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1. Introduction

There are many papers that provide fixed or common fixed point theorems
defined on spaces with non-deterministic distances. Most of them ([3], [15],
[16]) include conditions with restrictions, like the condition that the t-norm T

must satisfy T (a, a) ≥ a. It is known that only the t-norm T (a, b) = min{a, b}
satisfies this property, and consequently, the results obtained with this prop-
erty are quite restrictive. Also, fixed and common fixed point theorems proved
on spaces satisfying this condition are analogous to results for mappings de-
fined on metric spaces and they are proved with the same technique as results
on metric spaces.
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In this paper we present some results satisfying nonlinear contractive type
condition defined using the function ϕ which satisfies ϕ(t) < t. Nonlinear con-
tractive type conditions for mappings defined on metric spaces were discussed
by D.W. Boyd et al. in [2], R.P. Pant in [12], for mappings defined on fuzzy
metric spaces by D. Miheţ in [10] and for mappings defined on probabilistic
metric spaces by S. Ješić et al. in [8] and by D. O’Regan et al. in [13] and
many others. Also, a common fixed point theorem with a nonlinear contrac-
tive type condition for mappings defined on intuitionistic and L -fuzzy metric
spaces was proved by S. Ješić and N. Babačev in [7], and for mappings defined
on transversal spaces by S. Ješić et al. in [9]. On the other hand R. Saadati
et al. in [14] and Adibi et al. in [1] have proved common fixed point theorems
for mappings satisfying linear contracitve type condition, defined on L -fuzzy
metric spaces. The following result will be an extension and improvement for
most of the previous results, and also will extend the results from metric to
L -fuzzy metric spaces.

2. Preliminaries

The concept of L -fuzzy metric spaces was introduced by R. Saadati et al.
in [14].

Definition 2.1. [14] Let L = (L,≤L) be a complete lattice, and U a non-
empty set called universe. An L -fuzzy set A on U is defined as a mapping
A : U → L. For each u in U , A (u) represents the degree (in L) to which u

satisfies A . We define 0L = inf L and 1L = supL.

Definition 2.2. [14] A triangular norm (t-norm) on L is a mapping T :
L2 → L satisfying the following conditions for all x, y, z, x1, y1 ∈ L

(i) T (x, 1L ) = x,
(ii) T (x, y) = T (y, x),
(iii) T (x,T (y, z)) = T (T (x, y), z),
(iv) x ≤L x1 and y ≤L y1 ⇒ T (x, y) ≤L T (x1, y1).
A t-norm T can also be defined recursevely as an (n + 1)-ary operation,

n ∈ N, by T 1 = T and

T n(x1, . . . , xn+1) = T
(
T n−1(x1, . . . , xn), xn+1

)
, (1)
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for n ≥ 2 and x1, . . . , xn+1 ∈ L.

Definition 2.3. [14] The triple (X, M ,T ) is said to be an L -fuzzy metric
space if X is an arbitrary (non-empty) set, T is a continuous t-norm on L

and M is an L -fuzzy set on X2 × (0,∞) satisfying the following conditions
for every x, y, z in X and t, s in (0,∞):

(LF1) M (x, y, t) >L 0L ;
(LF2) M (x, y, t) = 1L for all t > 0 if and only if x = y;
(LF3) M (x, y, t) = M (y, x, t);
(LF4) T (M (x, y, t),M (y, z, s)) ≤L M (x, z, t + s);
(LF5) M (x, y, ·) : (0,∞) → L is continuous.

In this case M is called an L -fuzzy metric.

Remark 2.4.[14] Every fuzzy metric space is an L -fuzzy metric space.

Definition 2.5. [1] Let (X, M ,T ) be an L -fuzzy metric space. M is said
to be continuous on X2 × (0,∞) if

lim
n→+∞

M (xn, yn, tn) = M (x, y, t)

whenever a sequence {(xn, yn, tn)} in X2×(0,∞) converges to (x, y, t) ∈ X2×
(0,∞).

Lemma 2.6. [1] Let (X, M ,T ) be an L -fuzzy metric space. Then M is
a continuous function on X2 × (0,∞).

In this paper we will consider L -fuzzy metric spaces that satisfy

M (x, y, 0) = 0L for x 6= y. (2)

Remark 2.7. Let (X, M ,T ) be an L -fuzzy metric space and A ⊆ X.
Then M (x, y, ·) is nondecreasing function for al x, y ∈ X.

Definition 2.8. [14] A negation on L is any (strictly) decreasing mapping
N : L → L satisfying N (0L ) = 1L and N (1L ) = 0L . If N (N (x)) = x,

for all x ∈ L, then N is called an involutive negation. The negation Ns on
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([0, 1],≤) defined as Ns(x) = 1 − x for all x ∈ [0, 1], is called the standard
negation on ([0, 1],≤).

We will consider the t-norm T which satisfies the following condition:
For every µ ∈ L \ {0L , 1L } and arbitrary n ∈ N, n ≥ 2 there exists λ ∈

L \ {0L , 1L } such that

T n−1(N (λ), . . . ,N (λ)) >L N (µ). (3)

Remark 2.9. ([6], [14]) The condition (3) holds for every continuous t-
norm T and for every involutive negation N on L \ ({0L , 1L },≤L) (follows
from the theorem of mean values). Also, all t-norms of h-type with standard
negation satisfy condition (3).

Definition 2.10. [14] A sequence {xn}n∈N in an L -fuzzy metric space
(X, M ,T ) is called a Cauchy sequence if for each ε ∈ L\{0L , 1L } and t > 0,

there exists n0 ∈ N such that for all m ≥ n ≥ n0 (n ≥ m ≥ n0),

M (xm, xn, t) > N (ε).

The sequence {xn}n∈N is said to be convergent to x ∈ X in the L -fuzzy
metric space (X, M ,T ) if M (xn, x, t) → 1L whenever n → ∞ for every
t > 0. An L -fuzzy metric space is said to be complete if and only if every
Cauchy sequence is convergent.

It is obvious that definitions of convergence and Cauchy sequences depend
on the choice of negation N . From this it follows that it needs to be pointed
out that we assume the space (X, M ,T ) is complete w.r.t. negation N .

The following definition and lemma on L F-strongly bounded sets are given
in [7].

Definition 2.11. [7] Let (X, M ,T ) be an L -fuzzy metric space and A ⊆
X. The L -fuzzy diameter of the set A is defined by

δA = sup
t>0

inf
x,y∈A

sup
ε< t

M(x, y, ε).

If δA = 1L then we say that the set A is L F-strongly bounded.
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Lemma 2.12. [7] The set A ⊆ X is L F-strongly bounded if and only if for
arbitrary negation N (λ) and each λ ∈ L \ {0L , 1L } there exists t > 0 such
that M (x, y, t) > N (λ) for all x, y ∈ A.

Proof. Let A ⊆ X be an L F-strongly bounded set. The statement follows
trivially for arbitrary negation N (λ) ∈ [0L , 1L ], from the definitions of inf
and sup of a set.

Conversely, since for arbitrary negation N (λ), and each λ ∈ L \ {0L , 1L }
there exists t > 0 such that M (x, y, t) > N (λ) for all x, y ∈ A, then this
holds for every arbitrary involutive negation. If N (λ) is involutive negation
then for each λ ∈ L \ {0L , 1L } there exists µ = N (λ) such that N (µ) = λ.

This means that supµ∈L N (µ) = supλ∈L λ = 1L and we are finished.

Following A. George et al. ([4]), we introduce the concept of L -fuzzy
diameter zero for a collection of sets in L fuzzy metric spaces.

Definition 2.13. Let (X, M ,T ) be an L -fuzzy metric space. A collection
{Fn}n∈N is said to have L -fuzzy diameter zero if for each r ∈ L \ {0L , 1L }
and every t > 0 there exists n0 ∈ N such that M (x, y, t) >L N (r) for all
x, y ∈ Fn0 .

Theorem 2.14. Let (X, M ,T ) be a complete L -fuzzy metric space, w.r.t.
continuous negation N . Then every collection of nonempty, nested, closed
sets {Fn}n∈N with L -fuzzy diameter zero has a nonempty intersection. Also,
the element x ∈

⋂
n∈N Fn is unique.

Proof. Let (X, M ,T ) be a complete L -fuzzy metric space and {Fn}n∈N

a collection of nonempty, nested, closed sets with L -fuzzy diameter zero. Let
xn ∈ Fn be arbitrary for every n ∈ N. We will prove that the sequence {xn}
is a Cauchy sequence. Let r ∈ L \ {0L , 1L } and t > 0 be arbitrary. Since
{Fn} has L -fuzzy diameter zero, it follows that there exists n0 ∈ N such that
M (x, y, t) >L N (r) for every x, y ∈ Fn0 . Since Fn is a nested sequence, it
follows that M (xn, xm, t) >L N (r) for all n, m ≥ n0, i.e. the sequence {xn}
is a Cauchy sequence. Since the space is complete, it follows that there exists
x ∈ X such that xn → x. Since x ∈ Fn for all n, it follows that x ∈

⋂
n∈N Fn.

We now prove that x ∈
⋂

n∈N Fn is the unique element that belongs to this
intersection. Assume that there exists y ∈

⋂
n∈N Fn, x 6= y. Since {Fn} has
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L -fuzzy diameter zero, for arbitrary t > 0 it follows that M (x, y, t) >L N ( 1
n)

for all n ∈ N. Letting n →∞ we get M (x, y, t) = 1L , i.e. x = y.

In fixed point theory a very important role is played by generalizations
of commutativity. The concept of compatible mappings was introduced by
G. Junck ([5]) and S.N. Mishra ([11]). There are many generalizations of
compatibility in different senses. Recently, B. Singh et al. introduced the
concept of weak compatibility in [16]. We fuzzify these definitions.

Definition 2.15. Let (X, M ,T ) be a L -fuzzy metric space and S and T

self-mappings on X. We say that the mappings S and T are compatible if

lim
n→∞

M (STxn, TSxn, t) = 1L for every t > 0, (4)

holds whenever (xn)n∈N is a sequence in X such that limn→∞ Sxn =
limn→∞ Txn = z ∈ X holds.

Definition 2.16. Let (X, M ,T ) be an L -fuzzy metric space and S and T

self-mappings on X. We say that the mappings S and T are weakly compatible
if for some z ∈ X holds that Sz = Tz then STz = TSz.

It is easy to see that the class of compatible mappings is broader than the
class of commuting mappings. Indeed, every pair of commuting mappings
is also compatible, while the converse is not true ([16]). Also, every pair of
compatible mappings is weakly compatible, as the following remark shows.

Remark 2.17. Let S and T be compatible mappings on L -fuzzy metric
space (X, M ,T ). Then the following holds:

If for some z ∈ X we have Sz = Tz then STz = TSz.

This follows directly from Definition 2.15 taking xn = z for every n ∈ N for
some point z ∈ X.

Examples of compatible and weak compatible mappings can be found in [5],
[11] and [16].
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3. Main results

Lemma 3.1. Let (X, M ,T ) be a L -fuzzy metric space which satisfies (2).
Let ϕ : (0,∞) → (0,∞) be a continuous, non-decreasing mapping such that
ϕ(t) < t holds for every t > 0. Then the following statement holds:

If for every x, y ∈ X we have M (x, y, ϕ(t)) ≥L M (x, y, t) for every t > 0
then x = y.

Proof. Let us suppose that M (x, y, ϕ(t)) ≥L M (x, y, t) and x 6= y. From
this condition, by induction it follows that M (x, y, ϕn(t)) ≥L M (x, y, t). Tak-
ing the limit when n →∞, we get that M (x, y, t) = 0L for every t > 0, which
is a contradiction with (LF-2) i.e. x = y.

Lemma 3.2. Let (X, M ,T ) be a L -fuzzy metric space with the continuous
triangular norm T . Let S and T be compatible self-mappings on X and let
Sxn and Txn converge to some point z ∈ X for a sequence {xn}n∈N in X. If
S is continuous then

lim
n→∞

TSxn = Sz.

Proof. Let µ ∈ L \ {0L , 1L } and t > 0 be arbitrary. From the continuity
of the triangular norm T it follows that condition (3) holds, and for n = 2
it follows that for the involutive negation N we have that there exists λ ∈
L \ {0L , 1L } such that

T
(
N (λ),N (λ)

)
>L N (µ).

Since S and T are compatible, it follows that M
(
TSxn, STxn, t

2

)
>L

N (λ). Also, Sxn and Txn converge to z, so M
(
Txn, xn, t

2

)
>L N (λ) and

M
(
Sxn, xn, t

2

)
>L N (λ). From the continuity of S it follows that

M (TSxn, Sz, t) ≥L T

(
M

(
TSxn, STxn,

t

2

)
,M

(
STxn, Sz,

t

2

))
≥L T

(
N (λ),N (λ)

)
>L N (µ)

holds. Taking µ → 0 we get that

lim
n→∞

M (TSxn, Sz, t) = 1L ,

i.e. lim
n→∞

TSxn = Sz.
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Theorem 3.3. Let (X, M ,T ) be a L -fuzzy metric space which is complete
w.r.t. continuous negation N and satisfies condition (3). Let A,B, S and T

be self-mappings on X such that A(X) and B(X) are L F-strongly bounded
and let the following conditions be satisfied:

(a) A(X) ⊆ T (X), B(X) ⊆ S(X),
(b) One of the mappings A and S is continuous,
(c) The pair {A,S} is compatible and {B, T} is weakly compatible,
(d) There is a continuous, non-decreasing function ϕ : (0,∞) → (0,∞), sat-
isfying ϕ(t) < t for every t > 0 and

M (Ax, By, ϕ(t)) ≥L M (Sx, Ty, t), for every t > 0 and x, y ∈ X. (5)

Then A,B, S and T have a unique common fixed point.
Proof. Let x0 ∈ X be an arbitrary point. From (a) it follows that there

exists x1 ∈ X such that A(x0) = T (x1) and for such a point x1 there exists
x2 ∈ X such that B(x1) = S(x2). By induction we can construct the following
sequence {zn}n∈N {

z2n−1 = Tx2n−1 = Ax2n−2

z2n = Sx2n = Bx2n−1
. (6)

Let us consider a nested sequence of non-empty, closed sets defined by

Fn = {zn, zn+1, . . .}, n ∈ N.

We now prove that the family {Fn}n∈N has L -fuzzy diameter zero.
Let µ ∈ L \ {0L , 1L } and t > 0 be arbitrary. From Fk ⊆ A(X) ∪ B(X) it

follows that Fk is a L F-strongly bounded set for arbitrary k ∈ N. That means
that there exists t0 > 0 such that

M (x, y, t0) >L N (µ) for all x, y ∈ Fk. (7)

From limn→∞ ϕn(t0) = 0 it follows that there exists m ∈ N such that
ϕm(t0) < t. Let n = m + k and x, y ∈ Fn be arbitrary. There are sequences
{zn(i)}, {zn(j)} in Fn (n(i), n(j) ≥ n i, j ∈ N) such that limi→∞ zn(i) = x

and limj→∞ zn(j) = y.

Case I. Let us assume that n(i) ∈ 2N − 1 and n(j) ∈ 2N or vice-versa, for
large enough i, j ∈ N i.e. zn(i) = Axn(i)−1 and zn(j) = Bxn(j)−1.
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From (5) it follows that

M (zn(i), zn(j), ϕ(t)) = M (Axn(i)−1, Bxn(j)−1, ϕ(t))

≥L M (Sxn(i)−1, Txn(j)−1, t) = M (Axn(i)−2, Bxn(j)−2, t)

= M (zn(i)−1, zn(j)−1, t).

By induction, we get that

M (zn(i), zn(j), ϕ
m(t)) ≥L M (zn(i)−m, zn(j)−m, t). (8)

Since ϕm(t0) < t and M (x, y, ·) is non-decreasing in L, from the last inequal-
ities it follows that

M (zn(i), zn(j), t) ≥L M (zn(i), zn(j), ϕ
m(t0)) ≥L M (zn(i)−m, zn(j)−m, t0).

Since {zn(i)−m}, {zn(j)−m} are sequences in Fk, from (7) it follows that

M (zn(i)−m, zn(j)−m, t0) >L N (µ) for every i, j ∈ N, (9)

i.e. we have

M (zn(i), zn(j), t) ≥L N (µ), for n(i) ∈ 2N− 1, n(j) ∈ 2N, or vice− versa.

(10)

Case II. Let us assume that both n(i) and n(j) are from the set 2N− 1 and
let n(l) ≥ n be an arbitrary positive integer and n(l) ∈ 2N. Because (3) holds,
let λ ∈ L \ {0L , 1L } be such that

T
(
N (λ),N (λ)

)
>L N (µ). (11)

Then, from (10) it follows that

M (Axn(j)−1, Bxn(l)−1, t) >L N (λ).

There exists ε > 0 such that

M (Axn(j)−1, Bxn(l)−1, t− ε) ≥L N (λ).

From limn→∞ ϕn(t0) = 0 take m0 ∈ N such that ϕm0(t0) < ε. Let n1 =
max{m,m0}. Then we have that

M (Axn(j)−1, Bxn(l)−1, t− ϕn1(t0)) ≥L M (Axn(j)−1, Bxn(l)−1, t− ε).
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Also, from (10), ϕn1(t0) ≤ t and from the fact that M (x, y, ·) is non-decreasing
in L it follows that

M (Axn(i)−1, Bxn(l)−1, t) ≥L M (Axn(i)−1, Bxn(l)−1, ϕ
n1(t0)) ≥L N (λ)

holds. From the previous inequality and from (11) we conclude that

M (zn(i), zn(j), t) = M (Axn(i)−1, Axn(j)−1, t)

≥L T
(
M (Axn(i)−1, Bxn(l)−1, ϕ

n1(t0)),M (Axn(j)−1, Bxn(l)−1, t− ϕn1(t0))
)

≥L T
(
N (λ),N (λ)

)
>L N (µ),

holds, i.e.

M (zn(i), zn(j), t) ≥L N (µ), for n(i), n(j) ∈ 2N− 1. (12)

Similarly we can prove that (12) holds for n(i), n(j) ∈ 2N.

Finally, from (10) and (12) we conclude that in both cases we have

M (zn(i), zn(j), t) ≥L N (µ)

for every i, j ∈ N. Taking the limit when i, j → ∞, and applying Lemma
2.6 we get that M (x, y, t) >L N (µ) for every x, y ∈ Fn i.e. the collection
{Fn}n∈N has L -fuzzy diameter zero.

Applying Theorem 2.14 we conclude that this collection has non-empty
intersection, that consists of exactly one point z. Since the collection {Fn}n∈N

has L -fuzzy diameter zero and z ∈ Fn for every n ∈ N then for every µ ∈
L\{0L , 1L } and for all t > 0 there exists n0 ∈ N such that for every n ≥ n0 we
have M (zn, z, t) >L N (µ). From this it follows that for every µ ∈ L\{0L , 1L }
we have

lim
n→∞

M (zn, z, t) >L N (µ).

Taking µ → 0 we get that

lim
n→∞

M (zn, z, t) = 1L

i.e. limn→∞ zn = z. From the definition of the sequences {Ax2n−2}, {Sx2n},
{Bx2n−1} and {T2n−1} it follows that every one of these sequences converges
to z.

We shall prove that z is a common fixed point of the mappings A,B, S and T.

Let us first assume that S is continuous. Then we have that lim
n→∞

SSx2n = Sz.

From the compatibility of the pair {A,S} and from Lemma 3.2 it follows that
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lim
n→∞

ASx2n = Sz. Using the condition (5) we get that the following inequality
holds:

M (ASx2n, Bx2n−1, ϕ(t)) ≥L M (SSx2n, Tx2n−1, t).

Taking the limit as n →∞ we get that

M (Sz, z, ϕ(t)) ≥L∗ M (Sz, z, t).

From Lemma 3.1 it follows that Sz = z. Using condition (5) again, we get
that

M (Az,Bx2n−1, ϕ(t)) ≥L M (Sz, Tx2n−1, t)

and taking the limit as n →∞ we get that

M (Az, z, ϕ(t)) ≥L M (Sz, z, t) = M (z, z, t) = 1L .

This means that Az = z. Since A(X) ⊆ T (X), there exists a point u ∈ X such
that z = Az = Tu and we have that that

M (z, Bu, ϕ(t)) = M (Az,Bu, ϕ(t)) ≥L M (Sz, Tu, t) = M (z, z, t) = 1L ,

which means that Bu = z. From the weak compatibility of the pair {B, T} it
follows that Tz = TBu = BTu = Bz. Also, from (5) it follows that

M (Ax2n, Bz, ϕ(t)) ≥L M (Sx2n, T z, t).

Taking the limit when n → ∞ and from Lemma 3.1, we get that Bz = z.

Thus, z is a common fixed point of the mappings A,B, S and T.

Now, let us assume that A is a continuous mapping. Then we have that
M (AAx2n, Az, t) >L N (µ). From the compatibility of the pair {A,S} and
Lemma 3.2 it follows that M (SAx2n, Az, t) >L N (µ). Using condition (5) we
get that

M (AAx2n, Bx2n−1, ϕ(t)) ≥L M (SAx2n, Tx2n−1, t).

Taking the limit as n →∞ we get that

M (Az, z, ϕ(t)) ≥L M (Az, z, t).

From Lemma 3.1 it follows that Az = z. Since A(X) ⊆ T (X), there exists a
point v ∈ X such that z = Az = Tv. From M (Az, Bv, ϕ(t)) we have that

M (AAx2n, Bv, ϕ(t)) ≥L M (SAx2n, T v, t).
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Taking the limit as n →∞ we get that

M (z,Bv, ϕ(t)) = M (Az,Bv, ϕ(t)) ≥L M (Az, Tv, t) = M (z, z, t) = 1L ,

which means that z = Bv. Since the pair {B, T} is weakly compatible we have
that Tz = TBv = BTv = Bz. Also, using condition (5) we have

M (Ax2n, Bz, ϕ(t)) ≥L M (Sx2n, T z, t).

Taking the limit as n →∞ we get that

M (z,Bz, ϕ(t)) ≥L M (z, Tz, t) = M (z,Bz, t).

This means that z = Bz = Tz. Since B(X) ⊆ S(X), there exists a point
w ∈ X such that z = Bz = Sw. From (5) it follows that

M (Aw, z, ϕ(t)) = M (Aw,Bz, ϕ(t))

≥L M (Sw, Tz, t) = M (Sw,Bz, t) = M (z, z, t) = 1L ,

i.e. Aw = z. Since the pair {A,S} is compatible and z = Aw = Sw, from
Remark 2.17 we have that Az = ASw = SAw = Sz. Thus, z is a common
fixed point for the mappings A,B, S and T.

Let us now show that z is a unique common fixed point. Let us assume
that there exists another common fixed point y. From (5) it follows that

M (z, y, ϕ(t)) = M (Az, By, ϕ(t)) ≥L M (Sz, Ty, t) = M (z, y, t).

Finally, from Lemma 3.1 it follows that z = y.

Example 3.4. Let (X, M ,T ) be a L -fuzzy metric space induced by metric
d(x, y) = |x− y| on X = [0,+∞) ⊂ R, i.e. M (x, y, t) = t

t+|x−y| with standard
negation Ns(x) = 1− x. Let

Ax =
x

1 + x
, Sx = 2x,

Bx =

{
x

1+x , x ∈ [0, 1]
0, x > 1

, Tx =

{
2x, x ∈ [0, 1]
0, x > 1

and

ϕ(t) =

{
t/(1 + t), t ∈ (0, 1]

t/2, t ≥ 1
.
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We shall prove that all the conditions of Theorem 3.3 are satisfied. First
notice that A(X) = [0, 1) ⊂ [0, 2] = T (X) and B(X) = [0, 1

2) ⊂ [0,+∞) =
S(X). The sets A(X) and B(X) are metrically bounded, i.e. L F-strongly
bounded as subsets of the L -fuzzy metric space. Because A(S(x)) = 2x

1+2x

and S(A(x)) = 2x
1+x we conclude that A and S are not commuting. We now

prove that they are compatible mappings. Note that

M (A(S(x), S(A(x)), t) =
t

t + 2x2

(1+x)(1+2x)

and M (S(x), A(x), t) =
t

t + x+2x2

1+x

.

Since 2x2

(1+x)(1+2x) ≤
x+2x2

1+x holds for all x ≥ 0 we get

M (A(S(x), S(A(x)), t) ≥ M (S(x), A(x), t)

for all x, t ≥ 0. For a sequence {xn} in [0,+∞) such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

from the previous inequality it follows that lim
n→∞

M (A(S(xn), S(A(xn)), t) = 1.

Now we prove that the mappings B and T are weakly compatible. If Bz =
Tz then z = 0 or z > 1. In the case when z = 0 we get T (B(0)) = B(T (0)) = 0.

On the other hand, if z > 1 then T (B(z)) = T (0) = 0 and B(T (z)) = B(0) =
0, i.e. the condition T (B(z)) = B(T (z)) from Definition 2.16 is satisfied.

We now prove that the condition (5) is satisfied, too. Note that for all
x, y ∈ X we have that 1

(1+x)(1+y) ≤ 1. We will consider two cases.
Case I. Consider 0 < t ≤ 1 and note that 1 + t ≤ 2.

a) For x, y ∈ [0, 1] we get

M (A(x), B(y), t/(1 + t)) =
t

t + (1 + t) |x−y|
(1+x)(1+y)

≥ t

t + 2|x− y|
= M (S(x), T (y), t).

b) For x > 1 and y > 1 we get

M (A(x), B(y), t/(1 + t) =
t

t + (1 + t) x
1+x

≥ t

t + 2x
= M (S(x), T (y), t).

c) If x ∈ [0, 1] and y > 1 the proof is reduced to b). If x > 1 and y ∈ [0, 1]
the proof is reduced to a).
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Case II. Consider t ≥ 1.

d) For x, y ∈ [0, 1] we get

M (A(x), B(y), t/2) =
t

t + 2 |x−y|
(1+x)(1+y)

≥ t

t + 2|x− y|
= M (S(x), T (y), t).

e) For x > 1 and y > 1s we get

M (A(x), B(y), t/2) =
t

t + 2 x
1+x

≥ t

t + 2x
= M (S(x), T (y), t).

f) If x ∈ [0, 1] and y > 1 the proof is reduced to e). If x > 1 and y ∈ [0, 1]
the proof is reduced to d).
From the above we conclude that condition (5) is satisfied. Since ϕ(t) satisfies
all the conditions of Theorem 3.3 we get that all the mappings have a unique
common fixed point. It is easy to see that this point is x = 0.

4. Analogue of the main result on probabilistic spaces

Since the structures of L -fuzzy metric spaces and Probabilistic metric
spaces are quite similar, in this section we give a version of the main result
proved in Theorem 3.3 for mappings defined on Menger probabilistic metric
spaces (briefly, Menger PM-spaces). For basic definitions and preliminaries in
Menger PM-spaces see [8]. The proof is left out because it is very similar to
the proof of Theorem 3.3.

Theorem 4.1. Let (X,F , T ) be a complete Menger PM-space. Let A,B, S

and T be self-mappings on X such that A(X) and B(X) are probabilistic
bounded sets and let the following conditions be satisfied:

(a) A(X) ⊆ T (X), B(X) ⊆ S(X),
(b) One of the mappings A and S is continuous,
(c) The pair {A,S} is compatible and {B, T} is weakly compatible,
(d) There is a continuous, non-decreasing function ϕ : (0,∞) → (0,∞), sat-
isfying ϕ(t) < t for every t > 0 and

FAx,By(ϕ(t)) ≥ FSx,Ty(t), for every t > 0 and x, y ∈ X. (13)

Then A,B, S and T have a unique common fixed point.
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Finally, many fixed and common fixed point results, for example the Banach
PM-contraction theorem, proved for mappings defined on Menger PM-spaces
follow from the previous theorem.

5. Acknowledgments

This research was supported by Ministry of Science and Technological De-
velopment, Republic of Serbia, Grant No. 144031.

References

[1] H. Adibi, Y.J. Cho, D. O’Regan, R. Saadati, Common fixed point theorems in L -fuzzy

metric spaces, Appl. Math. Comput., 182(2006), 820-828.

[2] D.W. Boyd, J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc.,

20(1969), 458-64.

[3] Y.J. Cho, H.K. Pathak, S.M. Kang, J.S. Jung, Common fixed points of compatible maps

of type (β) on fuzzy metric spaces, Fuzzy Sets Syst., 93(1998), 99-111.

[4] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy

Sets Syst., 90(1997), 365-368.

[5] G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math.

Sci., (1986), 771-779.
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