexive Banach space X with a uniformly Gâteaux differentiable norm. Let T :
C → C be a Lipschitz pseudocontraction and let f ∈ ΠC . Suppose that every nonempty
closed convex bounded subset of C has the fixed point property for nonexpansive self-
mappings. Let {xn} be a sequence generated from an arbitrary x0 ∈ C by

xn+1 = βn(αnTxn + (1− αn)xn) + (1− βn)f(xn), n ≥ 0, (1.6)

where {αn}, {βn} are real sequences in (0, 1) satisfying the conditions:
(i) {αn} is decreasing and lim

n→∞
αn = 0;

(ii) lim
n→∞

βn = 1 and
∞∑

n=0

(1− βn) = ∞;

(iii) (a) lim
n→∞

1− βn

αn
= 0, (b) lim

n→∞

α2
n

1− βn
= 0,

(c) lim
n→∞

|βn − βn−1|
(1− βn)2

= 0, (d) lim
n→∞

αn−1 − αn

αn−1(1− βn)
= 0.

If there exists some u0 ∈ C such that the set B described by (1.5) is bounded, then
{xn} converges strongly to a fixed point x∗ ∈ Fix(T ), which is the unique solution of
the variational inequality

〈(I − f)x∗, J(x∗ − p)〉 ≤ 0, p ∈ Fix(T ).
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We remark that Theorem 1.3 generalizes the recent results of Takahashi and Kim
[20], Xu and Yin [25], Jung and Kim [9] to a more general class of mappings and
to a more general class of Banach spaces. Theorem 1.4 also improves upon Schu’s
theorem [19] to some Banach spaces which include, for example, the Lp spaces with
1 < p <∞.

Let C be a nonempty closed convex subset of a smooth Banach space X and
f ∈ ΠC . The purpose of this paper is to consider and analyze the modified ver-
sion of Udomene’s iterative scheme (1.6) for a family T = {Tt : t ∈ G} of Lipschitz
pseudocontractive self-mappings on C, that is,

Algorithm 1.1. Let {αn} and {βn} be real sequences in (0, 1) and let {rn} be a
sequence in G with rn →∞. For an arbitrarily initial x0 ∈ C define a sequence {xn}
recursively by the following explicit iterative scheme:

xn+1 = βn(αnTrnxn + (1− αn)xn) + (1− βn)f(xn), n ≥ 0. (1.7)

If G = N, and for all n ∈ N, Tn ≡ T a Lipschitz pseudocontractive self-mapping
on C, then the iterative scheme (1.7) reduces to Udomene’s iterative scheme (1.6).
Further, whenever f(x) = w ∈ C a constant, (1.6) reduces to Schu’s iterative scheme
[19].

In this paper, without the assumptions that every nonempty closed convex bounded
subset of C has the fixed point property for nonexpansive self-mappings, that the
family T = {Tt : t ∈ G} of Lipschitz pseudocontractions is a semigroup and that
X admits a weakly sequentially continuous duality mapping, we first prove that xt

defined by xt = αtTtxt+(1−αt)f(xt) strongly converges, as t→∞, to a common fixed
point of T in a uniformly convex Banach space with a uniformly Gâteaux differentiable
norm, Then we establish the strong convergence of the sequence {xn} generated by
Algorithm 1.1 under some control conditions in a uniformly convex Banach space
with a uniformly Gâteaux differentiable norm. Moreover, we deduce that these strong
limits are the unique solution of the same variational inequality.

Our results are improvements, generalization and development of the previously
known results in the literature including Schu [19], Takahashi and Kim [20], Xu and
Yin [25], Jung and Kim [9], Moudafi [15], Xu [24], Yao and Noor [26], Jung [8], Ceng
and Xu [2], Ceng, Xu and Yao [3] and Udomene [22].

2. Preliminaries

Let X be a real Banach space with the dual X∗. As usual, in a Banach space ⇀
stands for weak convergence and → for strong convergence.

Let X be a Banach space and C be a nonempty subset of X. Then, for any x ∈ C,
the set IC(x) = {x+λ(z−x) : z ∈ C, λ ≥ 1} is called the inward set of x. A mapping
T : C → X is said to satisfy the inward condition if Tx ∈ IC(x) for each x ∈ C, and
is said to satisfy the weakly inward condition if Tx ∈ cl[IC(x)], the closure of IC(x),
for each x ∈ C.

Before starting the main results of this paper, we include some lemmas which will
be needed in the sequel. Lemma 2.1 is well known (see, e.g., [14]). The proof of
Lemma 2.2 can be derived from Lemma 2.5 of [23].



APPROXIMATION OF COMMON FIXED POINTS 209

Lemma 2.1. Let X be a real Banach space. Then, for all x, y ∈ X ‖x + y‖2 ≤
‖x‖2 + 2〈y, j(x+ y)〉, for all j(x+ y) ∈ J(x+ y).

Lemma 2.2. Let {an}n be a sequence of nonnegative real numbers such that

an+1 ≤ (1− δn)an + δnσn, n ≥ 0,

where {δn}n ⊂ [0, 1], {σn}n ⊂ [0, 1] and
∞∑

n=0

δn = ∞, lim
n→∞

σn = 0.

Then, lim
n→∞

an = 0.

Recall that µ is said to be a mean on the set N of all positive integers if µ is a
continuous linear functional on l∞ satisfying ‖µ‖ = 1 = µ(1). It is known that µ is a
mean on N if and only if

inf{an : n ∈ N} ≤ µ(a) ≤ sup{an : n ∈ N}, for every a = (a1, a2, ...) ∈ l∞.

According to time and circumstances, we use µn(an) instead of µ(a). A mean µ on
N is called a Banach limit if

µn(an) = µn(an+1), for every a = (a1, a2, ...) ∈ l∞.

Using the Hahn-Banach theorem, we can prove the existence of a Banach limit. It is
also known that if µ is a Banach limit, then

lim inf
n→∞

an ≤ µn(an) ≤ lim sup
n→∞

an, for every a = (a1, a2, ...) ∈ l∞.

The following result is actually a variant of Lemma 1.2 in Reich [17].
Lemma 2.3. Let C be a nonempty closed convex subset of a Banach space X with

a uniformly Gâteaux differentiable norm and let {xn} be a bounded sequence in X.
Let µ be a Banach limit and p ∈ C. Then

µn‖xn − p‖2 = min
y∈C

µn‖xn − y‖2 ⇔ µn〈x− p, J(xn − p)〉 ≤ 0, for all x ∈ C.

3. Convergence of paths

We begin with some auxiliary results.
Proposition 3.1. Let {αt}t∈G be a net in [0, 1). Let C be a nonempty closed

convex subset of a Banach space X and let T = {Tt : t ∈ G} be a family of continuous
pseudocontractions such that each Tt : C → X satisfies the weakly inward condition.
Then for each contraction f ∈ ΠC , there exists a unique path t 7→ xt ∈ C, t ∈ G,
satisfying

xt = αtTtxt + (1− αt)f(xt). (3.1)

Suppose additionally that the maps t 7→ αt ∈ [0, 1) and t 7→ Ttx are continuous in
t ∈ G for each x ∈ C, respectively, when G has the relative topology of [0,∞), then
the path t 7→ xt ∈ C, t ∈ G is continuous.
Proof. Let f ∈ ΠC with contractive constant α ∈ [0, 1). Then, for each t ∈ G, the
mapping T f

t : C → X defined by T f
t (x) = αtTtx+(1−αt)f(x) is a continuous strong

pseudocontraction with constant αt + (1− αt)α ∈ [0, 1). Since C is convex, IC(x) is
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convex for each x ∈ C. Indeed, let x ∈ C and let x+λ1(z1−x), x+λ2(z2−x) ∈ IC(x).
Then, for any β ∈ [0, 1],

(1− β)[x+ λ1(z1 − x)] + β[x+ λ2(z2 − x)]
= x+ [(1− β)λ1z1 + βλ2z2 − ((1− β)λ1 + βλ2)x]
= x+ ((1− β)λ1 + βλ2)[

(1−β)λ1
(1−β)λ1+βλ2

z1 + βλ2
(1−β)λ1+βλ2

z2 − x] ∈ IC(x)

since (1− β)λ1 + βλ2 ≥ 1 and (1−β)λ1
(1−β)λ1+βλ2

z1 + βλ2
(1−β)λ1+βλ2

z2 ∈ C. Now, if z = f(x)
and λ = 1 then f(x) = x+1(f(x)−x) ∈ IC(x). Thus, since Ttx ∈ cl(IC(x)), we have
that T f

t (x) = αtTtx + (1 − αt)f(x) ∈ cl(IC(x)). Therefore, T f
t satisfies the weakly

inward condition.
By Corollary 1 of [6], T f

t has a unique fixed point xt ∈ C, i.e.,

xt = αtTtxt + (1− αt)f(xt).

To prove the continuity of the path, we follow the same line of argument as in [14].
Let t0 ∈ G. Then αt0 ∈ [0, 1) and for all j(xt − xt0) ∈ J(xt − xt0),

‖xt − xt0‖2 = 〈αtTtxt + (1− αt)f(xt)− αt0Tt0xt0 − (1− αt0)f(xt0), j(xt − xt0)〉
= αt〈Ttxt − Tt0xt0 , j(xt − xt0)〉+ (αt − αt0)〈Tt0xt0 , j(xt − xt0)〉

+(1− αt)〈f(xt)− f(xt0), j(xt − xt0)〉 − (αt − αt0)〈f(xt0), j(xt − xt0)〉
= αt〈Ttxt − Ttxt0 , j(xt − xt0)〉+ αt〈Ttxt0 − Tt0xt0 , j(xt − xt0)〉

+(αt − αt0)〈Tt0xt0 − f(xt0), j(xt − xt0)〉
+(1− αt)〈f(xt)− f(xt0), j(xt − xt0)〉

≤ αt‖xt − xt0‖2 + αt‖Ttxt0 − Tt0xt0‖‖xt − xt0‖
+|αt − αt0 |‖Tt0xt0 − f(xt0)‖‖xt − xt0‖+ (1− αt)α‖xt − xt0‖2

= (αt + (1− αt)α)‖xt − xt0‖2 + |αt − αt0 |‖Tt0xt0 − f(xt0)‖‖xt − xt0‖
+αt‖Ttxt0 − Tt0xt0‖‖xt − xt0‖,

so that

‖xt − xt0‖ ≤
|αt − αt0 |

(1− αt)(1− α)
‖Tt0xt0 − f(xt0)‖+

αt

(1− αt)(1− α)
‖Ttxt0 − Tt0xt0‖.

This completes the proof. �

Proposition 3.2. Let {αt}t∈G be a net in [0, 1) and let C be a nonempty closed
convex subset of a Banach space X. Let T = {Tt : t ∈ G} be a family of pseudocon-
tractions such that for each contraction f ∈ ΠC , the equation

x = αtTtx+ (1− αt)f(x)

has a solution xt ∈ C for every t ∈ G. Then the following hold:
(i) If for some u ∈ C, the path yt = αtTtyt + (1 − αt)u is bounded, then for any

contraction f ∈ ΠC , the path {xt} described by (3.1) is bounded.
(ii) If T has a common fixed point in C, then the path {xt} is bounded.
(iii) If x∗ ∈ F = {x ∈ C : Ttx = x, for all t ∈ G} then for all j(xt − x∗) ∈

J(xt − x∗), we have
〈xt − f(xt), j(xt − x∗)〉 ≤ 0.
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(iv) If 0 ≤ αs ≤ αt < 1 then

‖xt − Ttxt‖ ≤
1 + α

1− α
[‖xs − Tsxs‖+ ‖Ttxs − Tsxs‖].

Proof. (i) Let the path {yt}t∈G given by yt = αtTtyt + (1− αt)u, for some u ∈ C, be
bounded. Then the set {f(yt)}t∈G is bounded. Let j(xt − yt) ∈ J(xt − yt). From the
estimates

‖xt − yt‖2 = αt〈Ttxt − Ttyt, j(xt − yt)〉+ (1− αt)〈f(xt)− u, j(xt − yt)〉
≤ αt‖xt − yt‖2 + (1− αt)‖f(xt)− u‖‖xt − yt‖,

we have that ‖xt − yt‖ ≤ ‖f(xt)− u‖ ≤ α‖xt − yt‖+ ‖f(yt)− u‖. Thus, ‖xt − yt‖ ≤
1

1−α‖f(yt)− u‖ and, hence, {xt} is bounded.
(ii) Let x∗ ∈ F (T ), and let j(xt − x∗) ∈ J(xt − x∗). Then

‖xt − x∗‖2 = αt〈Ttxt − x∗, j(xt − x∗)〉+ (1− αt)〈f(xt)− x∗, j(xt − x∗)〉
≤ αt‖xt − x∗‖2 + (1− αt)‖f(xt)− x∗‖‖xt − x∗‖,

so that ‖xt − x∗‖ ≤ ‖f(xt) − x∗‖ ≤ α‖xt − x∗‖ + ‖f(x∗) − x∗‖. Thus, we get that
‖xt − x∗‖ ≤ 1

1−α‖f(x∗)− x∗‖, proving that {xt} is bounded.
(iii) Let x∗ ∈ F (T ), and let j(xt − x∗) ∈ J(xt − x∗). Then

〈xt − f(xt), j(xt − x∗)〉 = αt〈Ttxt − f(xt), j(xt − x∗)〉
= αt〈Ttxt − x∗, j(xt − x∗)〉+ αt〈x∗ − f(xt), j(xt − x∗)〉

≤ αt‖xt − x∗‖2 + αt〈x∗ − xt, j(xt − x∗)〉+ αt〈xt − f(xt), j(xt − x∗)〉
≤ αt〈xt − f(xt), j(xt − x∗)〉.

Thus, 〈xt − f(xt), j(xt − x∗)〉 ≤ 0.
(iv) Let 0 ≤ αs ≤ αt < 1. Then, similarly to the proof of Proposition 3.1, we can

derive

‖xt − xs‖ ≤
αt − αs

(1− αt)(1− α)
‖Tsxs − f(xs)‖+

αt

(1− αt)(1− α)
‖Ttxs − Tsxs‖.

Note that
‖xs − f(xs)‖ =

αs

1− αs
‖xs − Tsxs‖.

Hence
‖xt − Ttxt‖ =

1− αt

αt
‖xt − f(xt)‖

≤ 1− αt

αt
[‖xt − xs‖+ ‖xs − f(xs)‖+ ‖f(xs)− f(xt)‖]

≤ 1− αt

αt
[(1 + α)‖xt − xs‖+

αs

1− αs
‖xs − Tsxs‖]

≤ 1− αt

αt
{(1 + α)[

αt − αs

(1− αt)(1− α)
‖Tsxs − f(xs)‖+

αt

(1− αt)(1− α)
‖Ttxs − Tsxs‖]

+
αs

1− αs
‖xs − Tsxs‖}

≤ 1− αt

αt
{(1 + α)[

αt − αs

(1− αt)(1− α)
(‖Tsxs − xs‖+ ‖xs − f(xs)‖)
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+
αt

(1− αt)(1− α)
‖Ttxs − Tsxs‖] +

αs

1− αs
‖xs − Tsxs‖}

≤ 1− αt

αt
{(1 + α)[

αt − αs

(1− αt)(1− α)
(‖Tsxs − xs‖+

αs

1− αs
‖xs − Tsxs‖)

+
αt

(1− αt)(1− α)
‖Ttxs − Tsxs‖] +

αs

1− αs
‖xs − Tsxs‖}

=
1− αt

αt
{ (1 + α)(αt − αs)
(1− α)(1− αt)(1− αs)

‖xs − Tsxs‖+
αs

1− αs
‖xs − Tsxs‖

+
(1 + α)αt

(1− α)(1− αt)
‖Ttxs − Tsxs‖}

=
1− αt

αt
{( (1 + α)(αt − αs)

(1− α)(1− αt)(1− αs)

+
αs

1− αs
)‖xs − Tsxs‖+

(1 + α)αt

(1− α)(1− αt)
‖Ttxs − Tsxs‖}

≤ (1 + α)(1− αt)
(1− α)αt

{( αt − αs

(1− αt)(1− αs)
+

αs

1− αs
)‖xs − Tsxs‖+

αt

1− αt
‖Ttxs − Tsxs‖}

=
(1 + α)
(1− α)

[‖xs − Tsxs‖+ ‖Ttxs − Tsxs‖].

This completes the proof. �

Theorem 3.1. Let X be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm. Let C be a nonempty closed convex subset of X and
let T = {Tt : t ∈ G} be a family of Lipschitz pseudocontractions such that each
Tt : C → X satisfies the weakly inward condition. Suppose that for each contrac-
tion f ∈ ΠC , {xt}t∈G is the path generated by (3.1) where αt ↑ 1 as t→∞, and that
T satisfies the uniformly left asymptotically regular condition on bounded subsets of
C, i.e., for each bounded subset C̃ of C, there holds

lim
s∈G,s→∞

sup
x∈ eC

‖TrΓTsx− Tsx‖ = 0, r ∈ G, (ULARC)

where Γ is a nonexpansive retraction of X onto C. If there exist t0 ∈ G and u0 ∈ C
such that the sets {Ttxt0 : t ∈ G with t ≥ t0} and

B = {x ∈ C : Ttx = u0 + λ(x− u0) for some t ∈ G and some λ > 1}
are bounded, then the path {xt}t∈G converges strongly as t → ∞ to a common fixed
point of T . If we define Q : ΠC → F by

Q(f) = lim
t→∞

xt, f ∈ ΠC , (3.2)

then Q(f) is the unique solution of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.
In particular, if f = u ∈ C is a constant, then the limit (3.2) defines the sunny
nonexpansive retraction Q from C to F ,

〈Q(u)− u, J(Q(u)− p)〉 ≤ 0, u ∈ C, p ∈ F.
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Proof. It follows from Proposition 3.1 that for each contraction f ∈ ΠC , there exists
a unique path t 7→ xt ∈ C, t ∈ G satisfying (3.1). Let there exist u0 ∈ C such that
the set {yt : yt = αtTtyt + (1 − αt)u0, t ∈ G} is bounded. Then by Proposition 3.2
(i), the path {xt}t∈G described by (3.1) is bounded. Hence it is easy to see that the
net {f(xt)}t∈G is bounded. Note that {Ttxt0 : t ∈ G} is bounded for some t0 ∈ G
and that αt ↑ 1 as t → ∞. Now by Proposition 3.2 (iv) we know that for all t ∈ G
with t ≥ t0

‖xt − Ttxt‖ ≤
1 + α

1− α
[‖xt0 − Tt0xt0‖+ ‖Ttxt0 − Tt0xt0‖].

Thus the set {Ttxt : t ∈ G with t ≥ t0} is bounded. Let supt∈G ‖xt‖ ≤ M . Then
‖xt − xs‖ ≤ 2M for any t, s ∈ G. Let {tn} be a sequence in G such that tn ≥ t0 and
tn ↑ ∞. Define a function ψ : C → [0,∞) by

ψ(x) := µn‖xtn
− x‖2, x ∈ C,

where µ is a Banach limit. Since X is reflexive, ψ is convex, continuous and ψ(x) →∞
as ‖x‖ → ∞, we have that the set

K := {y ∈ C : ψ(y) = inf
x∈C

ψ(x)}

is nonempty, closed and convex. Let us show that K is bounded. Let y ∈ K.
Then ψ(y) ≤ µn‖xtn

− xt0‖2 ≤ 4M2. Applying the convexity of the functional
1
2‖ · ‖

2 : C → [0,∞), we deduce that

‖y‖2 ≤ µn‖xtn − y‖2 + 2µn‖xn‖2

≤ 2ψ(y) + 2M2 ≤ 10M2,

i.e., ‖y‖ ≤
√

10M, for all y ∈ K. Thus, K is bounded. For each r ∈ G, the
mapping Jr = (2I − Tr)−1 is a nonexpansive self-mapping of C (see [12] Theorem
6). We claim that K is invariant under Jr. Indeed, let y ∈ K and Lr denote a
Lipschitz constant of Tr. Note that both {xt}t∈G and {f(xt)}t∈G are bounded and
so is {Ttxt : t ∈ G with t ≥ t0}. Then, from αt ↑ 1 (t→∞) it follows that

lim
t→∞

‖xt − Ttxt‖ = (1− αt)‖f(xt)− Ttxt‖ = 0. (3.3)

Utilizing (ULARC) we conclude that

ψ(Jr(y)) = µn‖xtn − Jr(y)‖2

≤ µn(‖xtn
− Jr(xtn

)‖+ ‖Jr(xtn
)− Jr(y)‖)2

≤ µn(‖xtn
− Jr(xtn

)‖+ ‖xtn
− y‖)2

≤ µn(‖xtn
− Trxtn

‖+ ‖xtn
− y‖)2

≤ µn{‖xtn − Ttnxtn‖+ ‖Ttnxtn − TrΓTtnxtn‖+ ‖TrΓTtnxtn − Trxtn‖+ ‖xtn − y‖}2

≤ µn{(1 + Lr)‖xtn − Ttnxtn‖+ ‖Ttnxtn − TrΓTtnxtn‖+ ‖xtn − y‖}2

= µn‖xtn
− y‖2 = ψ(y).

This implies that K is invariant under Jr for each r ∈ G.
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First, let us show that K consists of one point. Indeed, let w, z ∈ K with w 6= z.
Then, by [16] Theorem 1, there exists a positive number k > 0 such that

〈xtn − z − (xtn − w), J(xtn − z)− J(xtn − w)〉 ≥ k > 0

for every n. Thus we get

µn〈w − z, J(xtn
− z)− J(xtn

− w)〉 ≥ k > 0.

Furthermore, since z, w ∈ K, from Lemma 2.3 we have

µn〈w − z, J(xtn
− z)〉 ≤ 0 and µn〈z − w, J(xtn

− w)〉 ≤ 0.

Hence we have
µn〈w − z, J(xtn

− z)− J(xtn
− w)〉 ≤ 0.

This leads to a contradiction. Therefore z = w and so K consists of one point, i.e.,
K = {z}. Since K is invariant under Jr for each r ∈ G, z is a common fixed point of
T in C.

Second, let us show that the path {xt}t∈G converges strongly as t → ∞ to z ∈
F ∩K. Indeed, let τ ∈ (0, 1). Then ψ(z) ≤ ψ((1 − τ)z + τx), x ∈ C, and utilizing
Lemma 2.1, we have that

0 ≤ ψ((1− τ)z + τx)− ψ(z)
τ

≤ −2µn〈x− z, J(xtn
− z − τ(x− z))〉.

Thus
µn〈x− z, J(xtn

− z − τ(x− z))〉 ≤ 0.
Since, in this setting, J is norm-to-weak∗ uniformly continuous on bounded subsets
of X, letting τ → 0, we have that

µn〈x− z, J(xtn
− z)〉 ≤ 0, x ∈ C.

In particular,
µn〈f(z)− z, J(xtn

− z)〉 ≤ 0. (3.4)
Observe that

(1− α)‖xtn − z‖2 ≤ 〈xtn − f(xtn), J(xtn − z)〉+ 〈f(z)− z, J(xtn − z)〉.
Utilizing Proposition 3.2 (iii) and (3.4) we know that µn‖xtn

− z‖2 = 0. Therefore,
there exists a subsequence {xtnk

} of {xtn
} such that xtnk

→ z as k → ∞. Suppose
that there is another subsequence {xtmi

} of {xtn} which converges strongly to (say)
y ∈ C. Then y must be a common fixed point of T . In fact, observe that

‖y − Try‖ ≤ ‖y − xtmi
‖+ ‖xtmi

− Ttmi
xtmi

‖

+‖Ttmi
xtmi

− TrΓTtmi
xtmi

‖+ ‖TrΓTtmi
xtmi

− Trxtmi
‖+ ‖Trxtmi

− Try‖
≤ (1 + Lr)‖y − xtmi

‖+ (1 + Lr)‖xtmi
− Ttmi

xtmi
‖+ ‖Ttmi

xtmi
− TrΓTtmi

xtmi
‖.

Thus, (ULARC) together with (3.3) implies that y = Try for all r ∈ G. That is,
y ∈ F . Now putting x∗ = y, we deduce from xtnk

→ z and Proposition 3.2 (iii) that

〈z − f(z), J(z − y)〉 ≤ 0. (3.5)

Also, putting x∗ = z, we deduce from xtmi
→ y and Proposition 3.2 (iii) that

〈y − f(y), J(y − z)〉 ≤ 0. (3.6)
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Adding inequalities (3.5) and (3.6) yields that

(1− α)‖z − y‖2 ≤ 〈z − y, J(z − y)〉 − 〈f(z)− f(y), J(z − y)〉
= 〈z − f(z), J(z − y)〉+ 〈y − f(y), J(y − z)〉 ≤ 0,

and thus z = y. Therefore, zt converges strongly as s→∞ to a point in F .
Finally, we claim that if we define Q : ΠC → F by Q(f) = lim

t→∞
xt, then Q(f)

solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.
Since xt = αtTtxt + (1 − αt)f(xt), we have (I − f)xt = − αt

1−αt
(I − Tt)xt. Hence for

each p ∈ F ,

〈(I − f)xt, J(xt − p)〉 = − αt

1− αt
〈(I − Tt)xt − (I − Tt)p, J(xt − p)〉 ≤ 0.

Letting t→∞ we get that 〈(I−f)Q(f), J(Q(f)−p)〉 ≤ 0. In particular, if f = u ∈ C
is a constant, then

〈Qu− u, J(Qu− p)〉 ≤ 0, u ∈ C, p ∈ F.
Therefore Q is a sunny nonexpansive retraction from C to F . �

Note that in the case when X = H a Hilbert space, the nonempty closed convex
subset C is a sunny nonexpansive retract of H, the nearest point projection P of C
onto F is a sunny nonexpansive retraction and the duality mapping J is the identity
mapping I.We also note that the boundedness assumption of the set B in Theorem
3.1 was used in [22].

Corollary 3.1. Let C be a nonempty closed convex subset of a Hilbert space H
and let T = {Tt : t ∈ G} be a family of Lipschitz pseudocontractions such that each
Tt : C → X satisfies the weakly inward condition. Suppose that for each contraction
f ∈ ΠC , {xt}t∈G is the path generated by (3.1) where αt ↑ 1 as t → ∞, and that
T satisfies (ULARC) on bounded subsets of C, i.e., for each bounded subset C̃ of C,
there holds

lim
s∈G,s→∞

sup
x∈ eC

‖TrPCTsx− Tsx‖ = 0, r ∈ G, (ULARC)

where PC is the nearest point projection of H onto C. If there exist t0 ∈ G and u0 ∈ C
such that the sets {Ttxt0 : t ∈ G with t ≥ t0} and

B = {x ∈ C : Ttx = u0 + λ(x− u0) for some t ∈ G and some λ > 1}
are bounded, then the path {xt}t∈G converges strongly as t → ∞ to a common fixed
point of T . If we define P : ΠC → F by

P (f) = lim
t→∞

xt, f ∈ ΠC , (3.7)

then P (f) is the unique solution of the variational inequality

〈(I − f)P (f), P (f)− p〉 ≤ 0, f ∈ ΠC , p ∈ F.
In particular, if f = u ∈ C is a constant, then the limit (3.7) defines the nearest point
projection P from C to F ,

〈P (u)− u, P (u)− p)〉 ≤ 0, u ∈ C, p ∈ F.
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Let D be a subset of a Banach space X. Recall that a mapping T : D → X is said
to be firmly nonexpansive if, for each x, y ∈ D, the convex function φ : [0, 1] → [0,∞)
defined by

φ(t) = ‖(1− t)x+ tTx− ((1− t)y + tTy)‖,
is nonincreasing. Since φ is convex, it is easy to check that a mapping T : D → X is
firmly nonexpansive if and only if

‖Tx− Ty‖ ≤ ‖(1− t)(x− y) + t(Tx− Ty)‖,

for each x, y ∈ D and each t ∈ [0, 1]. It is obvious that every firmly nonexpansive
mapping is nonexpansive.

Corollary 3.2. Let X be a uniformly convex and uniformly smooth Banach space.
Let C be a nonempty closed convex subset of X and let T = {Tt : t ∈ G} be a family
of firmly nonexpansive mappings on C such that each Tt : C → X satisfies the weakly
inward condition. Suppose that for each contraction f ∈ ΠC , {xt}t∈G is the path
generated by (3.1) where αt ↑ 1 as t→∞, and that T satisfies (ULARC) on bounded
subsets of C, i.e., for each bounded subset C̃ of C, there holds

lim
s∈G,s→∞

sup
x∈ eC

‖TrΓTsx− Tsx‖ = 0, r ∈ G, (ULARC)

where Γ is a nonexpansive retraction of X onto C. If there exist t0 ∈ G and u0 ∈ C
such that the sets {Ttxt0 : t ∈ G with t ≥ t0} and

B = {x ∈ C : Ttx = u0 + λ(x− u0) for some t ∈ G and some λ > 1}

are bounded, then {zt}t∈G converges strongly to Q(f) ∈ F , which is the unique solution
of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Proof. Since every firmly nonexpansive mapping is nonexpansive, we have that 〈Ttx−
Tty, J(x − y)〉 ≤ ‖x − y‖2, for all x, y ∈ C, for all t ∈ G. Thus, it follows that
every family of nonexpansive self-mappings on C is a family of (uniformly) Lipschitz
pseudocontractive self-mappings on C. Utilizing Theorem 3.1 we obtain the desired
conclusion. This completes the proof. �

4. Iterative approximation of common fixed points

In this section, we will establish some convergence results for Algorithm 1.1.
Theorem 4.1. Let C be a nonempty closed convex subset of a real Banach space

X. Let T = {Tt : t ∈ G} be a family of uniformly Lipschitz (i.e., ‖Ttx − Tty‖ ≤
L‖x − y‖, for all x, y ∈ C, for all t ∈ G for some L > 0) pseudocontractive self-
mappings on C such that F 6= ∅ and let f ∈ ΠC . Let {xn} be a sequence generated
by {

x0 ∈ C chosen arbitrarily,
xn+1 = βn(αnTrn

xn + (1− αn)xn) + (1− βn)f(xn), (4.1)
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where {αn} and {βn} are real sequences in (0, 1) and {rn} is a sequence in G. Assume
that:

(i) {αn} is decreasing and lim
n→∞

αn = 0;

(ii) lim
n→∞

βn = 1 and
∑∞

n=0(1− βn) = ∞;

(iii) (a) lim
n→∞

1− βn

αn
= 0, (b) lim

n→∞

α2
n

1− βn
= 0,

(c) lim
n→∞

|βn − βn−1|
(1− βn)2

= 0, (d) lim
n→∞

αn−1 − αn

αn−1(1− βn)
= 0;

(iv) rn → ∞ such that αn

(1−βn)2 (Trn
yn−1 − Trn−1yn−1) → 0, for all {yn} bounded

in C;
(v) T satisfies (ULARC) on bounded subsets of C, i.e., for each bounded subset C̃

of C, there holds
lim

s∈G,s→∞
sup
x∈ eC

‖TrTsx− Tsx‖ = 0, r ∈ G; (ULARC)

(vi) there exist t0 ∈ G and u0 ∈ C such that the sets {Ttxt0 : t ∈ G with t ≥ t0} and
B = {x ∈ C : Ttx = u0 + λ(x− u0) for some t ∈ G and some λ > 1} are bounded.

Then ‖xn − Tsxn‖ → 0 as n→∞, for each s ∈ G.
Proof. We divide the proof into several steps.

Step 1. {xn} is bounded.
Indeed, let f ∈ ΠC with contractive constant α ∈ [0, 1) and L > 0 denote the

uniformly Lipschitz constant of T . Since 1 − βn → 0, αn → 0 and α2
n

1−βn
→ 0 as

n→∞, there exists m0 ≥ 1 large enough such that 1− βn ≤ 1−α
16 , αn ≤ 1−α

16(1+L) and
α2

n

1−βn
≤ 1−α

8(1+L)2 , for all n ≥ m0. Take x∗ ∈ F arbitrarily. Choose γ > 0 sufficiently
large such that ‖xm0 − x∗‖ ≤ γ and ‖f(x∗)− x∗‖ ≤ 1−α

2 γ. We proceed by induction
to show that ‖xn − x∗‖ ≤ γ, for all n ≥ m0. Assume that ‖xn − x∗‖ ≤ γ for some
n > m0. Let us show that ‖xn+1− x∗‖ ≤ γ. Suppose that ‖xn+1− x∗‖ > γ. Observe
that

‖f(xn)− x∗‖ ≤ α‖xn − x∗‖+ ‖f(x∗)− x∗‖ ≤ 1 + α

2
γ < γ.

Then, from the iteration process (4.1) and the pseudocontractivity of T we estimate
as follows:

‖xn+1 − x∗‖2 = ‖xn − x∗ − (1− βn)(xn+1 − x∗) + (1− βn)(xn+1 − xn)

−αnβn(xn − Trn
xn) + (1− βn)(f(xn)− x∗)‖2

= 〈xn − x∗, j(xn+1 − x∗)〉 − (1− βn)‖xn+1 − x∗‖2

+(1− βn)〈xn+1 − xn, j(xn+1 − x∗)〉 − αnβn〈xn − Trn
xn, j(xn+1 − x∗)〉

+(1− βn)〈f(xn)− x∗, j(xn+1 − x∗)〉
≤ ‖xn − x∗‖‖xn+1 − x∗‖ − (1− βn)‖xn+1 − x∗‖2

+(1− βn)‖xn+1 − xn‖‖xn+1 − x∗‖ − αnβn〈xn − Trn
xn, j(xn+1 − x∗)〉

+(1− βn)‖f(xn)− x∗‖‖xn+1 − x∗‖
≤ ‖xn − x∗‖‖xn+1 − x∗‖ − (1− βn)‖xn+1 − x∗‖2 + (1− βn)‖xn+1 − xn‖‖xn+1 − x∗‖

+αnβn〈xn+1 − Trnxn+1 − (xn − Trnxn), j(xn+1 − x∗)〉
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+(1− βn)‖f(xn)− x∗‖‖xn+1 − x∗‖

≤ ‖xn − x∗‖‖xn+1 − x∗‖ − (1− βn)‖xn+1 − x∗‖2 + (1− βn)‖xn+1 − xn‖‖xn+1 − x∗‖

+αnβn(1 + L)‖xn+1 − xn‖‖xn+1 − x∗‖+ (1− βn)‖f(xn)− x∗‖‖xn+1 − x∗‖.
Thus,

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ − (1− βn)‖xn+1 − x∗‖
+[(1− βn) + (1 + L)αn]‖xn+1 − xn‖+ (1− βn)‖f(xn)− x∗‖.

(4.2)
Now,

‖xn+1 − xn‖ = ‖αnβn(Trn
xn − xn) + (1− βn)(f(xn)− xn)‖

≤ αn(1 + L)‖xn − x∗‖+ (1− βn)‖xn − x∗‖+ (1− βn)‖f(xn)− x∗‖
= [αn(1 + L) + (1− βn)]‖xn − x∗‖+ (1− βn)‖f(xn)− x∗‖.

It follows therefore from (4.2) that

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ − (1− βn)‖xn+1 − x∗‖+ [(1 + L)αn + (1− βn)]2‖xn − x∗‖

+(1− βn)[(1 + L)αn + (1− βn)]‖f(xn)− x∗‖+ (1− βn)‖f(xn)− x∗‖

= ‖xn − x∗‖ − (1− βn)‖xn+1 − x∗‖

+(1− βn)[(1 + L)2
α2

n

1− βn
+ 2(1 + L)αn + (1− βn)]‖xn − x∗‖

+(1− βn)[(1 + L)αn + (1− βn)]‖f(xn)− x∗‖+ (1− βn)‖f(xn)− x∗‖,
so that

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ − (1− βn)‖xn+1 − x∗‖

+
5
16

(1− α)(1− βn)‖xn − x∗‖+
1
8
(1− α)(1− βn)‖f(xn)− x∗‖

+(1− βn)‖f(xn)− x∗‖

< γ − (1− βn)γ +
5
16

(1− α)(1− βn)γ +
1
8
(1− α)(1− βn)γ +

1 + α

2
(1− βn)γ

< γ − (1− βn)γ + (1− βn)γ = γ.

Therefore ‖xn − x∗‖ ≤ γ, for all n ≥ m0, and hence {xn} is bounded.
Step 2. ‖xn − zrn

‖ → 0 as n→∞, for some sequence {zrn
} satisfying (3.1), i.e.,

zrn = α̃rnTrnzrn + (1− α̃rn)f(zrn), where {α̃rn} ⊂ [0, 1) satisfies α̃rn → 1.

Indeed, choose the sequence {rn} ⊂ G as above. Set α̃rn
= αn

1−βn+αn
for each

n ≥ 0. Then α̃rn
∈ (0, 1) for each n ≥ 0. By the given condition (iii) (a), we have

that α̃rn
→ 1 as n → ∞. It follows from Proposition 3.1 that there exists a unique

sequence {zrn
} ⊂ C satisfying the following equation:

zrn = α̃rnTrnzrn + (1− α̃rn)f(zrn), n ≥ 0. (4.3)

Equation (4.3) can be rewritten as follows:

zrn = βn(αnTrnzrn + (1− αn)zrn) + (1− βn)f(zrn) + (1− βn)αn(Trnzrn − zrn).
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If there exists u0 ∈ C such that the set B is bounded then the sequence {zrn} is
bounded (see Proposition 3.2 (i)). Utilizing the pseudocontractivity and uniformly
Lipschitz property of T , we make the following estimates:

‖xn+1−zrn‖2 =αnβn〈Trnxn−Trnzrn , j(xn+1−zrn)〉+βn(1−αn)〈xn−zrn , j(xn+1−zrn)〉

+(1− βn)〈f(xn)− f(zrn
), j(xn+1 − zrn

)〉+ (1− βn)αn〈zrn
− Trn

zrn
, j(xn+1 − zrn

)〉
= αnβn〈Trn

xn+1 − Trn
zrn

, j(xn+1 − zrn
)〉+ αnβn〈Trn

xn − Trn
xn+1, j(xn+1 − zrn

)〉
+βn(1− αn)〈xn − zrn), j(xn+1 − zrn)〉+ (1− βn)〈f(xn)− f(zrn), j(xn+1 − zrn)〉

+(1− βn)αn〈zrn
− Trn

zrn
, j(xn+1 − zrn

)〉
≤ αnβn‖xn+1 − zrn

‖2 + αnβn‖Trn
xn − Trn

xn+1‖‖xn+1 − zrn
‖

+βn(1− αn)‖xn − zrn
‖‖xn+1 − zrn

‖+ (1− βn)‖f(xn)− f(zrn
)‖‖xn+1 − zrn

‖
+(1− βn)αn‖zrn

− Trn
zrn

‖‖xn+1 − zrn
‖

≤ αnβn‖xn+1 − zrn‖2 + αnβnL‖xn − xn+1‖‖xn+1 − zrn‖
+βn(1− αn)‖xn − zrn

‖‖xn+1 − zrn
‖+ (1− βn)α‖xn − zrn

‖‖xn+1 − zrn
‖

+(1− βn)αn‖zrn − Trnzrn‖‖xn+1 − zrn‖.
Thus,

‖xn+1 − zrn
‖ ≤ αnβn‖xn+1 − zrn

‖+ αnβnL‖xn − xn+1‖
+[βn(1− αn) + (1− βn)α]‖xn − zrn

‖+ (1− βn)αn‖zrn
− Trn

zrn
‖,

so that

‖xn+1 − zrn
‖ ≤ [1− (1−α)(1−βn)

1−αnβn
]‖xn − zrn−1‖+ ‖zrn−1 − zrn‖

+ αnL
1−αnβn

‖xn − xn+1‖+ (1−βn)αn

1−αnβn
‖zrn

− Trn
zrn

‖.
(4.4)

Since the mapping J̃rn
:= [I+ αn

1−βn
(I−Trn

)]−1 is nonexpansive and zrn
= J̃rn

(f(zrn
)),

‖zrn
− zrn−1‖ = ‖J̃rn

(f(zrn
))− zrn−1‖

= ‖J̃rn
(f(zrn

))− J̃rn
(f(zrn−1)) + J̃rn

(f(zrn−1))− zrn−1‖
≤ ‖f(zrn)− f(zrn−1)‖+ ‖J̃rn(f(zrn−1))− zrn−1‖
≤ α‖zrn − zrn−1‖+ ‖J̃rn(f(zrn−1))− zrn−1‖,

so that
‖zrn

− zrn−1‖ ≤
1

1− α
‖J̃rn

(f(zrn−1))− zrn−1‖

=
1

1− α
‖J̃rn(f(zrn−1))− J̃rn [I +

αn

1− βn
(I − Trn)]zrn−1‖

≤ 1
1− α

‖f(zrn−1)− [zrn−1 +
αn

1− βn
(zrn−1 − Trnzrn−1)]‖

=
1

1− α
‖( αn−1

1− βn−1
− αn

1− βn
)(zrn−1 −Trn−1zrn−1) +

αn

1− βn
(Trnzrn−1 −Trn−1zrn−1)‖

≤ 1
1− α

{| αn−1

1− βn−1
− αn

1− βn
|‖zrn−1 −Trn−1zrn−1‖+

αn

1− βn
‖Trnzrn−1 −Trn−1zrn−1‖}

=
1

1− α
{|1− αn

1− βn

1− βn−1

αn−1
|‖f(zrn−1)− zrn−1‖+

αn

1− βn
‖Trn

zrn−1 − Trn−1zrn−1‖}
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=
1

1− α
{| (αn−1 − αn)(1− βn) + αn(βn−1 − βn)

αn−1(1− βn)
|‖f(zrn−1)− zrn−1‖

+
αn

1− βn
‖Trn

zrn−1 − Trn−1zrn−1‖}

≤ 1
1− α

{[αn−1 − αn

αn−1
+
|βn−1 − βn|

1− βn
]‖f(zrn−1)− zrn−1‖

+
αn

1− βn
‖Trnzrn−1 − Trn−1zrn−1‖}.

We estimate ‖xn − xn+1‖. Let c := supn≥0{
1−βn

αn
}. Since the sequences {xn} and

{zrn
} are bounded, let ‖xn − Trn

xn‖ ≤M, ‖zrn
− Trn

zrn
‖ ≤M, ‖f(xn)− xn‖ ≤M ,

and ‖f(zrn)− zrn‖ ≤M for all n ≥ 0 and some constant M > 0. Then, for all n ≥ 0

‖xn+1 − xn‖ = ‖βn(αn(Trn
xn − xn)) + (1− βn)(f(xn)− xn)‖

≤ αn‖Trn
xn − xn‖+ (1− βn)‖f(xn)− xn‖

≤ [αn + (1− βn)]M ≤ αn(1 + c)M,

It follows from (4.4) that

‖xn+1−zrn
‖ ≤ [1− (1− α)(1− βn)

1− αnβn
]‖xn−zrn−1‖+

1
1− α

[
αn−1 − αn

αn−1
+
|βn − βn−1|

1− βn
]M

+
αn

(1− α)(1− βn)
‖Trnzrn−1 − Trn−1zrn−1‖+

α2
n

1− αnβn
L(1 + c)M +

(1− βn)αn

1− αnβn
M

= [1− (1− α)(1− βn)
1− αnβn

]‖xn − zrn−1‖+ [
1

1− α
(
αn−1 − αn

αn−1
+
|βn − βn−1|

1− βn
)

+
α2

nL(1 + c)
1− αnβn

+
(1− βn)αn

1− αnβn
]M +

αn

(1− α)(1− βn)
‖Trnzrn−1 − Trn−1zrn−1‖.

Set δn = (1−α)(1−βn)
1−αnβn

and

θn = [ 1
1−α (αn−1−αn

αn−1
+ |βn−βn−1|

1−βn
) + α2

nL(1+c)
1−αnβn

+ (1−βn)αn

1−αnβn
]M

+ αn

(1−α)(1−βn)‖Trnzrn−1 − Trn−1zrn−1‖.

Then we have the inequality

‖xn+1 − zrn‖ ≤ (1− δn)‖xn − zrn−1‖+ θn. (4.5)

By condition (iv) and the assumptions on the sequences of numbers {αn} and {βn}
we know that θn = o(δn). Thus, by Lemma 2.2, ‖xn+1− zrn

‖ → 0 as n→∞, so that

‖xn − zrn
‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − zrn

‖ → 0 as n→∞.

Step 3. ‖xn − Tsxn‖ → 0 as n→∞, for each s ∈ G.
Indeed, since

‖zrn
− Trn

zrn
‖ =

1− βn

αn
‖f(zrn

)− zrn
‖ ≤ 1− βn

αn
M → 0 as n→∞,

the uniformly Lipschitz condition of T together with (ULARC) implies that

‖xn − Tsxn‖ ≤ ‖xn − zrn‖+ ‖zrn − Trnzrn‖+ ‖Trnzrn − TsTrnzrn‖
+‖TsTrnzrn − Tszrn‖+ ‖Tszrn − Tsxn‖
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≤ (1 + L)‖xn − zrn‖+ (1 + L)‖zrn − Trnzrn‖+ ‖Trnzrn − TsTrnzrn‖.
This shows that ‖xn − Tsxn‖ → 0 as n→∞. �

Example 4.1. Let X = R2 with inner product 〈·, ·〉 and norm ‖ · ‖ defined by

〈x, y〉 = ac+ bd and ‖x‖ =
√
a2 + b2

for all x, y ∈ R2 with x = (a, b) and y = (c, d). Let C = {x ∈ R2 : ‖x‖ ≤ 1} and
G = N. Let A be a 2 × 2 positively definite matrix and u ∈ C be a characteristic

vector satisfying Au = u (for example, putting A =
{

2
3

1
3

1
3

2
3

}
and u = ( 1

2 ,
1
2 ), we

know that u ∈ C and Au = u). We define a sequence of nonexpansive self-mappings
on C as follows {

T0 = I,
Tn = (1− 1

n )u+ 1
nA, n = 1, 2, ....

Furthermore, let rn = n, for all n ≥ 0 and define

αn =
1

n1/3
and βn = 1− 1

n2/5
, for all n ≥ 1.

Then there hold the following:
(i) {αn} is decreasing and lim

n→∞
αn = 0;

(ii) lim
n→∞

βn = 1 and
∑∞

n=0(1− βn) = ∞;

(iii) (a) lim
n→∞

1− βn

αn
= 0, (b) lim

n→∞

α2
n

1− βn
= 0,

(c) lim
n→∞

|βn − βn−1|
(1− βn)2

= 0, (d) lim
n→∞

αn−1 − αn

αn−1(1− βn)
= 0;

(iv) rn →∞ such that αn

(1−βn)2 (Trn
yn−1 − Trn−1yn−1) → 0, for all {yn} bounded

in C;
(v) T satisfies (ULARC) on bounded subsets of C, i.e., for each bounded subset C̃

of C, there holds
lim

s∈G,s→∞
sup
x∈ eC

‖TrTsx− Tsx‖ = 0, r ∈ G. (ULARC)

Indeed, it is easy to see that (i), (ii) and (iii) (a), (b) hold. Then utilizing the
L’Hospital rule (with the notation t = 1/n) we deduce that

lim
n→∞

|βn − βn−1|
(1− βn)2

= lim
n→∞

1
1− βn

|1− βn−1

1− βn
− 1| = 0,

and
lim

n→∞

αn−1 − αn

αn−1(1− βn)
= lim

n→∞

1
1− βn

(1− αn

αn−1
) = 0.

This shows that (c) and (d) in (iii) are valid. Next, let us verify that (iv) and (v) are
valid. Observe that for all bounded {yn} in C

αn

(1− βn)2
‖Tnyn−1 − Tn−1yn−1‖

=
1

n1/3

1
n4/5

‖(1− 1
n

)u+
1
n
Ayn−1 − (1− 1

n− 1
)u− 1

n− 1
Ayn−1‖
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= n7/15‖ 1
n(n− 1)

u− 1
n(n− 1)

Ayn−1‖ =
1

n8/15(n− 1)
‖u−Ayn−1‖

≤ 1
n8/15(n− 1)

(‖u‖+ ‖A‖‖yn−1‖) → 0,

and for each m ≥ 0 and each bounded subset C̃ of C,

sup
x∈ eC

‖TmTnx− Tnx‖ = sup
x∈ eC

‖(1− 1
m

)u+
1
m
A[(1− 1

n
)u+

1
n
Ax]− (1− 1

n
)u− 1

n
Ax‖

= sup
x∈ eC

‖(1− 1
m

)u+ (
1
m
− 1)(1− 1

n
)u+

1
n

(
1
m
A2x−Ax)‖

≤ ‖(1− 1
m

)u+ (
1
m
− 1)(1− 1

n
)u‖+

1
n

sup
x∈ eC

(
1
m
‖A‖2‖x‖+ ‖A‖‖x‖)

≤ (1− 1
m

)
1
n
‖u‖+

1
n
‖A‖( 1

m
‖A‖+ 1) → 0 as n→∞.

Therefore, (iv) and (v) are also valid. �
Theorem 4.2. Let C be a nonempty closed convex subset of a uniformly convex

Banach space X with a uniformly Gâteaux differentiable norm. Let T = {Tt : t ∈ G} be
a family of uniformly Lipschitz pseudocontractive self-mappings on C and let f ∈ ΠC .
Let {xn} be a sequence generated by (4.1), where {αn} and {βn} are real sequences
in (0, 1) and {rn} is a sequence in G. Assume that the conditions (i)-(vi) in Theorem
4.1 are satisfied. Then {xn} converges strongly to a common fixed point Q(f) ∈ F of
T , which is the unique solution of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Proof. By Proposition 3.1 and Theorem 3.1, a sequence {zrn
} given by zrn

=
α̃rnTrnzrn + (1 − α̃rn)f(zrn), with α̃rn = αn

1−βn+αn
, for all n ≥ 0, exists and con-

verges strongly to a common fixed point Q(f) ∈ F of T , which is the unique solution
of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

From the proof of Theorem 4.1, ‖xn − zrn‖ → 0 as n → ∞. Hence, {xn} converges
strongly to the same fixed point Q(f) ∈ F of T . This completes the proof. �

Corollary 4.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space X with a uniformly Gâteaux differentiable norm. Let T = {Tt : t ∈ G}
be a family of nonexpansive self-mappings on C and let f ∈ ΠC . Let {xn} be a
sequence generated by (4.1), where {αn} and {βn} are real sequences in (0, 1) and
{rn} is a sequence in G. Assume that the conditions (i)-(vi) in Theorem 4.1 are
satisfied. Then {xn} converges strongly to a common fixed point Q(f) ∈ F , which is
the unique solution of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.
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Corollary 4.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let
T = {Tt : t ∈ G} be a family of uniformly Lipschitz pseudocontractive self-mappings on
C and let f ∈ ΠC . Let {xn} be a sequence generated by (4.1), where {αn} and {βn}
are real sequences in (0, 1) and {rn} is a sequence in G. Assume that the conditions
(i)-(vi) in Theorem 4.1 are satisfied. Then {xn} converges strongly to a common fixed
point P (f) ∈ F , which is the unique solution of the variational inequality

〈(I − f)P (f), P (f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.
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