CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS

YONGHONG YAO*, YEONG-CHENG LIOU**, CHINSAN LEE ${ }^{* * *}$ AND MU-MING WONG****
*Department of Mathematics, Tianjin Polytechnic University, Tianjin 300160, China. E-mail: yaoyonghong@yahoo.cn
**Department of Information Management, Cheng Shiu University, Kaohsiung 833, Taiwan. E-mail: simplex_liou@hotmail.com
${ }^{* * *}$ Department of Leisure, Recreation and Tourism Management, Shu-Te University, Kaohsiung, Taiwan.
${ }^{* * * *}$ Department of Applied Mathematics, Chung Yuan Christian University, Chung Li 32023, Taiwan.
E-mail: mmwong@cycu.edu.tw

Abstract

In this paper, we introduce an iterative scheme for finding a common element of the set of solutions of an equilibrium problem and the set of common fixed points of finitely many nonexpansive mappings in a Hilbert space. We prove a strong convergence theorem under mild assumptions on parameters. Key Words and Phrases: Nonexpansive mapping, equilibrium problem, fixed point problem, Hilbert spaces. 2000 Mathematics Subject Classification: 47H05, 47J05, 47J25.

[^0]
1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Let $h: C \times C \rightarrow R$ be an equilibrium bifunction, i.e., $h(u, u)=0$ for every $u \in C$. Then, one can define the equilibrium problem that is to find an element $u \in C$ such that

$$
\mathrm{EP}(\mathrm{~h}): \quad h(u, v) \geq 0 \text { for all } v \in C
$$

Denote the set of solutions of $\operatorname{EP}(\mathrm{h})$ by $\operatorname{SEP}(\mathrm{h})$. This problem contains fixed point problems, optimization problems, variational inequality problems, Nash equilibrium problems as special cases; see [1]. Some methods have been proposed to solve the equilibrium problem, please consult [2-4].

Recently, Combettes and Hirstoaga [2] introduced an iterative scheme of finding the best approximation to the initial data when $S E P(h) \neq \emptyset$ and proved a strong convergence theorem. Motivated by the idea of Combettes and Hirstoaga, very recently Takahashi and Takahashi [4] introduced a new iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. Their results extend and improve the corresponding results announced by Combettes and Hirstoaga [2], Moudafi [8], Wittmann [9] and Tada and Takahashi [10].

In this paper, motivated and inspired by Combettes and Hirstoaga [2] and Takahashi and Takahashi [4], we introduce an iterative scheme for finding a common element of the set of solutions of $\mathrm{EP}(\mathrm{h})$ and the set of fixed points of finitely many nonexpansive mappings in a Hilbert space. A strong convergence theorem was established.

2. Preliminaries

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. Let C be a nonempty closed convex subset of H. Then, for any $x \in H$, there exists a unique nearest point in C, denoted by $P_{C}(x)$, such that

$$
\left\|x-P_{C}(x)\right\| \leq\|x-y\|,
$$

for all $y \in C$. Such a P_{C} is called the metric projection of H onto C. We know that P_{C} is nonexpansive. Further, for $x \in H$ and $x^{*} \in C$,

$$
x^{*}=P_{C}(x) \Leftrightarrow\left\langle x-x^{*}, x^{*}-y\right\rangle \geq 0 \text { for all } y \in C .
$$

Recall that a mapping $T: C \rightarrow H$ is called nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|,
$$

for all $x, y \in C$. Denote the set of fixed points of T by $F(T)$. It is well known that if C is bounded closed convex and $T: C \rightarrow C$ is nonexpansive, then $F(T) \neq \emptyset$. We call a mapping $f: H \rightarrow H$ is contractive if there exists a constant $\alpha \in(0,1)$ such that

$$
\|f(x)-f(y)\| \leq \alpha\|x-y\| \quad \text { for all } x, y \in H .
$$

For an equilibrium bifunction $h: C \times C \rightarrow R$, we call h satisfying condition (A) if h satisfies the following three conditions:

- h is monotone, i.e., $h(x, y)+h(y, x) \leq 0$ for all $x, y \in C$;
- for each $x, y, z \in C, \lim _{t \downarrow 0} h(t z+(1-t) x, y) \leq h(x, y)$;
- for each $x \in C, y \mapsto h(x, y)$ is convex and lower semicontinuous.

If an equilibrium bifunction $h: C \times C \rightarrow R$ satisfies condition (A), then we have the following two important results. You can find the first lemma in [1] and the second one in [2].

Lemma 2.1. Let C be a nonempty closed convex subset of H and let h be an equilibrium bifunction of $C \times C$ into R satisfies condition (A). Let $r>0$ and $x \in H$. Then, there exists $y \in C$ such that

$$
h(y, z)+\frac{1}{r}\langle z-y, y-x\rangle \geq 0 \text { for all } z \in C .
$$

Lemma 2.2. Assume that h satisfies the same assumptions as Lemma 2.1. For $r>0$ and $x \in H$, define a mapping $S_{r}: H \rightarrow C$ as follows:

$$
S_{r}(x)=\left\{y \in C: h(y, z)+\frac{1}{r}\langle z-y, y-x\rangle \geq 0, \forall z \in C\right\}
$$

for all $y \in H$. Then, the following hold:
(1) S_{r} is single-valued;
(2) S_{r} is firmly nonexpansive, i.e., for any $x, y \in H$,

$$
\left\|S_{r} x-S_{r} y\right\|^{2} \leq\left\langle S_{r} x-S_{r} y, x-y\right\rangle
$$

(3) $F\left(S_{r}\right)=S E P(h)$;
(4) $S E P(h)$ is closed and convex.

We also need the following lemmas for proving our main results.
Lemma 2.3. ([5]) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be bounded sequences in a Banach space X and let $\left\{\beta_{n}\right\}$ be a sequence in $[0,1]$ with

$$
0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \limsup _{n \rightarrow \infty} \beta_{n}<1
$$

Suppose

$$
x_{n+1}=\left(1-\beta_{n}\right) y_{n}+\beta_{n} x_{n}
$$

for all integers $n \geq 0$ and

$$
\limsup _{n \rightarrow \infty}\left(\left\|y_{n+1}-y_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Then, $\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=0$.
Lemma 2.4.([6]) Assume $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leq\left(1-\gamma_{n}\right) a_{n}+\delta_{n}
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence such that
(1) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(2) $\lim \sup _{n \rightarrow \infty} \delta_{n} / \gamma_{n} \leq 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.

3. Iterative scheme and strong convergence theorems

In this section, we first introduce our iterative scheme. Consequently we will establish strong convergence theorems for this iteration scheme. To be more specific, let $\lambda_{n 1}, \lambda_{n 2}, \cdots, \lambda_{n N} \in(0,1], n \in \mathbf{N}$. Given the mappings $T_{1}, T_{2}, \cdots, T_{N}$, following [7] one can define, for each $n \in \mathbf{N}$, mappings $U_{n 1}, U_{n 2}, \cdots, U_{n N}$ by

$$
\begin{align*}
U_{n 1} & =\lambda_{n 1} T_{1}+\left(1-\lambda_{n 1}\right) I \\
U_{n 2} & =\lambda_{n 2} T_{2} U_{n 1}+\left(1-\lambda_{n 2}\right) I \\
& \vdots \tag{1}\\
U_{n, N-1} & =\lambda_{n, N-1} T_{N-1} U_{n, N-2}+\left(1-\lambda_{n, N-1}\right) I \\
W_{n} & :=U_{n N}=\lambda_{n N} T_{N} U_{n, N-1}+\left(1-\lambda_{n N}\right) I
\end{align*}
$$

Such a mapping W_{n} is called the W-mapping generated by T_{1}, \cdots, T_{N} and $\lambda_{n 1}, \lambda_{n 2}, \cdots, \lambda_{n N}$.

Now we introduce the following iteration scheme: Let f be a contraction of H into itself with coefficient $\alpha \in(0,1)$ and given $x_{0} \in H$ arbitrarily. Suppose the sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n}\right\}_{n=1}^{\infty}$ are generated iteratively by

$$
\left\{\begin{array}{l}
h\left(y_{n}, x\right)+\frac{1}{r_{n}}\left\langle x-y_{n}, y_{n}-x_{n}\right\rangle \geq 0, \quad \forall x \in C, \tag{2}\\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} W_{n} y_{n},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are three sequences in $(0,1)$ such that $\alpha_{n}+\beta_{n}+$ $\gamma_{n}=1,\left\{r_{n}\right\}$ is a real sequence in $(0, \infty), h$ is an equilibrium bifunction and W_{n} is the W-mapping defined by (1).

We have the following crucial conclusion concerning W_{n}.
Lemma 3.1. ([7]) Let C be a nonempty closed convex subset of a Banach space E. Let $T_{1}, T_{2}, \cdots, T_{N}$ be finite family of nonexpansive mappings of C into itself such that $\bigcap_{i=1}^{N} F\left(T_{i}\right)$ is nonempty, and let $\lambda_{n 1}, \lambda_{n 2}, \cdots, \lambda_{n N}$ be real numbers such that $0<\lambda_{n i} \leq b<1$ for any $i \in \mathbf{N}$. For any $n \in \mathbf{N}$, let W_{n} be the W-mapping of C into itself generated by $T_{N}, T_{N-1}, \cdots, T_{1}$ and $\lambda_{n N}, \lambda_{n, N-1}, \cdots, \lambda_{n 1}$. Then W_{n} is nonexpansive. Further, if E is strictly convex, then $F\left(W_{n}\right)=\cap_{i=1}^{N} F\left(T_{i}\right)$.

Now we state and prove our main results.
Theorem 3.1. Let C be a nonempty closed convex subset of H. Let h : $C \times C \rightarrow R$ be an equilibrium bifunction satisfying condition (A) and let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of nonexpansive mappings of C into H such that $\cap_{i=1}^{N} F\left(T_{i}\right) \bigcap S E P(h) \neq \emptyset$. Let $\lambda_{n 1}, \lambda_{n 2}, \cdots, \lambda_{n N}$ be real numbers such that $\lim _{n \rightarrow \infty}\left(\lambda_{n+1, i}-\lambda_{n, i}\right)=0$ for all $i=1,2, \cdots, N$. Suppose $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are three sequences in $(0,1)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ is a real sequence. Suppose the following conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\lim \inf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$;
(iii) $\lim \inf _{n \rightarrow \infty} r_{n}>0$ and $\lim _{n \rightarrow \infty}\left(r_{n+1}-r_{n}\right)=0$.

Let f be a contraction of H into itself and given $x_{0} \in H$ arbitrarily. Then the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ generated iteratively by (2) converge strongly to $x^{*} \in \cap_{i=1}^{N} F\left(T_{i}\right) \bigcap S E P(h)$, where $x^{*}=P_{\cap_{i=1}^{N} F\left(T_{i}\right) \cap S E P(h)} f\left(x^{*}\right)$.

Proof. Let $Q=P_{\cap_{i=1}^{N} F\left(T_{i}\right) \cap S E P(h)}$. Note that f is a contraction mapping with coefficient $\alpha \in(0,1)$. Then $\|Q f(x)-Q f(y)\| \leq\|f(x)-f(y)\| \leq \alpha\|x-y\|$ for all $x, y \in H$. Therefore, $Q f$ is a contraction of H into itself, which implies that there exists a unique element $x^{*} \in H$ such that $x^{*}=Q f\left(x^{*}\right)$. At the same time, we note that $x^{*} \in C$.

Let $p \in \cap_{i=1}^{N} F\left(T_{i}\right) \bigcap S E P(h)$. From the definition of S_{r}, we note that $y_{n}=S_{r_{n}} x_{n}$. It follows that

$$
\begin{aligned}
\left\|y_{n}-p\right\| & =\left\|S_{r_{n}} x_{n}-S_{r_{n}} p\right\| \\
& \leq\left\|x_{n}-p\right\| .
\end{aligned}
$$

Next we prove that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded. Indeed, from Lemma 3.1 we have $p \in W_{n}$. Then from (1) and (2), we obtain

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|= & \left\|\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} W_{n} y_{n}-p\right\| \\
\leq & \alpha_{n}\left\|f\left(x_{n}\right)-p\right\|+\beta_{n}\left\|x_{n}-p\right\|+\gamma_{n}\left\|W_{n} y_{n}-p\right\| \\
\leq & \alpha_{n}\left(\left\|f\left(x_{n}\right)-f(p)\right\|+\|f(p)-p\|\right)+\beta_{n}\left\|x_{n}-p\right\| \\
& +\gamma_{n}\left\|y_{n}-p\right\| \\
\leq & \alpha_{n}\left(\alpha\left\|x_{n}-p\right\|+\|f(p)-p\|\right)+\left(1-\alpha_{n}\right)\left\|x_{n}-p\right\| \\
\leq & \max \left\{\left\|x_{0}-p\right\|, \frac{1}{1-\alpha}\|f(p)-p\|\right\} .
\end{aligned}
$$

Therefore $\left\{x_{n}\right\}$ is bounded. We also obtain that $\left\{y_{n}\right\},\left\{W_{n} x_{n}\right\}$ and $\left\{f\left(x_{n}\right)\right\}$ are all bounded. We shall use M to denote the possible different constants appearing in the following reasoning.

Setting $x_{n+1}=\beta_{n} x_{n}+\left(1-\beta_{n}\right) z_{n}$ for all $n \geq 0$. It follows that

$$
\begin{aligned}
z_{n+1}-z_{n}= & \frac{x_{n+2}-\beta_{n+1} x_{n+1}}{1-\beta_{n+1}}-\frac{x_{n+1}-\beta_{n} x_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1} f\left(x_{n+1}\right)+\gamma_{n+1} W_{n+1} y_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n} f\left(x_{n}\right)+\gamma_{n} W_{n} y_{n}}{1-\beta_{n}} \\
= & \frac{\alpha_{n+1}}{1-\beta_{n+1}}\left(f\left(x_{n+1}\right)-f\left(x_{n}\right)\right)+\left(\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right) f\left(x_{n}\right) \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left(W_{n+1} y_{n+1}-W_{n} y_{n}\right)+\left(\frac{\gamma_{n+1}}{1-\beta_{n+1}}-\frac{\gamma_{n}}{1-\beta_{n}}\right) W_{n} y_{n}
\end{aligned}
$$

So, we have

$$
\begin{align*}
\left\|z_{n+1}-z_{n}\right\| \leq & \frac{\alpha \alpha_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\|+\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\left\|f\left(x_{n}\right)\right\|\right. \\
& \left.+\left\|W_{n} y_{n}\right\|\right)+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|W_{n+1} y_{n+1}-W_{n} y_{n}\right\| \tag{3}
\end{align*}
$$

From (1), since T_{N} and $U_{n, N}$ are nonexpansive,

$$
\begin{align*}
\| & W_{n+1} y_{n}-W_{n} y_{n} \| \\
= & \| \lambda_{n+1, N} T_{N} U_{n+1, N-1} y_{n}+\left(1-\lambda_{n+1, N}\right) y_{n} \\
& -\lambda_{n, N} T_{N} U_{n, N-1} y_{n}-\left(1-\lambda_{n, N}\right) y_{n} \| \\
\leq & \left|\lambda_{n+1, N}-\lambda_{n, N}\right|\left\|y_{n}\right\|+\left\|\lambda_{n+1, N} T_{N} U_{n+1, N-1} y_{n}-\lambda_{n, N} T_{N} U_{n, N-1} y_{n}\right\| \tag{4}\\
\leq & \left|\lambda_{n+1, N}-\lambda_{n, N}\right|\left\|y_{n}\right\|+\left\|\lambda_{n+1, N}\left(T_{N} U_{n+1, N-1} y_{n}-T_{N} U_{n, N-1} y_{n}\right)\right\| \\
& \quad+\left|\lambda_{n+1, N}-\lambda_{n, N}\right|\left\|T_{N} U_{n, N-1} y_{n}\right\| \\
\leq & 2 M\left|\lambda_{n+1, N}-\lambda_{n, N}\right|+\lambda_{n+1, N}\left\|U_{n+1, N-1} y_{n}-U_{n, N-1} y_{n}\right\| .
\end{align*}
$$

Again, from (1), we have

$$
\begin{align*}
\| & U_{n+1, N-1} y_{n}-U_{n, N-1} y_{n} \| \\
= & \| \lambda_{n+1, N-1} T_{N-1} U_{n+1, N-2} y_{n}+\left(1-\lambda_{n+1, N-1}\right) y_{n} \\
& -\lambda_{n, N-1} T_{N-1} U_{n, N-2} y_{n}-\left(1-\lambda_{n, N-1}\right) y_{n} \| \\
\leq & \left|\lambda_{n+1, N-1}-\lambda_{n, N-1}\right|\left\|y_{n}\right\| \\
& +\left\|\lambda_{n+1, N-1} T_{N-1} U_{n+1, N-2} y_{n}-\lambda_{n, N-1} T_{N-1} U_{n, N-2} y_{n}\right\| \\
\leq & \left|\lambda_{n+1, N-1}-\lambda_{n, N-1}\right|\left\|y_{n}\right\| \tag{5}\\
+ & \lambda_{n+1, N-1}\left\|T_{N-1} U_{n+1, N-2} y_{n}-T_{N-1} U_{n, N-2} y_{n}\right\| \\
+ & \left|\lambda_{n+1, N-1}-\lambda_{n, N-1}\right| M \\
\leq & 2 M\left|\lambda_{n+1, N-1}-\lambda_{n, N-1}\right|+\lambda_{n+1, N-1}\left\|U_{n+1, N-2} y_{n}-U_{n, N-2} y_{n}\right\| \\
\leq & 2 M\left|\lambda_{n+1, N-1}-\lambda_{n, N-1}\right|+\left\|U_{n+1, N-2} y_{n}-U_{n, N-2} y_{n}\right\| .
\end{align*}
$$

Therefore, we have

$$
\begin{aligned}
& \left\|U_{n+1, N-1} y_{n}-U_{n, N-1} y_{n}\right\| \leq 2 M\left|\lambda_{n+1, N-1}-\lambda_{n, N-1}\right|+2 M\left|\lambda_{n+1, N-2}-\lambda_{n, N-2}\right| \\
& \quad+\left\|U_{n+1, N-3} y_{n}-U_{n, N-3} y_{n}\right\| \leq 2 M \sum_{i=2}^{N-1}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|+\left\|U_{n+1,1} y_{n}-U_{n, 1} y_{n}\right\|
\end{aligned}
$$

$$
=\left\|\lambda_{n+1,1} T_{1} y_{n}+\left(1-\lambda_{n+1,1}\right) y_{n}-\lambda_{n, 1} T_{1} y_{n}-\left(1-\lambda_{n, 1}\right) y_{n}\right\|+2 M \sum_{i=2}^{N-1}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|
$$

then

$$
\begin{align*}
& \left\|U_{n+1, N-1} y_{n}-U_{n, N-1} y_{n}\right\| \\
& \leq\left|\lambda_{n+1,1}-\lambda_{n, 1}\right|\left\|y_{n}\right\|+\left\|\lambda_{n+1,1} T_{1} y_{n}-\lambda_{n, 1} T_{1} y_{n}\right\| \\
& \quad+2 M \sum_{i=2}^{N-1}\left|\lambda_{n+1, i}-\lambda_{n, i}\right| \tag{6}\\
& \leq 2 M \sum_{i=1}^{N-1}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|
\end{align*}
$$

Substituting (6) into (4), we have

$$
\begin{aligned}
\left\|W_{n+1} y_{n}-W_{n} y_{n}\right\| \leq & 2 M\left|\lambda_{n+1, N}-\lambda_{n, N}\right| \\
& +2 \lambda_{n+1, N} M \sum_{i=1}^{N-1}\left|\lambda_{n+1, i}-\lambda_{n, i}\right| \\
\leq & 2 M \sum_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right| .
\end{aligned}
$$

It follows that

$$
\begin{align*}
\left\|W_{n+1} y_{n+1}-W_{n} y_{n}\right\| & \leq\left\|W_{n+1} y_{n+1}-W_{n+1} y_{n}\right\|+\left\|W_{n+1} y_{n}-W_{n} y_{n}\right\| \\
& \leq\left\|y_{n+1}-y_{n}\right\|+\left\|W_{n+1} y_{n}-W_{n} y_{n}\right\| \\
& \leq\left\|y_{n+1}-y_{n}\right\|+2 M \sum_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right| \tag{7}
\end{align*}
$$

Substituting (7) into (3), we have

$$
\begin{align*}
\left\|z_{n+1}-z_{n}\right\| \leq & \frac{\alpha \alpha_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\|+\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\left\|f\left(x_{n}\right)\right\|\right. \\
& \left.+\left\|W_{n} y_{n}\right\|\right)+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|y_{n+1}-y_{n}\right\| \tag{8}\\
& +\frac{2 M \gamma_{n+1}}{1-\beta_{n+1}} \sum_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|
\end{align*}
$$

On the other hand, from $y_{n}=S_{r_{n}} x_{n}$ and $y_{n+1}=S_{r_{n+1}} x_{n+1}$, we have

$$
\begin{equation*}
h\left(y_{n}, x\right)+\frac{1}{r_{n}}\left\langle x-y_{n}, y_{n}-x_{n}\right\rangle \geq 0 \text { for all } x \in C \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
h\left(y_{n+1}, x\right)+\frac{1}{r_{n+1}}\left\langle x-y_{n+1}, y_{n+1}-x_{n+1}\right\rangle \geq 0 \text { for all } x \in C \tag{10}
\end{equation*}
$$

Putting $x=y_{n+1}$ in (9) and $x=y_{n}$ in (10), we have

$$
\begin{equation*}
h\left(y_{n}, y_{n+1}\right)+\frac{1}{r_{n}}\left\langle y_{n+1}-y_{n}, y_{n}-x_{n}\right\rangle \geq 0 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
h\left(y_{n+1}, y_{n}\right)+\frac{1}{r_{n+1}}\left\langle y_{n}-y_{n+1}, y_{n+1}-x_{n+1}\right\rangle \geq 0 \tag{12}
\end{equation*}
$$

From the monotonicity of h, we have

$$
h\left(y_{n}, y_{n+1}\right)+h\left(y_{n+1}, y_{n}\right) \leq 0
$$

So, from (11) and (12), we can conclude that

$$
\left\langle y_{n+1}-y_{n}, \frac{y_{n}-x_{n}}{r_{n}}-\frac{y_{n+1}-x_{n+1}}{r_{n+1}}\right\rangle \geq 0
$$

and hence

$$
\left\langle y_{n+1}-y_{n}, y_{n}-y_{n+1}+y_{n+1}-x_{n}-\frac{r_{n}}{r_{n+1}}\left(y_{n+1}-x_{n+1}\right)\right\rangle \geq 0
$$

Since $\lim \inf _{n \rightarrow \infty} r_{n}>0$, without loss of generality, we may assume that there exists a real number b such that $r_{n}>b>0$ for all $n \in \mathbf{N}$. Then, we have

$$
\begin{aligned}
\left\|y_{n+1}-y_{n}\right\|^{2} & \leq\left\langle y_{n+1}-y_{n}, x_{n+1}-x_{n}+\left(1-\frac{r_{n}}{r_{n+1}}\right)\left(y_{n+1}-x_{n+1}\right)\right\rangle \\
& \leq\left\|y_{n+1}-y_{n}\right\|\left\{\left\|x_{n+1}-x_{n}\right\|+\left|1-\frac{r_{n}}{r_{n+1}}\right|\left\|y_{n+1}-x_{n+1}\right\|\right\}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left\|y_{n+1}-y_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\frac{M}{b}\left|r_{n+1}-r_{n}\right| \tag{13}
\end{equation*}
$$

Substituting (13) into (8), we have

$$
\begin{aligned}
\left\|z_{n+1}-z_{n}\right\| \leq & \frac{\alpha \alpha_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\|+\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\left\|f\left(x_{n}\right)\right\|\right. \\
& \left.+\left\|W_{n} y_{n}\right\|\right)+\frac{\gamma_{n+1}}{1-\beta_{n+1}}\left\|x_{n+1}-x_{n}\right\| \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}} \times \frac{M}{b}\left|r_{n+1}-r_{n}\right|+\frac{2 M \gamma_{n+1}}{1-\beta_{n+1}} \sum_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right| \\
\leq & \left\|x_{n+1}-x_{n}\right\|+\left|\frac{\alpha_{n+1}}{1-\beta_{n+1}}-\frac{\alpha_{n}}{1-\beta_{n}}\right|\left(\left\|f\left(x_{n}\right)+\right\| W_{n} y_{n} \|\right) \\
& +\frac{\gamma_{n+1}}{1-\beta_{n+1}} \times \frac{M}{b}\left|r_{n+1}-r_{n}\right|+\frac{2 M \gamma_{n+1}}{1-\beta_{n+1}} \sum_{i=1}^{N}\left|\lambda_{n+1, i}-\lambda_{n, i}\right|,
\end{aligned}
$$

this together with $\alpha_{n} \rightarrow 0, r_{n+1}-r_{n} \rightarrow 0$ and $\lambda_{n+1, i}-\lambda_{n, i} \rightarrow 0$ imply that

$$
\limsup _{n \rightarrow \infty}\left(\left\|z_{n+1}-z_{n}\right\|-\left\|x_{n+1}-x_{n}\right\|\right) \leq 0
$$

Hence by Lemma 2.3, we obtain $\left\|z_{n}-x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Consequently,

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

From (13) and $\lim _{n \rightarrow \infty}\left(r_{n+1}-r_{n}\right)=0$, we have

$$
\lim _{n \rightarrow \infty}\left\|y_{n+1}-y_{n}\right\|=0
$$

Since $x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} W_{n} y_{n}$, we have

$$
\begin{aligned}
\left\|x_{n}-W_{n} y_{n}\right\| & \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-W_{n} y_{n}\right\| \\
& \leq\left\|x_{n}-x_{n+1}\right\|+\alpha_{n}\left\|f\left(x_{n}\right)-W_{n} y_{n}\right\|+\beta_{n}\left\|x_{n}-W_{n} y_{n}\right\|,
\end{aligned}
$$

that is

$$
\left\|x_{n}-W_{n} y_{n}\right\| \leq \frac{1}{1-\beta_{n}}\left\|x_{n}-x_{n+1}\right\|+\frac{\alpha_{n}}{1-\beta_{n}}\left\|f\left(x_{n}\right)-W_{n} y_{n}\right\|
$$

It follows that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-W_{n} y_{n}\right\|=0
$$

For $p \in \cap_{i=1}^{N} F\left(T_{i}\right) \bigcap S E P(h)$, note that S_{r} is firmly nonexpansive, then we have

$$
\begin{aligned}
\left\|y_{n}-p\right\|^{2} & =\left\|S_{r_{n}} x_{n}-S_{r_{n}} p\right\|^{2} \\
& \leq\left\langle S_{r_{n}} x_{n}-S_{r_{n}} p, x_{n}-p\right\rangle \\
& =\left\langle y_{n}-p, x_{n}-p\right\rangle \\
& =\frac{1}{2}\left(\left\|y_{n}-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}\right)
\end{aligned}
$$

and hence

$$
\left\|y_{n}-p\right\|^{2} \leq\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}
$$

Therefore, we have

$$
\begin{aligned}
\left\|x_{n+1}-p\right\|^{2}= & \left\|\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} W_{n} y_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|W_{n} y_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2}+\gamma_{n}\left\|y_{n}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\beta_{n}\left\|x_{n}-p\right\|^{2} \\
& +\gamma_{n}\left(\left\|x_{n}-p\right\|^{2}-\left\|x_{n}-y_{n}\right\|^{2}\right) \\
\leq & \alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\gamma_{n}\left\|x_{n}-y_{n}\right\|^{2} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\gamma_{n}\left\|x_{n}-y_{n}\right\|^{2} \leq & \alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\left\|x_{n}-p\right\|^{2}-\left\|x_{n+1}-p\right\|^{2} \\
\leq & \alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right) \\
& \times\left(\left\|x_{n}-p\right\|-\left\|x_{n+1}-p\right\|\right) \\
\leq & \alpha_{n}\left\|f\left(x_{n}\right)-p\right\|^{2}+\left\|x_{n}-x_{n+1}\right\|\left(\left\|x_{n}-p\right\|+\left\|x_{n+1}-p\right\|\right)
\end{aligned}
$$

It is easily seen that ${\lim \inf _{n \rightarrow \infty} \gamma_{n}>0 \text {. So, we have }}$

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0
$$

From

$$
\left\|W_{n} y_{n}-y_{n}\right\| \leq\left\|W_{n} y_{n}-x_{n}\right\|+\left\|x_{n}-y_{n}\right\|
$$

We also have $\left\|W_{n} y_{n}-y_{n}\right\| \rightarrow 0$.
Next, we show that

$$
\limsup _{n \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, x_{n}-x^{*}\right\rangle \leq 0
$$

where $x^{*}=P_{\cap_{i=1}^{N} F\left(T_{i}\right) \cap S E P(h)} f\left(x^{*}\right)$. First we can choose a subsequence $\left\{y_{n_{j}}\right\}$ of $\left\{y_{n}\right\}$ such that

$$
\lim _{j \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, y_{n_{j}}-x^{*}\right\rangle=\limsup _{n \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, y_{n}-x^{*}\right\rangle
$$

Since $\left\{y_{n_{j}}\right\}$ is bounded, there exists a subsequence $\left\{y_{n_{j i}}\right\}$ of $\left\{y_{n_{j}}\right\}$ which converges weakly to w. Without loss of generality, we can assume that $y_{n_{j}} \rightarrow w$ weakly. From $\left\|W_{n} y_{n}-y_{n}\right\| \rightarrow 0$, we obtain $W_{n} y_{n_{j}} \rightarrow w$ weakly. Now we show $w \in S E P(h)$. By $y_{n}=S_{r_{n}} x_{n}$, we have

$$
h\left(y_{n}, x\right)+\frac{1}{r_{n}}\left\langle x-y_{n}, y_{n}-x_{n}\right\rangle \geq 0, \quad \forall x \in C
$$

From the monotonicity of h, we have

$$
\frac{1}{r_{n}}\left\langle x-y_{n}, y_{n}-x_{n}\right\rangle \geq-h\left(y_{n}, x\right) \geq h\left(x, y_{n}\right)
$$

and hence

$$
\left\langle x-y_{n_{j}}, \frac{y_{n_{j}}-x_{n_{j}}}{r_{n_{j}}}\right\rangle \geq h\left(x, y_{n_{j}}\right)
$$

Since $\frac{y_{n_{j}}-x_{n_{j}}}{r_{n_{j}}} \rightarrow 0$ and $y_{n_{j}} \rightarrow w$ weakly, from the lower semi-continuity of $h(x, y)$ on the second variable y, we have

$$
h(x, w) \leq 0
$$

for all $x \in C$. For t with $0<t \leq 1$ and $x \in C$, let $x_{t}=t x+(1-t) w$. Since $x \in C$ and $w \in C$, we have $x_{t} \in C$ and hence $h\left(x_{t}, w\right) \leq 0$. So, from the convexity of equilibrium bifunction $h(x, y)$ on the second variable y, we have

$$
\begin{aligned}
0 & =h\left(x_{t}, x_{t}\right) \\
& \leq t h\left(x_{t}, x\right)+(1-t) h\left(x_{t}, w\right) \\
& \leq t h\left(x_{t}, x\right) .
\end{aligned}
$$

and hence $h\left(x_{t}, x\right) \geq 0$. Then, we have

$$
h(w, x) \geq 0
$$

for all $x \in C$ and hence $w \in S E P(h)$.

We shall show $w \in F\left(W_{n}\right)$. Assume $w \notin F\left(W_{n}\right)$. Since $y_{n_{j}} \rightarrow w$ weakly and $w \neq W_{n} w$, from Opial's condition, we have

$$
\begin{aligned}
\liminf _{j \rightarrow \infty}\left\|y_{n_{j}}-w\right\| & <\liminf _{j \rightarrow \infty}\left\|y_{n_{j}}-W_{n} w\right\| \\
& \leq \liminf _{j \rightarrow \infty}\left(\left\|y_{n_{j}}-W_{n} y_{n_{j}}\right\|+\left\|W_{n} y_{n_{j}}-W_{n} w\right\|\right) \\
& \leq \liminf _{j \rightarrow \infty}\left\|y_{n_{j}}-w\right\| .
\end{aligned}
$$

This is a contradiction. So, we get $w \in F\left(W_{n}\right)=\cap_{i=1}^{N} F\left(T_{i}\right)$. Therefore $w \in \cap_{i=1}^{N} F\left(T_{i}\right) \bigcap S E P(h)$. Since $x^{*}=P_{\cap_{i=1}^{N} F\left(T_{i}\right) \cap \operatorname{SEP}(h)} f\left(x^{*}\right)$, we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, x_{n}-x^{*}\right\rangle & =\lim _{j \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, x_{n_{j}}-x^{*}\right\rangle \\
& =\lim _{j \rightarrow \infty}\left\langle f\left(x^{*}\right)-x^{*}, y_{n_{j}}-x^{*}\right\rangle \tag{14}\\
& =\left\langle f\left(x^{*}\right)-x^{*}, w-x^{*}\right\rangle \leq 0
\end{align*}
$$

Finally, we prove that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge strongly to x^{*}. From (2), we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2}= & \left\|\alpha_{n}\left(f\left(x_{n}\right)-x^{*}\right)+\beta_{n}\left(x_{n}-x^{*}\right)+\gamma_{n}\left(W_{n} y_{n}-x^{*}\right)\right\|^{2} \\
\leq & \left\|\beta_{n}\left(x_{n}-x^{*}\right)+\gamma_{n}\left(W_{n} y_{n}-x^{*}\right)\right\|^{2} \\
& +2 \alpha_{n}\left\langle f\left(x_{n}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & \left\{\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n}\left\|W_{n} y_{n}-x^{*}\right\|\right\}^{2} \\
& +2 \alpha_{n}\left\langle f\left(x_{n}\right)-f\left(x^{*}\right), x_{n+1}-x^{*}\right\rangle \\
& +2 \alpha_{n}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & \left\{\beta_{n}\left\|x_{n}-x^{*}\right\|+\gamma_{n}\left\|y_{n}-x^{*}\right\|\right\}^{2} \\
& +2 \alpha \alpha_{n}\left\|x_{n}-x^{*}\right\|\left\|x_{n+1}-x^{*}\right\| \\
& +2 \alpha_{n}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+\alpha \alpha_{n}\left(\left\|x_{n+1}-x^{*}\right\|^{2}+\left\|x_{n}-x^{*}\right\|^{2}\right) \\
& +2 \alpha_{n}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle
\end{aligned}
$$

which implies that

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \frac{\left(1-\alpha_{n}\right)^{2}+\alpha \alpha_{n}}{1-\alpha \alpha_{n}}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\frac{2 \alpha_{n}}{1-\alpha \alpha_{n}}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \\
= & \frac{1-2 \alpha_{n}+\alpha \alpha_{n}}{1-\alpha \alpha_{n}}\left\|x_{n}-x^{*}\right\|^{2}+\frac{\alpha_{n}^{2}}{1-\alpha \alpha_{n}}\left\|x_{n}-x^{*}\right\|^{2} \\
& +\frac{2 \alpha_{n}}{1-\alpha \alpha_{n}}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle \tag{15}\\
\leq & \left\{1-\frac{2(1-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}}\right\}\left\|x_{n}-x^{*}\right\|^{2}+\frac{2(1-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}} \\
& \times\left\{\frac{M \alpha_{n}}{2(1-\alpha)}+\frac{1}{1-\alpha}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle\right\} \\
= & \left(1-\delta_{n}\right)\left\|x_{n}-x^{*}\right\|^{2}+\delta_{n} \sigma_{n}
\end{align*}
$$

where $\delta_{n}=\frac{2(1-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}}$ and $\sigma_{n}=\frac{M \alpha_{n}}{2(1-\alpha)}+\frac{1}{1-\alpha}\left\langle f\left(x^{*}\right)-x^{*}, x_{n+1}-x^{*}\right\rangle$. It is easily seen that $\sum_{n=0}^{\infty} \delta_{n}=\infty$ and $\lim \sup _{n \rightarrow \infty} \sigma_{n} \leq 0$. Now applying Lemma 2.4 and (14) to (15) concludes that $x_{n} \rightarrow x^{*}(n \rightarrow \infty)$. This completes the proof.

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $h: C \times C \rightarrow R$ be an equilibrium bifunction satisfying condition (A) such that $S E P(h) \neq \emptyset$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are three sequences in $(0,1)$ and $\left\{r_{n}\right\} \subset(0, \infty)$ is a real sequence. Suppose the following conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$;
(iii) $\liminf _{n \rightarrow \infty} r_{n}>0$ and $\lim _{n \rightarrow \infty}\left(r_{n+1}-r_{n}\right)=0$.

Let f be a contraction of H into itself and given $x_{0} \in H$ arbitrarily. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated iteratively by

$$
\left\{\begin{array}{l}
h\left(y_{n}, x\right)+\frac{1}{r_{n}}\left\langle x-y_{n}, y_{n}-x_{n}\right\rangle \geq 0, \quad \forall x \in C \tag{16}\\
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} y_{n}
\end{array}\right.
$$

Then the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ generated by (16) converge strongly to $x^{*} \in$ $S E P(h)$, where $x^{*}=P_{S E P(h)} f\left(x^{*}\right)$.

Proof. Take $T_{i} x=x$ for all $i=1,2, \cdots, N$ and for all $x \in C$ in (1), then $W_{n} x=x$ for all $x \in C$. The conclusion follows from Theorem 3.1. This completes the proof.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\left\{T_{i}\right\}_{i=1}^{N}$ be a finite family of nonexpansive mappings of C into H such that $\cap_{i=1}^{N} F\left(T_{i}\right) \neq \emptyset$. Let $\lambda_{n 1}, \lambda_{n 2}, \cdots, \lambda_{n N}$ be real numbers such that $\lim _{n \rightarrow \infty}\left(\lambda_{n+1, i}-\lambda_{n, i}\right)=0$ for all $i=1,2, \cdots, N$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are three sequences in $(0,1)$. Suppose the following conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.

Let f be a contraction of H into itself and given $x_{0} \in H$ arbitrarily. Let $\left\{x_{n}\right\}$ be sequence generated iteratively by

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} W_{n} P_{C} x_{n}
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $x^{*} \in \cap_{i=1}^{N} F\left(T_{i}\right)$, where $x^{*}=$ $P_{\cap_{i=1}^{N} F\left(T_{i}\right)} f\left(x^{*}\right)$.

Proof. Set $h(x, y)=0$ for all $x, y \in C$ and $r_{n}=1$ for all $n \in \mathbf{N}$. Then, we have $y_{n}=P_{C} x_{n}$. From (2), we have

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} W_{n} P_{C} x_{n}
$$

Then the conclusion follows from Theorem 3.1. This completes the proof.
Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T: C \rightarrow C$ be a nonexpansive mapping such that $F(T) \neq \emptyset$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ are three sequences in $(0,1)$. Suppose the following conditions are satisfied:
(i) $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(ii) $0<\liminf _{n \rightarrow \infty} \beta_{n} \leq \lim \sup _{n \rightarrow \infty} \beta_{n}<1$.

Let f be a contraction of C into itself and given $x_{0} \in C$ arbitrarily. Let $\left\{x_{n}\right\}$ be sequence generated iteratively by

$$
x_{n+1}=\alpha_{n} f\left(x_{n}\right)+\beta_{n} x_{n}+\gamma_{n} T x_{n}
$$

Then $\left\{x_{n}\right\}$ converges strongly to $x^{*} \in F(T)$, where $x^{*}=P_{F(T)} f\left(x^{*}\right)$ is a unique solution of the following variational inequality in $F(T)$

$$
\left\langle(I-f) x^{*}, x^{*}-p\right\rangle \leq 0, \forall p \in F(T)
$$

Example 3.1. Let $T: C \rightarrow C$ be a nonexpansive mapping. Take $h(x, y)=$ 0 for all $x, y \in C, f(x)=u$ for all $x \in C$ and $r_{n}=1$ for all $n \geq 1$. Hence, we can take $\alpha_{n}=\frac{1}{2 n}, \beta_{n}=\frac{1}{2}$ and $\gamma_{n}=\frac{1}{2}\left(1-\frac{1}{n}\right)$ for all $n \geq 1$. By using the Corollary 3.3, the iterative sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n+1}=\frac{1}{2 n} u+\frac{1}{2} x_{n}+\frac{1}{2}\left(1-\frac{1}{n}\right) T x_{n},
$$

converges strongly to some fixed point of T.
In particular, let $H=R^{2}$ and define $T: R^{2} \rightarrow R^{2}$ by

$$
T\left(r e^{i \theta}\right)=r e^{i\left(\theta+\frac{\pi}{2}\right)}
$$

and take $u=e^{i \pi}$. It is obvious that T is a nonexpansive mapping with a unique fixed point $x^{*}=0$. In this case, the sequence $\left\{x_{n}\right\}$ becomes that

$$
x_{n+1}=\frac{1}{2 n} e^{i \pi}+\frac{1}{2} r_{n} e^{i \theta_{n}}+\frac{1}{2}\left(1-\frac{1}{n}\right) r_{n} e^{i\left(\theta_{n}+\frac{\pi}{2}\right)} .
$$

It is clear that the complex number sequence $\left\{x_{n}\right\}$ converges strongly to a fixed point $x^{*}=0$.

Remark 3.1. We conclude the paper with the following observations.
(i) Our iterative scheme (2) is a convex combination of $f\left(x_{n}\right), x_{n}$ and $W_{n} x_{n}$ which includes the iterative schemes studied in $[4,6,8]$ as special cases. Our iterative methods studied in present paper can be reviewed as a refinement and modification of the iterative methods in [4, 6, 8]. On the other hand, our iterative scheme concerns a finitely many nonexpansive mappings, in this respect, they can be reviewed as an improvement of the iterative methods in $[4,6,8]$.
(ii) We note that the authors in $[4,6]$ have imposed some additional assumptions: $\sum_{n=1}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ or $\lim _{n \rightarrow \infty}\left(\alpha_{n+1}-\alpha_{n}\right) / \alpha_{n+1}=0$ on parameters $\left\{\alpha_{n+1}\right\}$ and $\sum_{n=1}^{\infty}\left|r_{n+1}-r_{n}\right|<\infty$ on parameters $\left\{r_{n}\right\}$.
(iii) The advantages of these results in this paper are that less restrictions on the parameters $\left\{\alpha_{n}\right\}$ and $\left\{r_{n}\right\}$ are imposed. Our results unify many recent results including the results in $[4,6,8]$.

References

[1] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1994), 123-145.
[2] P.L. Combettes, S.A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6(2005), 117-136.
[3] S.D. Flam, A.S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program., 78(1997), 29-41.
[4] S. Takahashi, W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331(2007), 506-515.
[5] T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for oneparameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305(2005), 227-239.
[6] H.K. Xu, Viscosity Approximation Methods for Nonexpansive Mappings, J. Math. Anal. Appl., 298(2004), 279-291.
[7] W. Takahashi, K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Modelling, 32(2000), 1463-1471.
[8] A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl., 241(2000), 46-55.
[9] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58(1992), 486-491.
10] A. Tada, W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, in Nonlinear Analysis and Convex Analysis, W. Takahashi and T. Tanaka (Eds.), pp. 609-617, Yokohama, Japan, 2007.

Received: 13. 11. 2008; Accepted: 15. 05. 2009.

[^0]: *The first author was partially supposed by National Natural Science Foundation of China Grant 10771050.
 ${ }^{* *}$ The second author was partially supposed by the grant National Science Council 97-2221-E-230-017.
 ${ }^{* * *}$ The third author was partially supported by a grant from the National Science Council.
 ${ }^{* * * *}$ Corresponding author.

