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1. Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset
of H. Let h : C × C → R be an equilibrium bifunction, i.e., h(u, u) = 0 for
every u ∈ C. Then, one can define the equilibrium problem that is to find an
element u ∈ C such that

EP(h): h(u, v) ≥ 0 for all v ∈ C.

Denote the set of solutions of EP(h) by SEP(h). This problem contains fixed
point problems, optimization problems, variational inequality problems, Nash
equilibrium problems as special cases; see [1]. Some methods have been pro-
posed to solve the equilibrium problem, please consult [2-4].

Recently, Combettes and Hirstoaga [2] introduced an iterative scheme of
finding the best approximation to the initial data when SEP (h) 6= ∅ and
proved a strong convergence theorem. Motivated by the idea of Combettes
and Hirstoaga, very recently Takahashi and Takahashi [4] introduced a new
iterative scheme by the viscosity approximation method for finding a common
element of the set of solutions of an equilibrium problem and the set of fixed
points of a nonexpansive mapping in a Hilbert space. Their results extend and
improve the corresponding results announced by Combettes and Hirstoaga [2],
Moudafi [8], Wittmann [9] and Tada and Takahashi [10].

In this paper, motivated and inspired by Combettes and Hirstoaga [2] and
Takahashi and Takahashi [4], we introduce an iterative scheme for finding a
common element of the set of solutions of EP(h) and the set of fixed points of
finitely many nonexpansive mappings in a Hilbert space. A strong convergence
theorem was established.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ ·‖. Let C

be a nonempty closed convex subset of H. Then, for any x ∈ H, there exists
a unique nearest point in C, denoted by PC(x), such that

‖x− PC(x)‖ ≤ ‖x− y‖,
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for all y ∈ C. Such a PC is called the metric projection of H onto C. We
know that PC is nonexpansive. Further, for x ∈ H and x∗ ∈ C,

x∗ = PC(x) ⇔ 〈x− x∗, x∗ − y〉 ≥ 0 for all y ∈ C.

Recall that a mapping T : C → H is called nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖,

for all x, y ∈ C. Denote the set of fixed points of T by F (T ). It is well known
that if C is bounded closed convex and T : C → C is nonexpansive, then
F (T ) 6= ∅. We call a mapping f : H → H is contractive if there exists a
constant α ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ α‖x− y‖ for all x, y ∈ H.

For an equilibrium bifunction h : C×C → R, we call h satisfying condition
(A) if h satisfies the following three conditions:

• h is monotone, i.e., h(x, y) + h(y, x) ≤ 0 for all x, y ∈ C;
• for each x, y, z ∈ C, limt↓0 h(tz + (1− t)x, y) ≤ h(x, y);
• for each x ∈ C, y 7→ h(x, y) is convex and lower semicontinuous.

If an equilibrium bifunction h : C ×C → R satisfies condition (A), then we
have the following two important results. You can find the first lemma in [1]
and the second one in [2].

Lemma 2.1. Let C be a nonempty closed convex subset of H and let h be
an equilibrium bifunction of C × C into R satisfies condition (A). Let r > 0
and x ∈ H. Then, there exists y ∈ C such that

h(y, z) +
1
r
〈z − y, y − x〉 ≥ 0 for all z ∈ C.

Lemma 2.2. Assume that h satisfies the same assumptions as Lemma 2.1.
For r > 0 and x ∈ H, define a mapping Sr : H → C as follows:

Sr(x) = {y ∈ C : h(y, z) +
1
r
〈z − y, y − x〉 ≥ 0,∀z ∈ C}

for all y ∈ H. Then, the following hold:

(1) Sr is single-valued;
(2) Sr is firmly nonexpansive, i.e., for any x, y ∈ H,

‖Srx− Sry‖2 ≤ 〈Srx− Sry, x− y〉;

(3) F (Sr) = SEP (h);
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(4) SEP (h) is closed and convex.

We also need the following lemmas for proving our main results.
Lemma 2.3. ([5]) Let {xn} and {yn} be bounded sequences in a Banach

space X and let {βn} be a sequence in [0, 1] with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose

xn+1 = (1− βn)yn + βnxn

for all integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then, limn→∞ ‖yn − xn‖ = 0.
Lemma 2.4.([6]) Assume {an} is a sequence of nonnegative real numbers

such that

an+1 ≤ (1− γn)an + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(1)
∑∞

n=1 γn = ∞;
(2) lim supn→∞ δn/γn ≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ an = 0.

3. Iterative scheme and strong convergence theorems

In this section, we first introduce our iterative scheme. Consequently we
will establish strong convergence theorems for this iteration scheme. To be
more specific, let λn1, λn2, · · · , λnN ∈ (0, 1], n ∈ N. Given the mappings
T1, T2, · · · , TN , following [7] one can define, for each n ∈ N, mappings
Un1, Un2, · · · , UnN by

Un1 = λn1T1 + (1− λn1)I,

Un2 = λn2T2Un1 + (1− λn2)I,

...

Un,N−1 = λn,N−1TN−1Un,N−2 + (1− λn,N−1)I,

Wn : = UnN = λnNTNUn,N−1 + (1− λnN )I.

(1)
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Such a mapping Wn is called the W -mapping generated by T1, · · · , TN and
λn1, λn2, · · · , λnN .

Now we introduce the following iteration scheme: Let f be a contraction of
H into itself with coefficient α ∈ (0, 1) and given x0 ∈ H arbitrarily. Suppose
the sequences {xn}∞n=1 and {yn}∞n=1 are generated iteratively by h(yn, x) +

1
rn
〈x− yn, yn − xn〉 ≥ 0, ∀x ∈ C,

xn+1 = αnf(xn) + βnxn + γnWnyn,
(2)

where {αn}, {βn} and {γn} are three sequences in (0, 1) such that αn + βn +
γn = 1, {rn} is a real sequence in (0,∞), h is an equilibrium bifunction and
Wn is the W -mapping defined by (1).

We have the following crucial conclusion concerning Wn.
Lemma 3.1. ([7]) Let C be a nonempty closed convex subset of a Banach

space E. Let T1, T2, · · · , TN be finite family of nonexpansive mappings of C

into itself such that
⋂N

i=1 F (Ti) is nonempty, and let λn1, λn2, · · · , λnN be real
numbers such that 0 < λni ≤ b < 1 for any i ∈ N. For any n ∈ N, let
Wn be the W -mapping of C into itself generated by TN , TN−1, · · · , T1 and
λnN , λn,N−1, · · · , λn1. Then Wn is nonexpansive. Further, if E is strictly
convex, then F (Wn) = ∩N

i=1F (Ti).
Now we state and prove our main results.
Theorem 3.1. Let C be a nonempty closed convex subset of H. Let h :

C × C → R be an equilibrium bifunction satisfying condition (A) and let
{Ti}N

i=1 be a finite family of nonexpansive mappings of C into H such that
∩N

i=1F (Ti)
⋂

SEP (h) 6= ∅. Let λn1, λn2, · · · , λnN be real numbers such that
limn→∞(λn+1,i − λn,i) = 0 for all i = 1, 2, · · · , N . Suppose {αn}, {βn} and
{γn} are three sequences in (0, 1) and {rn} ⊂ (0,∞) is a real sequence. Suppose
the following conditions are satisfied:

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) lim infn→∞ rn > 0 and limn→∞(rn+1 − rn) = 0.

Let f be a contraction of H into itself and given x0 ∈ H arbitrarily. Then
the sequences {xn} and {yn} generated iteratively by (2) converge strongly to
x∗ ∈ ∩N

i=1F (Ti)
⋂

SEP (h), where x∗ = P∩N
i=1F (Ti)

T
SEP (h)f(x∗).
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Proof. Let Q = P∩N
i=1F (Ti)

T
SEP (h). Note that f is a contraction mapping

with coefficient α ∈ (0, 1). Then ‖Qf(x)−Qf(y)‖ ≤ ‖f(x)−f(y)‖ ≤ α‖x−y‖
for all x, y ∈ H. Therefore, Qf is a contraction of H into itself, which implies
that there exists a unique element x∗ ∈ H such that x∗ = Qf(x∗). At the
same time, we note that x∗ ∈ C.

Let p ∈ ∩N
i=1F (Ti)

⋂
SEP (h). From the definition of Sr, we note that

yn = Srnxn. It follows that

‖yn − p‖ = ‖Srnxn − Srnp‖

≤ ‖xn − p‖.

Next we prove that {xn} and {yn} are bounded. Indeed, from Lemma 3.1 we
have p ∈ Wn. Then from (1) and (2), we obtain

‖xn+1 − p‖ = ‖αnf(xn) + βnxn + γnWnyn − p‖

≤ αn‖f(xn)− p‖+ βn‖xn − p‖+ γn‖Wnyn − p‖

≤ αn(‖f(xn)− f(p)‖+ ‖f(p)− p‖) + βn‖xn − p‖

+ γn‖yn − p‖

≤ αn(α‖xn − p‖+ ‖f(p)− p‖) + (1− αn)‖xn − p‖

≤ max{‖x0 − p‖, 1
1− α

‖f(p)− p‖}.

Therefore {xn} is bounded. We also obtain that {yn}, {Wnxn} and {f(xn)}
are all bounded. We shall use M to denote the possible different constants
appearing in the following reasoning.

Setting xn+1 = βnxn + (1− βn)zn for all n ≥ 0. It follows that

zn+1 − zn =
xn+2 − βn+1xn+1

1− βn+1
− xn+1 − βnxn

1− βn

=
αn+1f(xn+1) + γn+1Wn+1yn+1

1− βn+1
− αnf(xn) + γnWnyn

1− βn

=
αn+1

1− βn+1
(f(xn+1)− f(xn)) + (

αn+1

1− βn+1
− αn

1− βn
)f(xn)

+
γn+1

1− βn+1
(Wn+1yn+1 −Wnyn) + (

γn+1

1− βn+1
− γn

1− βn
)Wnyn.
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So, we have

‖zn+1 − zn‖ ≤
ααn+1

1− βn+1
‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖

+ ‖Wnyn‖) +
γn+1

1− βn+1
‖Wn+1yn+1 −Wnyn‖.

(3)

From (1), since TN and Un,N are nonexpansive,

‖Wn+1yn −Wnyn‖

= ‖λn+1,NTNUn+1,N−1yn + (1− λn+1,N )yn

− λn,NTNUn,N−1yn − (1− λn,N )yn‖

≤ |λn+1,N − λn,N |‖yn‖+ ‖λn+1,NTNUn+1,N−1yn − λn,NTNUn,N−1yn‖

≤ |λn+1,N − λn,N |‖yn‖+ ‖λn+1,N (TNUn+1,N−1yn − TNUn,N−1yn)‖

+ |λn+1,N − λn,N |‖TNUn,N−1yn‖

≤ 2M |λn+1,N − λn,N |+ λn+1,N‖Un+1,N−1yn − Un,N−1yn‖.

(4)

Again, from (1), we have

‖Un+1,N−1yn − Un,N−1yn‖

= ‖λn+1,N−1TN−1Un+1,N−2yn + (1− λn+1,N−1)yn

− λn,N−1TN−1Un,N−2yn − (1− λn,N−1)yn‖

≤ |λn+1,N−1 − λn,N−1|‖yn‖

+ ‖λn+1,N−1TN−1Un+1,N−2yn − λn,N−1TN−1Un,N−2yn‖

≤ |λn+1,N−1 − λn,N−1|‖yn‖

+ λn+1,N−1‖TN−1Un+1,N−2yn − TN−1Un,N−2yn‖

+ |λn+1,N−1 − λn,N−1|M

≤ 2M |λn+1,N−1 − λn,N−1|+ λn+1,N−1‖Un+1,N−2yn − Un,N−2yn‖

≤ 2M |λn+1,N−1 − λn,N−1|+ ‖Un+1,N−2yn − Un,N−2yn‖.

(5)

Therefore, we have

‖Un+1,N−1yn−Un,N−1yn‖ ≤ 2M |λn+1,N−1−λn,N−1|+2M |λn+1,N−2−λn,N−2|

+‖Un+1,N−3yn −Un,N−3yn‖ ≤ 2M

N−1∑
i=2

|λn+1,i − λn,i|+ ‖Un+1,1yn −Un,1yn‖
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= ‖λn+1,1T1yn+(1−λn+1,1)yn−λn,1T1yn−(1−λn,1)yn‖+2M

N−1∑
i=2

|λn+1,i−λn,i|,

then
‖Un+1,N−1yn − Un,N−1yn‖

≤ |λn+1,1 − λn,1|‖yn‖+ ‖λn+1,1T1yn − λn,1T1yn‖

+ 2M
N−1∑
i=2

|λn+1,i − λn,i|

≤ 2M
N−1∑
i=1

|λn+1,i − λn,i|.

(6)

Substituting (6) into (4), we have

‖Wn+1yn −Wnyn‖ ≤ 2M |λn+1,N − λn,N |

+ 2λn+1,NM

N−1∑
i=1

|λn+1,i − λn,i|

≤ 2M
N∑

i=1

|λn+1,i − λn,i|.

It follows that

‖Wn+1yn+1 −Wnyn‖ ≤ ‖Wn+1yn+1 −Wn+1yn‖+ ‖Wn+1yn −Wnyn‖

≤ ‖yn+1 − yn‖+ ‖Wn+1yn −Wnyn‖

≤ ‖yn+1 − yn‖+ 2M

N∑
i=1

|λn+1,i − λn,i|.

(7)

Substituting (7) into (3), we have

‖zn+1 − zn‖ ≤
ααn+1

1− βn+1
‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖

+ ‖Wnyn‖) +
γn+1

1− βn+1
‖yn+1 − yn‖

+
2Mγn+1

1− βn+1

N∑
i=1

|λn+1,i − λn,i|.

(8)

On the other hand, from yn = Srnxn and yn+1 = Srn+1xn+1, we have

h(yn, x) +
1
rn
〈x− yn, yn − xn〉 ≥ 0 for all x ∈ C (9)
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and

h(yn+1, x) +
1

rn+1
〈x− yn+1, yn+1 − xn+1〉 ≥ 0 for all x ∈ C. (10)

Putting x = yn+1 in (9) and x = yn in (10), we have

h(yn, yn+1) +
1
rn
〈yn+1 − yn, yn − xn〉 ≥ 0, (11)

and

h(yn+1, yn) +
1

rn+1
〈yn − yn+1, yn+1 − xn+1〉 ≥ 0. (12)

From the monotonicity of h, we have

h(yn, yn+1) + h(yn+1, yn) ≤ 0.

So, from (11) and (12), we can conclude that

〈yn+1 − yn,
yn − xn

rn
− yn+1 − xn+1

rn+1
〉 ≥ 0

and hence

〈yn+1 − yn, yn − yn+1 + yn+1 − xn −
rn

rn+1
(yn+1 − xn+1)〉 ≥ 0.

Since lim infn→∞ rn > 0, without loss of generality, we may assume that there
exists a real number b such that rn > b > 0 for all n ∈ N. Then, we have

‖yn+1 − yn‖2 ≤ 〈yn+1 − yn, xn+1 − xn + (1− rn

rn+1
)(yn+1 − xn+1)〉

≤ ‖yn+1 − yn‖{‖xn+1 − xn‖+ |1− rn

rn+1
|‖yn+1 − xn+1‖}

and hence

‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖+
M

b
|rn+1 − rn|. (13)
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Substituting (13) into (8), we have

‖zn+1 − zn‖ ≤
ααn+1

1− βn+1
‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn)‖

+ ‖Wnyn‖) +
γn+1

1− βn+1
‖xn+1 − xn‖

+
γn+1

1− βn+1
× M

b
|rn+1 − rn|+

2Mγn+1

1− βn+1

N∑
i=1

|λn+1,i − λn,i|

≤ ‖xn+1 − xn‖+ | αn+1

1− βn+1
− αn

1− βn
|(‖f(xn) + ‖Wnyn‖)

+
γn+1

1− βn+1
× M

b
|rn+1 − rn|+

2Mγn+1

1− βn+1

N∑
i=1

|λn+1,i − λn,i|,

this together with αn → 0, rn+1 − rn → 0 and λn+1,i − λn,i → 0 imply that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Hence by Lemma 2.3, we obtain ‖zn − xn‖ → 0 as n →∞. Consequently,

lim
n→∞

‖xn+1 − xn‖ = 0.

From (13) and limn→∞(rn+1 − rn) = 0, we have

lim
n→∞

‖yn+1 − yn‖ = 0.

Since xn+1 = αnf(xn) + βnxn + γnWnyn, we have

‖xn −Wnyn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 −Wnyn‖

≤ ‖xn − xn+1‖+ αn‖f(xn)−Wnyn‖+ βn‖xn −Wnyn‖,

that is

‖xn −Wnyn‖ ≤
1

1− βn
‖xn − xn+1‖+

αn

1− βn
‖f(xn)−Wnyn‖.

It follows that

lim
n→∞

‖xn −Wnyn‖ = 0.
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For p ∈ ∩N
i=1F (Ti)

⋂
SEP (h), note that Sr is firmly nonexpansive, then we

have
‖yn − p‖2 = ‖Srnxn − Srnp‖2

≤ 〈Srnxn − Srnp, xn − p〉

= 〈yn − p, xn − p〉

=
1
2
(‖yn − p‖2 + ‖xn − p‖2 − ‖xn − yn‖2)

and hence

‖yn − p‖2 ≤ ‖xn − p‖2 − ‖xn − yn‖2.

Therefore, we have

‖xn+1 − p‖2 = ‖αnf(xn) + βnxn + γnWnyn − p‖2

≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖Wnyn − p‖2

≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2 + γn‖yn − p‖2

≤ αn‖f(xn)− p‖2 + βn‖xn − p‖2

+ γn(‖xn − p‖2 − ‖xn − yn‖2)

≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − γn‖xn − yn‖2.

Then we have

γn‖xn − yn‖2 ≤ αn‖f(xn)− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖f(xn)− p‖2 + (‖xn − p‖+ ‖xn+1 − p‖)

× (‖xn − p‖ − ‖xn+1 − p‖)

≤ αn‖f(xn)− p‖2 + ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖).

It is easily seen that lim infn→∞ γn > 0. So, we have

lim
n→∞

‖xn − yn‖ = 0.

From

‖Wnyn − yn‖ ≤ ‖Wnyn − xn‖+ ‖xn − yn‖.

We also have ‖Wnyn − yn‖ → 0.
Next, we show that

lim sup
n→∞

〈f(x∗)− x∗, xn − x∗〉 ≤ 0,
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where x∗ = P∩N
i=1F (Ti)

T
SEP (h)f(x∗). First we can choose a subsequence {ynj}

of {yn} such that

lim
j→∞

〈f(x∗)− x∗, ynj − x∗〉 = lim sup
n→∞

〈f(x∗)− x∗, yn − x∗〉.

Since {ynj} is bounded, there exists a subsequence {ynji} of {ynj} which con-
verges weakly to w. Without loss of generality, we can assume that ynj → w

weakly. From ‖Wnyn− yn‖ → 0, we obtain Wnynj → w weakly. Now we show
w ∈ SEP (h). By yn = Srnxn, we have

h(yn, x) +
1
rn
〈x− yn, yn − xn〉 ≥ 0, ∀x ∈ C.

From the monotonicity of h, we have

1
rn
〈x− yn, yn − xn〉 ≥ −h(yn, x) ≥ h(x, yn),

and hence

〈x− ynj ,
ynj − xnj

rnj

〉 ≥ h(x, ynj ).

Since
ynj−xnj

rnj
→ 0 and ynj → w weakly, from the lower semi-continuity of

h(x, y) on the second variable y, we have

h(x,w) ≤ 0

for all x ∈ C. For t with 0 < t ≤ 1 and x ∈ C, let xt = tx + (1 − t)w. Since
x ∈ C and w ∈ C, we have xt ∈ C and hence h(xt, w) ≤ 0. So, from the
convexity of equilibrium bifunction h(x, y) on the second variable y , we have

0 = h(xt, xt)

≤ th(xt, x) + (1− t)h(xt, w)

≤ th(xt, x).

and hence h(xt, x) ≥ 0. Then, we have

h(w, x) ≥ 0

for all x ∈ C and hence w ∈ SEP (h).
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We shall show w ∈ F (Wn). Assume w /∈ F (Wn). Since ynj → w weakly
and w 6= Wnw, from Opial’s condition, we have

lim inf
j→∞

‖ynj − w‖ < lim inf
j→∞

‖ynj −Wnw‖

≤ lim inf
j→∞

(‖ynj −Wnynj‖+ ‖Wnynj −Wnw‖)

≤ lim inf
j→∞

‖ynj − w‖.

This is a contradiction. So, we get w ∈ F (Wn) = ∩N
i=1F (Ti). Therefore

w ∈ ∩N
i=1F (Ti)

⋂
SEP (h). Since x∗ = P∩N

i=1F (Ti)
T

SEP (h)f(x∗), we have

lim sup
n→∞

〈f(x∗)− x∗, xn − x∗〉 = lim
j→∞

〈f(x∗)− x∗, xnj − x∗〉

= lim
j→∞

〈f(x∗)− x∗, ynj − x∗〉

= 〈f(x∗)− x∗, w − x∗〉 ≤ 0.

(14)

Finally, we prove that {xn} and {yn} converge strongly to x∗. From (2), we
have

‖xn+1 − x∗‖2 = ‖αn(f(xn)− x∗) + βn(xn − x∗) + γn(Wnyn − x∗)‖2

≤ ‖βn(xn − x∗) + γn(Wnyn − x∗)‖2

+ 2αn〈f(xn)− x∗, xn+1 − x∗〉

≤ {βn‖xn − x∗‖+ γn‖Wnyn − x∗‖}2

+ 2αn〈f(xn)− f(x∗), xn+1 − x∗〉

+ 2αn〈f(x∗)− x∗, xn+1 − x∗〉

≤ {βn‖xn − x∗‖+ γn‖yn − x∗‖}2

+ 2ααn‖xn − x∗‖‖xn+1 − x∗‖

+ 2αn〈f(x∗)− x∗, xn+1 − x∗〉

≤ (1− αn)2‖xn − x∗‖2 + ααn(‖xn+1 − x∗‖2 + ‖xn − x∗‖2)

+ 2αn〈f(x∗)− x∗, xn+1 − x∗〉,
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which implies that

‖xn+1 − x∗‖2 ≤ (1− αn)2 + ααn

1− ααn
‖xn − x∗‖2

+
2αn

1− ααn
〈f(x∗)− x∗, xn+1 − x∗〉

=
1− 2αn + ααn

1− ααn
‖xn − x∗‖2 +

α2
n

1− ααn
‖xn − x∗‖2

+
2αn

1− ααn
〈f(x∗)− x∗, xn+1 − x∗〉

≤ {1− 2(1− α)αn

1− ααn
}‖xn − x∗‖2 +

2(1− α)αn

1− ααn

× { Mαn

2(1− α)
+

1
1− α

〈f(x∗)− x∗, xn+1 − x∗〉}

= (1− δn)‖xn − x∗‖2 + δnσn,

(15)

where δn = 2(1−α)αn

1−ααn
and σn = Mαn

2(1−α) + 1
1−α〈f(x∗) − x∗, xn+1 − x∗〉. It is

easily seen that
∑∞

n=0 δn = ∞ and lim supn→∞ σn ≤ 0. Now applying Lemma
2.4 and (14) to (15) concludes that xn → x∗(n → ∞). This completes the
proof. �

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let h : C ×C → R be an equilibrium bifunction satisfying condition
(A) such that SEP (h) 6= ∅. Let {αn}, {βn} and {γn} are three sequences in
(0, 1) and {rn} ⊂ (0,∞) is a real sequence. Suppose the following conditions
are satisfied:

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) lim infn→∞ rn > 0 and limn→∞(rn+1 − rn) = 0.

Let f be a contraction of H into itself and given x0 ∈ H arbitrarily. Let {xn}
and {yn} be sequences generated iteratively by h(yn, x) +

1
rn
〈x− yn, yn − xn〉 ≥ 0, ∀x ∈ C,

xn+1 = αnf(xn) + βnxn + γnyn,
(16)

Then the sequences {xn} and {yn} generated by (16) converge strongly to x∗ ∈
SEP (h), where x∗ = PSEP (h)f(x∗).
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Proof. Take Tix = x for all i = 1, 2, · · · , N and for all x ∈ C in (1),
then Wnx = x for all x ∈ C. The conclusion follows from Theorem 3.1. This
completes the proof. �

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let {Ti}N

i=1 be a finite family of nonexpansive mappings of C into
H such that ∩N

i=1F (Ti) 6= ∅. Let λn1, λn2, · · · , λnN be real numbers such that
limn→∞(λn+1,i − λn,i) = 0 for all i = 1, 2, · · · , N . Let {αn}, {βn} and {γn}
are three sequences in (0, 1). Suppose the following conditions are satisfied:

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Let f be a contraction of H into itself and given x0 ∈ H arbitrarily. Let {xn}
be sequence generated iteratively by

xn+1 = αnf(xn) + βnxn + γnWnPCxn.

Then the sequence {xn} converges strongly to x∗ ∈ ∩N
i=1F (Ti), where x∗ =

P∩N
i=1F (Ti)

f(x∗).
Proof. Set h(x, y) = 0 for all x, y ∈ C and rn = 1 for all n ∈ N. Then, we

have yn = PCxn. From (2), we have

xn+1 = αnf(xn) + βnxn + γnWnPCxn.

Then the conclusion follows from Theorem 3.1. This completes the proof. �

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert
space H. Let T : C → C be a nonexpansive mapping such that F (T ) 6= ∅.
Let {αn}, {βn} and {γn} are three sequences in (0, 1). Suppose the following
conditions are satisfied:

(i) limn→∞ αn = 0 and
∑∞

n=0 αn = ∞;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Let f be a contraction of C into itself and given x0 ∈ C arbitrarily. Let {xn}
be sequence generated iteratively by

xn+1 = αnf(xn) + βnxn + γnTxn.

Then {xn} converges strongly to x∗ ∈ F (T ), where x∗ = PF (T )f(x∗) is a
unique solution of the following variational inequality in F (T )

〈(I − f)x∗, x∗ − p〉 ≤ 0,∀p ∈ F (T ).
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Example 3.1. Let T : C → C be a nonexpansive mapping. Take h(x, y) =
0 for all x, y ∈ C, f(x) = u for all x ∈ C and rn = 1 for all n ≥ 1. Hence,
we can take αn = 1

2n , βn = 1
2 and γn = 1

2(1 − 1
n) for all n ≥ 1. By using the

Corollary 3.3, the iterative sequence {xn} defined by

xn+1 =
1
2n

u +
1
2
xn +

1
2
(1− 1

n
)Txn,

converges strongly to some fixed point of T .
In particular, let H = R2 and define T : R2 → R2 by

T (reiθ) = rei(θ+π
2
),

and take u = eiπ. It is obvious that T is a nonexpansive mapping with a
unique fixed point x∗ = 0. In this case, the sequence {xn} becomes that

xn+1 =
1
2n

eiπ +
1
2
rneiθn +

1
2
(1− 1

n
)rnei(θn+π

2
).

It is clear that the complex number sequence {xn} converges strongly to a
fixed point x∗ = 0.

Remark 3.1. We conclude the paper with the following observations.

(i) Our iterative scheme (2) is a convex combination of f(xn), xn and
Wnxn which includes the iterative schemes studied in [4, 6, 8] as special
cases. Our iterative methods studied in present paper can be reviewed
as a refinement and modification of the iterative methods in [4, 6,
8]. On the other hand, our iterative scheme concerns a finitely many
nonexpansive mappings, in this respect, they can be reviewed as an
improvement of the iterative methods in [4, 6, 8].

(ii) We note that the authors in [4, 6] have imposed some additional as-
sumptions:

∑∞
n=1 |αn+1 − αn| < ∞ or limn→∞(αn+1 − αn)/αn+1 = 0

on parameters {αn+1} and
∑∞

n=1 |rn+1− rn| < ∞ on parameters {rn}.
(iii) The advantages of these results in this paper are that less restrictions

on the parameters {αn} and {rn} are imposed. Our results unify many
recent results including the results in [4, 6, 8].
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