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1. Introduction

In the paper [19] we consider two classes of metric spaces. The first class
encompasses the spaces of AMR type (absolute multi-retract), and consti-
tutes a broader class than the class of AR (absolute retract) spaces. We prove
that every compact space of AMR type has a fixed point property (also for
the multi-valued admissible mappings). The second class of metric spaces is a
space of ANMR (absolute neighborhood multi-retract) type, and constitutes
a broader class than the class of ANR (absolute neighborhood retract) spaces.
We show that if X ∈ ANMR then every admissible and compact mapping
ϕ : X ( X is a Lefschetz mapping. In this paper I present even more general
class of AANMR (approximative absolute neighborhood multi-retract) com-
pact spaces for which the Lefschetz theorem holds true. All classes of spaces
mentioned above are considered in a broader context, namely in the context of
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locally convex topological vector spaces. Thanks to that, an evident classifi-
cation of them is obtained. Moreover, we show that every admissible mapping
ϕ : X ( X is a Lefschetz mapping, where X ∈ AANMR is of finite type.

2. Preliminaries

Throughout this paper all topological spaces are assumed to be metric. Let
H∗ be the C̆ech homology functor with compact carriers and coefficients in the
field of rational numbers Q from the category of Hausdorff topological spaces
and continuous maps to the category of graded vector spaces and linear maps
of degree zero. Thus H∗(X) = {Hq(X)} is a graded vector space, Hq(X) being
the q-dimensional C̆ech homology group with compact carriers of X. For a
continuous map f : X → Y , H∗(f) is the induced linear map f∗ = {fq} where
fq : Hq(X)→ Hq(Y ) (see [2] and [8]). A space X is acyclic if:

(i) X is non-empty,
(ii) Hq(X) = 0 for every q ≥ 1 and
(iii) H0(X) ≈ Q.

A continuous mapping f : X → Y is called proper if for every compact set
K ⊂ Y the set f−1(K) is non-empty and compact. A proper map p : X → Y

is called Vietoris provided for every y ∈ Y the set p−1(y) is acyclic. Let X and
Y be two spaces and assume that for every x ∈ X a non-empty closed subset
ϕ(x) of Y is given. In such a case we say that ϕ : X ( Y is a multi-valued
mapping. For a multi-valued mapping ϕ : X ( Y and a subset U ⊂ Y , we
let:

ϕ−1(U) = {x ∈ X; ϕ(x) ⊂ U}.

If for every open U ⊂ Y the set ϕ−1(U) is open, then ϕ is called an upper
semi-continuous mapping; we shall write ϕ is u.s.c.

Proposition 2.1. (see [2, 8]). Assume that ϕ : X ( Y and ψ : Y ( T are
u.s.c. mappings with compact values and p : Z → X is a Vietoris mapping.
Then:
(2.1.1) for any compact A ⊂ X, the image ϕ(A) =

⋃
x∈A

ϕ(x) of the set A under

ϕ is a compact set;
(2.1.2) the composition ψ ◦ ϕ : X ( T , (ψ ◦ ϕ)(x) =

⋃
y∈ϕ(x)

ψ(y), is an u.s.c.

mapping;
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(2.1.3) the mapping ϕp : X ( Z, given by the formula ϕp(x) = p−1(x), is
u.s.c..

Let ϕ : X ( Y be a multivalued map. A pair (p, q) of single-valued,
continuous map of the form is called a selected pair of ϕ (written (p, q) ⊂ ϕ)
if the following two conditions are satisfied:

(i) p is a Vietoris map,
(ii) q(p−1(x)) ⊂ ϕ(x) for any x ∈ X.

Definition 2.2. A multivalued mapping ϕ : X ( Y is called admissible pro-
vided there exists a selected pair (p, q) of ϕ.

Theorem 2.3. (see [8]) Let ϕ : X ( Y and ψ : Y ( Z be two admissible
maps. Then the composition ψ ◦ ϕ : X ( Z is an admissible map.

Lemma 2.4. (see [8]) If ϕ : X ( Y is an admissible map, Y0 ⊂ Y and
X0 = ϕ−1(Y0), then the contraction ϕ0 : X0 ( Y0 of ϕ to the pair (X0, Y0) is
an admissible map.

Theorem 2.5. (see [2]) If p : X → Y is a Vietoris map, then an induced
mapping

p∗ : H∗(X)→ H∗(Y )

is a linear isomorphism.

Let u : E → E be an endomorphism of an arbitrary vector space. Let
us put N(u) = {x ∈ E : un(x) = 0 for some n}, where un is the nth
iterate of u and Ẽ = E/N(u). Since u(N(u)) ⊂ N(u), we have the induced
endomorphism ũ : Ẽ → Ẽ defined by ũ([x]) = [u(x)]. We call u admissible
provided dimẼ <∞.

Let u = {uq} : E → E be an endomorphism of degree zero of a graded
vector space E = {Eq}. We call u a Leray endomorphism if

(i) all uq are admissible,
(ii) almost all Ẽq are trivial.

For such an u, we define the (generalized) Lefschetz number Λ(u) of u by
putting

Λ(u) =
∑

q

(−1)qtr(ũq),
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where tr(ũq) is the ordinary trace of ũq (comp. [2]). The following important
property of a Leray endomorphism is a consequence of the well-known formula
tr(u ◦ v) = tr(v ◦ u) for the ordinary trace.

Proposition 2.6. Assume that, in the category of graded vector spaces, the
following diagram commutes

E′ -u
E′′

6
u′′

E′′
Z

Z
Z

Z}
v

-E′

6
u′

u

If one of u′, u′′ is a Leray endomorphism, then so is the other; and Λ(u′) =
Λ(u′′).

Let ϕ : X ( X be an admissible map. Let (p, q) ⊂ ϕ, where p : Z → X

is a Vietoris mapping and q : Z → X a continuous map. Assume that
q∗ ◦ p−1

∗ : H∗(X) → H∗(X) is a Leray endomorphism for all pairs (p, q) ⊂ ϕ.
For such a ϕ, we define the Lefschetz number Λ(ϕ) of ϕ by putting Λ(ϕ) =
{Λ(q∗p−1

∗ ); (p, q) ⊂ ϕ}. Let us observe that if X is an acyclic or, in partic-
ular, contractible space, then for every admissible map ϕ : X ( X and for
any pair (p, q) ⊂ ϕ the endomorphism q∗p

−1
∗ : H∗(X) → H∗(X) is a Leray

endomorphism and Λ(q∗p−1
∗ ) = 1.

Theorem 2.7. (see [8]) If ϕ : X ( Y and ψ : Y ( T are admissible, then
the composition ψ ◦ ϕ : X ( T is admissible and for every (p1, q1) ⊂ ϕ and
(p2, q2) ⊂ ψ there exists a pair (p, q) ⊂ ψ◦ϕ such that q2∗p

−1
2∗ ◦q1∗p

−1
1∗ = q∗p

−1
∗ .

Definition 2.8. An admissible map ϕ : X ( X is called a Lefschetz map
provided the generalized Lefschetz number Λ(ϕ) of ϕ is well defined and Λ(ϕ) 6=
{0} implies that the set Fix(ϕ) = {x ∈ X : x ∈ ϕ(x)} is non-empty.

Theorem 2.9. (see [17]) Let U be an open subset of a normed space E and let
X be a compact subset U . Then for each sufficiently small ε > 0 there exists
a finite polyhedron Kε ⊂ U and a mapping pε : X → U such that:
(2.2.1) ‖x− pε(x)‖ < ε for all x ∈ X,
(2.2.2) pε(X) ⊂ Kε,
(2.2.3) pε is homotopic to i, where i : X → U is an inclusion.
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Let Y be a metric space and let IdY : Y → Y be a map given by formula
IdY (y) = y for each y ∈ Y .

Definition 2.10. A map r : X → Y of a space X onto a space Y is said to
be an r-map if there is a map s : Y → X such that r ◦ s = IdY .

Definition 2.11. A metric space X is called an absolute neighborhood retract
(notation: X ∈ANR) provided there exists an open subset U of some normed
space E and an r-map r : U → X from U onto X.

Definition 2.12. A metric space X is called an absolute retract (notation:
X ∈AR) provided there exists a normed space E and an r-map r : E → X

from E onto X.

Let A ⊂ X be a nonempty set. We shall say that A is a retract of X if
there exists a continuous map r : X → A such that for each x ∈ A r(x) = x.
A nonempty set B ⊂ X is a neighborhood retract in X if there exists an open
set U ⊂ X such that B ⊂ U and B is a retract of U .

Theorem 2.13. (see [8]) X ∈ ANR if and only if for each homeomorphism
h mapping X onto a closed subset h(X) of a metrizable space Y , the set h(X)
is a neighborhood retract of Y .

Theorem 2.14. (see [8]) X ∈ AR if and only if for each homeomorphism h

mapping X onto a closed subset h(X) of a metrizable space Y , the set h(X)
is a retract in Y .

Now we shall recall a generalization of the concept of absolute neighborhood
retracts, which was introduced by Clapp.

Definition 2.15. We shall say that a compact metric space X is an ap-
proximative absolute neighborhood retract in the sense of Clapp (notation:
X ∈ AANRC) provided for every ε > 0 there exists an open subset Uε of
some normed linear space Eε and two maps rε : Uε → X, sε : X → Uε such
that d(x, rε(sε(x))) < ε for any x ∈ X.

Theorem 2.16. (see [8]) X ∈ AANRC if and only if for each homeomorphism
h mapping X onto a closed subset h(X) of a metrizable space Y , for each ε > 0
there exists an open set Uε ⊂ Y such that h(X) ⊂ Uε and a continuous map
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rε : Uε → h(X) such that for each y ∈ h(X)

d(rε(y), y) < ε.

Definition 2.17. Let E be a topological vector space. We shall say that E is
a Klee admissible space provided for any compact subset K ⊂ E and for any
open neighborhood V of 0 ∈ E there exists a map:

πV : K → E

such that the following two conditions are satisfied:
(2.17.1) πV (x) ∈ (x+ V ), for any x ∈ K,
(2.17.2) there exists a natural number n = nK such that πV (K) ⊂ En, where
En is an n-dimensional subspace of E.

Definition 2.18. We shall say that a topological vector space E is locally
convex provided that for each x ∈ E and for each open set U ⊂ E such that
x ∈ U there exists an open and convex set V ⊂ E such that x ∈ V ⊂ U .

It is clear that if E is a normed space then E is locally convex.

Theorem 2.19. (see [2, 7]) Let E be locally convex. Then E is a Klee admis-
sible space.

Theorem 2.20. (see [9]) Let E be a Klee admissible space. For each compact
subset K ⊂ E and for any open set U ⊂ E such that K ⊂ U there exists a
continuous map πK : K → U such that the following conditions are satisfied:
2.20.1 πK(K) ⊂ En, where En is an n-dimensional subspace of E,
2.20.2 πK : K → U and i : K → U are homotopic, where i : K → U is an
inclusion.

The following theorem is obvious.

Theorem 2.21. Let Es be a locally convex space for every s ∈ S. Then the
space E =

∏
s∈S

Es is a locally convex space.

Theorem 2.22. (see [9]) Let U be an open subset in a Klee admissible space
E and ϕ : U ( U be an admissible and compact map, then ϕ is a Lefschetz
map.

Definition 2.23. A metric space X is of finite type provided that for almost
every q ∈ N Hq(X) = {0} and for any q ∈ N dimHq(X) <∞.
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Theorem 2.24. (see [8]) Let X and Y be a compact of finite type spaces.
Then X × Y is a compact of finite type space.

Theorem 2.25. (see [8]) Let X and Y be acyclic and compact spaces. Then
X × Y is a compact and acyclic space.

Definition 2.26. Let X be an ANR and let X0 ⊂ X be a closed subset. We
say that X0 is movable in X provided every neighborhood U of X0 admits a
neighborhood U ′ of X0, U ′ ⊂ U , such that for every neighborhood U ′′ of X0,
U ′′ ⊂ U , there exists a homotopy H : U ′ × [0, 1] → U with H(x, 0) = x and
H(x, 1) ∈ U ′′, for any x ∈ U ′.

Definition 2.27. Let X be a compact metric space. We say that X is movable
provided there exists Z ∈ ANR and an embedding e : X → Z such that e(X)
is movable in Z.

Let us notice that the property of being movable is an absolute property,
that is if A is a movable set in some ANR X and j : A→ X ′ is an embedding
into an ANR X ′, then j(A) is movable in X ′ (see [3] or [4]). We shall make
use of the following result from [3].

Lemma 2.28. Let X be an ANR and let X0 ⊂ X be a compact absolute
approximative neighborhood retract in the sense of Clapp. Then X0 is movable
in X.

Lemma 2.29. (see [3], [4]) Let X and Y be compact metric spaces. If X or
Y is not movable, then X × Y is also not movable.

Theorem 2.30. ([8]) Let X be a compact metric space of finite type. Then
there exists ε > 0 such that for every two maps f, g : Y → X, where Y is a
Hausdorff space, the condition

d(f(y), g(y)) < ε for each y ∈ Y

implies f∗ = g∗.

Let Q be a Hilbert cube and let {An}n∈N be a family of compact sets such
that:

(1) for any n An ⊂ Q,
(2) for any n An+1 ⊂ An.
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We observe that the family R = {H∗(An), (jn
n+1)∗}n∈N is an inverse system,

where jn
n+1 : An+1 → An is an inclusion for any n. Let lim

←
R be a limit of the

inverse system R.

Theorem 2.31. (see [6]) Let in :
∞⋂

n=1
An → An be an inclusion for any n. A

map

i∗ : H∗(
∞⋂

n=1

An)→ lim
←
R given by

i∗(a) = (i1∗(a), i2∗(a), ..., in∗(a), ...) for each a ∈ H∗(
∞⋂

n=1

An)

is a linear isomorphism.

Theorem 2.32. Let Yn be a compact and acyclic metric space for every n.

Then
∞∏

n=1
Yn is compact and acyclic.

Proof. Let us recall that every compact metric space can be embedded in the
Hilbert cube. Because of that we can for each n identify a compact metric

space Yn with some closed subset of the Hilbert cube Q. Let Y =
∞∏

n=1
Yn.

It is clear that Y is a compact metric space. For each n we define the set
Bn ⊂ (Q×Q× ...×Q× ...) ≈ Q given by

B1 = Y1 ×Q×Q× ...×Q× ...,

B2 = Y1 × Y2 ×Q× ...×Q× ...,

...

Bn = Y1 × ...× Yn ×Q× ...×Q× ...,

...

We observe that

(1) Bn+1 ⊂ Bn for each n,
(2) Bn is compact and acyclic (see 2.25) for each n,

(3)
∞⋂

n=1
Bn =

∞∏
n=1

Yn.

The family S = {H∗(Bn), (inn+1)∗}n∈N is an inverse system, where inn+1 :
Bn+1 → Bn is an inclusion for any n. From 2.31 we get that Y is acyclic. �



APPROXIMATIVE ABSOLUTE NEIGHBORHOOD RETRACTS 337

3. Absolute neighborhood multi-retracts

Let us consider the classes of AMR and ANMR spaces in a broader sense,
namely in the context of locally convex spaces. To make things simple, we
use the same denotations. Let us remind some notions and facts that can be
found in the paper [19].

Definition 3.1. (see [19]) A map r : X → Y of a space X onto a space Y
is said to be an mr-map if there is an admissible map ϕ : Y ( X such that
r ◦ ϕ = IdY .

Definition 3.2. (see [19]) A metric space X is called an absolute multi-retract
(notation: X ∈ AMR) provided there exists a locally convex space E and an
mr-map r : E → X from E onto X.

Definition 3.3. (see [19]) A metric space X is called an absolute neighborhood
multi-retract (notation: X ∈ANMR) provided there exists an open subset U of
some locally convex space E and an mr-map r : U → X from U onto X.

Definition 3.4. A metric space X is called an absolute neighborhood retract
in a broader sense (notation: X ∈ ANRLC) provided there exists an open
subset U of some locally convex space E and an r-map r : U → X from U

onto X.

Definition 3.5. A metric space X is called an absolute retract in a broader
sense (notation : X ∈ ARLC) provided there exists a locally convex space E
and an r-map r : E → X from E onto X.

Theorem 3.6. ANR = ANRLC and AR = ARLC .

Proof. It is clear that ANR ⊂ ANRLC . LetX ∈ ANRLC , then there exists an
open set U of some locally convex space E and two continuous maps r : U → X

and s : X → U such that r ◦ s = IdX . Consider a homeomorphism h mapping
X onto a closed subset h(X) of a metric space Y . Then g = s◦h−1 maps h(X)
into U ⊂ E and so, by the theorem Dugundji there is a continuous extension
g̃ of g mapping Y into E. Let U ′ be the counter-image of U under g̃. Then
U ′ is a neighborhood of h(X) in Y . Setting r′(y) = h(r(g̃(y))) for all y ∈ U ′,
we obtain a retraction map r′ and from 2.13 X ∈ ANR. We prove the second
part of the theorem in a similar way. �
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Theorem 3.7. (see [19]) A space X is an ANMR if and only if there exists a
metric space Z and a Vietoris map p : Z → X which factors through an open
subset U of some locally convex space E, i.e. there are two continuous maps
α and β such that the following diagram

Z -p
X
6
β

U

Z
Z

Z
Z~

α

is commutative.

Theorem 3.8. (see [19]) Let X ∈ AMR, then X is acyclic.

Proof. Let r : E → X be a mr-map, where E is a locally convex space, then
there exists an admissible map ϕ : X ( E such that r ◦ ϕ = IdX . Let
(p, q) ⊂ ϕ. We observe that from 2.7 a linear map q∗p−1

∗ : H∗(X)→ H∗(E) is
a monomorphism. Hence X is an acyclic space. �

Theorem 3.9. Let X be a compact metric space and X ∈ ANMR, then X

is of finite type.

Proof. From 3.7 we get: a space Z, maps r : U → X, q : Z → U and a Vietoris
map p : Z → X such that r ◦ q = p, where U is an open subset in some locally
convex space E. Hence q∗ : H∗(Z)→ H∗(U) is a monomorphism. We observe,
that the space Z is compact and H∗(Z) ≈ H∗(X). Theorem 2.20 implies that
for a compact set K = q(Z) ⊂ U ⊂ E there exists a map πK : K → U

such that πK(K) ⊂ En and maps πK , i : K → U are homotopic, where
En ⊂ E is an n-dimensional subspace of E and i : K → U is an inclusion. Let
i1 : U ∩ En → U be an inclusion, q̂ : Z → K given by q̂(z) = q(z) for each
z ∈ Z and

t : Z → U ∩ En, given by t(z) = πK(q̂(z)) for each z ∈ Z

then we have the following commutative diagram:
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H∗(Z) -q∗ H∗(U)
6
i1∗

H∗(U ∩ En).

Z
Z

Z
Z~

t∗

In the above diagram we get that i1∗◦t∗ = q∗ and hence t∗ is a monomorphism.
From 2.9, for a compact set K1 = πK(K) ⊂ U ∩ En = V and for sufficiently
small ε > 0 there exists a projection pε : K1 → V such that pε(K1) ⊂ Kε and
maps pε, i2 : K1 → V are homotopic, where i2 : K1 → V is an inclusion and
Kε is a polyhedron of finite type such that Kε ⊂ V . We have the following
commutative diagram:

H∗(Z) -t∗
H∗(V )

6
i3∗

H∗(Kε),

Z
Z

Z
Z~

r∗

where i3 : Kε → V is an inclusion and r : Z → K1 given by r(z) = pε(t(z))
for each z ∈ Z. It is clear, that r∗ is a monomorphism. Hence Z is a space of
finite type. Since H∗(Z) ≈ H∗(X), therefore X is a space of finite type. �

4. Approximative absolute neighborhood multi-retracts

Definition 4.1. A compact metric space X is called an approximative absolute
neighborhood retract in a broader sense (notation: X ∈ AANRLC) provided
for each ε > 0 there exists an open subset Uε of some locally convex space Eε

and maps rε : Uε → X, sε : X → Uε such that for each x ∈ X

d(rε(sε(x)), x) < ε.

Theorem 4.2. AANRC = AANRLC .

Proof. It is obvious that AANRC ⊂ AANRLC . Let X ∈ AANRLC . Then for
each ε′ > 0 there exists an open subset Uε′ of some locally convex space Eε′

and maps rε′ : Uε′ → X, sε′ : X → Uε′ such that for each x ∈ X

d(rε′(sε′(x)), x) < ε′. (1)
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Let ε > 0 and let h : X → Y be a homeomorphism such that h(X) is a closed
subset of a metric space Y . A metric space X is compact, hence there exists
δ > 0 such that for any x, z ∈ X we have

(d(x, z) < δ)⇒ (d(h(x), h(z)) < ε). (2)

For ε′ = δ we define g : h(X) → Uδ given by g = sδ ◦ h−1. From theorem
Dugundji there is a continuous extension g̃ of g mapping Y into Eδ. Let U ′ε
be the counter-image of Uδ under g̃ and let

r′ε : U ′ε → h(X) r′ε = h ◦ rδ ◦ g̃.

From (1) and (2) for any y ∈ h(X) we have

d(r′ε(y), y) = d(h(rδ(sδ(x)), h(x)) < ε,

and from 2.16 X ∈ AANRC . �

Definition 4.3. Let X be a compact space. We shall say that X is an approx-
imative ANMR (we write X ∈ AANMR) provided that for any ε > 0 there
exists a locally convex space Eε and an open set Uε ⊂ Eε, a map rε : Uε → X

and an admissible map ϕε : X ( Uε such that for any x ∈ X

rε(ϕε(x)) ⊂ B(x, ε),

where B(x, ε) is an open ball in X.

Definition 4.4. Let X be a compact space. We shall say that X is an ap-
proximative AMR (we write X ∈ AAMR) provided that for any ε > 0 there
exists a locally convex space Eε, a map rε : Eε → X and an admissible map
ϕε : X ( Eε such that for any x ∈ X

rε(ϕε(x)) ⊂ B(x, ε),

where B(x, ε) is an open ball in X.

Theorem 4.5. A space X is an AANMR if and only if for any ε > 0 there
exists a space Zε, a Vietoris map pε : Zε → X, a locally convex space Eε, an
open set Uε ⊂ Eε, and maps rε : Uε → X, qε : Zε → Uε such that for any
z ∈ Zε

d(rε(qε(z)), pε(z)) < ε.
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Proof. Assume that X ∈ AANMR. We have a map r′ε : U ′ε → X, an admissi-
ble map ϕ′ε : X ( U ′ε such that for any x ∈ X r′ε(ϕ

′
ε(x)) ⊂ B(x, ε), where the

set U ′ε is open in some locally convex space E′ε. Let (p′ε, q
′
ε) ⊂ ϕ′ε. From the

definition of an admissible multivalued map we get a space Z ′ε such that:

X
p′ε←−−−− Z ′ε

q′ε−−−−→ U ′ε

and for any x ∈ X q′ε((p
′
ε)
−1(x)) ⊂ ϕ′ε(x). We define Zε = Z ′ε, Uε = U ′ε,

pε = p′ε, rε = r′ε and qε = q′ε. We will show that for any z ∈ Zε

d(rε(qε(z)), pε(z)) < ε.

Let z ∈ Zε, then there exists x ∈ X such that z ∈ p−1
ε (x). We observe that

the assumption d(rε(qε(z)), x) < ε implies d(rε(qε(z)), pε(z)) < ε. Assume now
that there exists a metric space Z ′ε, maps r′ε : U ′ε → X, q′ε : Z ′ε → U ′ε and a
Vietoris map p′ε : Z ′ε → X such that for any z ∈ Z ′ε d(r′ε(q′ε(z)), p′ε(z)) < ε.
Let Zε = Z ′ε, Uε = U ′ε, pε = p′ε, qε = q′ε and rε = r′ε. We define an admissible
map ϕε : X ( Uε given by ϕε(x) = qε(p−1

ε (x)) for each x ∈ X. We will show
that for any x ∈ X

rε(ϕε(x)) ⊂ B(x, ε).

Let x ∈ X and z ∈ p−1
ε (x), then from the assumption we have

d(rε(qε(z)), x) = d(rε(qε(z)), pε(z)) < ε.

Hence, rε(ϕε(x)) ⊂ B(x, ε) and the proof is complete. �

Similarly, we can prove the following theorem.

Theorem 4.6. A space X is an AAMR if and only if for any ε > 0 there
exists a space Zε, a Vietoris map pε : Zε → X, a locally convex space Eε and
maps rε : Eε → X, qε : Zε → Eε such that for any z ∈ Zε

d(rε(qε(z)), pε(z)) < ε.

The next theorem is the conclusion of the theorems 2.30 and 4.6.

Theorem 4.7. Let X ∈ AAMR and let X be of finite type. Then X is
acyclic.

It is clear that ANMR ⊂ AANMR and AANRC ⊂ AANMR. The exam-
ple below shows that these inclusions cannot be reversed.
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Example 4.8. Let C ∈ AANRC such that C is not of finite type (see [5]) , Y
be a compact space such that Y ∈ ANMR and Y is not movable (see [19]). We
show that We show that (C×Y ) /∈ ANMR, (C×Y ) /∈ AANRC , but (C×Y ) ∈
AANMR. It is clear that C × Y is a metric space (C × Y, d), where d is a
product metric. From 2.29 and 2.28 we get that (C×Y ) /∈ AANRC . We prove
now that (C×Y ) /∈ ANMR. Assume on the contrary that (C×Y ) ∈ ANMR,
then there exists a map r : U → C × Y , an admissible map ϕ : C × Y ( U

such that r ◦ϕ = IdC×Y , where U is an open set in some locally convex space
E. Let π : C ×Y → C be a map given by π(x, y) = x for any (x, y) ∈ (C ×Y )
and let s : C → C × Y be a map given by s(x) = (x, y0) for any x ∈ C, where
y0 ∈ Y is a stationary point. We define a map r′ : U → C r′ = π ◦ r and an
admissible map ϕ′ : C ( U ϕ′ = ϕ ◦ s. We observe that

r′ ◦ ϕ′ = (π ◦ r) ◦ (ϕ ◦ s) = π ◦ (r ◦ ϕ) ◦ s = π ◦ s = IdC ,

hence C ∈ ANMR, but it contradicts theorem 3.9 since C is not of finite type.
We prove that (C × Y ) ∈ AANMR. The space C ∈ AANRC , therefore for
each ε > 0 there exists an open subset U ′ε in some locally convex space Eε and
maps r′ε : U ′ε → C, sε : C → U ′ε such that for each c ∈ C d(r′ε(sε(c)), c) < ε.
The space Y ∈ ANMR, so there exists an open set V in some locally convex
space E, a metric space Z1, and maps r′ : V → Y , q′ : Z1 → V such that
r′ ◦ q′ = p′ is a Vietoris map. Let Uε = U ′ε×V ⊂ Eε×E and let Zε = C×Z1.
We define maps:

rε : Uε → C × Y, qε : Zε → Uε, a Vietoris map pε : Zε → C × Y

given by

rε(x, y) = (r′ε(x), r
′(y)) for each (x, y) ∈ Uε,

qε(c, z) = (sε(c), q′(z)) for each (c, z) ∈ (C × Z1) = Zε,

pε(c, z) = (c, p′(z)) for each (c, z) ∈ (C × Z1) = Zε.

It is clear that maps rε, qε and pε satisfy the assumptions of 4.5.

Theorem 4.9. Let Xn ∈ AANMR for any n ∈ N, then a space X = X1 ×
X2 × ...×Xn × ... =

∞∏
n=1

Xn is AANMR.
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Proof. Let (Xn, dn) be a metric space and Xn ∈ AANMR for any n ∈ N.
Assume that for any n and for all xn, yn ∈ Xn dn(xn, yn) ≤ 1. We define the
metric in a space X given by:

d(x, y) =
∞∑

n=1

dn(xn, yn)
2n

,

where x = (x1, x2, ..., xn, ...), y = (y1, y2, ..., yn, ...). Let ε > 0 and let δ =
ε
2 . From the definition of AANMR for any n we get rn

δ : Un
δ → Xn, qn

δ :
Zn

δ → Un
δ and a Vietoris map pn

δ : Zn
δ → Xn such that for all zn ∈ Zn

δ

dn(rn
δ (qn

δ (zn)), pn
δ (zn)) < δ, where Un

δ ⊂ En
δ is an open subset in some locally

convex space. Let Eε =
∞∏

n=1
En

δ (from 2.21 Eε is a locally convex space) and

let Zε =
∞∏

n=1
Zn

δ . We observe that the space Zε is compact. There exists a

natural number n0 such that for any n ≥ n0

∞∑
n=n0+1

dn(xn, yn)
2n

< δ =
ε

2
.

We define an open set in the space Eε given by:

Uε =
n0∏
i=1

U i
δ ×

∞∏
n=n0+1

En
δ .

Let rε : Uε → X be given by:

rε(x1, x2, ..., xn, ...) = (r1
δ (x1), r2

δ (x2), ..., rn0
δ (xn0), yn0+1, ..., ym, ...)

for each (x1, x2, ..., xn, ...) ∈ Uε, where ym ∈ Xm for all m > n0 are stationary
points and let qε : Zε → Uε be given by:

qε(z1, z2, ..., zn, ...) = (q1
δ (z1), q2

δ (z2), ..., qn
δ (zn), ...)

for each (z1, z2, ..., zn, ...) ∈ Zε. A Čech homology theory is continuous, there-
fore a map pε : Zε → X given by

pε(z1, z2, ..., zn, ...) = (p1
δ(z1), p2

δ(z2), ..., pn
δ (zn), ...)

for each (z1, z2, ..., zn, ...) ∈ Zε is a Vietoris map (see theorem 2.32) since

p−1
ε (x1, x2, ..., xn, ...) =

∞∏
n=1

(pn
δ )−1(xn)
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for any x = (x1, x2, ..., xn, ...) ∈ X. It is clear that the maps rε, qε and pε

satisfy the assumptions of 4.5. �

We know that (see [19]) the Cartesian product of the finite number of com-
pact metric spaces of ANMR type is also of the ANMR type. From 3.9 and
4.9 it follows that the Cartesian product of the infinite number of compact
metric spaces does not have to be of ANMR type (Cartesian product of the
infinite number of compact metric spaces out of which every space is of finite
type, does not have to be of finite type), but it certainly is of AANMR type.
This shows that the class of spaces of AANMR type is considerably larger
than the class of compact spaces of ANMR type.

5. Fixed point result

Theorem 5.1. Let X ∈ AANMR and let X be of finite type, then an admis-
sible map ψ : X ( X is a Lefschetz map.

Proof. From 4.5, there exists a locally convex space Eε, an open set Uε ⊂ Eε,
a metric space Zε, maps rε : Uε → X, qε : Zε → Uε and a Vietoris map
pε : Zε → X such that for each z ∈ Zε d(rε(qε(z)), pε(z)) < ε. Let (p, q) ⊂ ψ

and let and let ϕε : X ( Uε given by ϕε(x) = qε(p−1
ε (x)) for each x ∈ X.

From 2.7 there exists a pair (p̃, q̃) ⊂ ψ ◦ rε such that

q̃∗p̃
−1
∗ = q∗p

−1
∗ ◦ rε∗

and there exists a pair (p̂, q̂) ⊂ ϕε ◦ ψ ◦ rε such that

q̂∗p̂
−1
∗ = qε∗p

−1
ε∗ ◦ q∗p−1

∗ ◦ rε∗.

A space X is of finite type, therefore from 2.30 there exists a real number
ε1 > 0 such that for each 0 < ε ≤ ε1 we get

rε∗ ◦ qε∗ = pε∗.

We have the following commutative diagram:

H∗(X) -qε∗p
−1
ε∗ H∗(Uε)

6
q̂∗p̂
−1
∗

H∗(Uε).
Z

Z
Z

Z}
q̃∗p̃
−1
∗

-H∗(X)

6
q∗p
−1
∗

qε∗p
−1
ε∗
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A map q∗p
−1
∗ is a Leray endomorphism, since a space X is of finite type.

Assume that λ(ψ) 6= {0}, then from the above diagram Λ(ϕε ◦ ψ ◦ rε) 6= {0}.
From 2.22 we get xε ∈ Uε such that xε ∈ (ϕε ◦ψ ◦ rε)(xε). Hence, there exists
zε ∈ p−1

ε (ψ(rε(xε))) such that

rε(xε) = rε(qε(zε)).

Let yε = pε(zε) ∈ ψ(rε(xε)), then

d(rε(xε), yε) = d(rε(qε(zε)), pε(zε)) < ε.

We observe that for each ε > 0 rε(xε) is the ε-fixed point of a map ψ. The
space X is compact, hence ψ has a fixed point. �

From 5.1 we get the following theorem.

Theorem 5.2. Assume that X ∈ AAMR. Let X be of finite type and let
ψ : X ( X be an admissible map. Then Fix(ψ) 6= ∅.

Remark 5.3. From 3.8 we get that the AMR-type spaces are acyclical. And
in 3.9 we get that a compact ANMR space is of finite type. We proved in
section 4 that a compact AANMR space does not have to be of finite type.
According to that, the following diagram shows

AR
⊂−−−−→ ANR

⊂−−−−→ AANRCy∩ y∩ y∩
AMR

⊂−−−−→ ANMR
⊂−−−−→ AANMR,

that horizontal inclusions cannot be reversed. Notice that vertical inclusions
can neither be reversed because metric spaces of AANRC type are movable
(see 2.28) whereas metric spaces of AMR type don’t have to be movable (see
[19]).
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[8] L. Górniewicz, Topological Methods in Fixed Point Theory of Multi-valued Mappings,

Springer, Berlin, 2006.
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[10] L. Górniewicz, M. Ślosarski, Once more on the Lefschetz fixed point theorem, Bull. Polish

Acad. Sci. Math., 55(2007), 161-170.
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