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Abstract. Consider the variational inequality V I(C, F ) of finding a point x∗ ∈ C satisfying

the property 〈Fx∗, x − x∗〉 ≥ 0 for all x ∈ C, where C is a nonempty closed convex subset

of a real Hilbert space H and F : C → H is a nonlinear mapping. If F is boundedly

Lipschitzian and strongly monotone, then we prove that V I(C, F ) has a unique solution and

iterative algorithms can be devised to approximate this solution. In the case where C is the

set of fixed points of a nonexpansie mapping, we also invent a hybrid iterative algorithm to

approximate the unique solution of V I(C, F ).
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1. Introduction and Preliminaries

Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm
‖ · ‖, let C be a nonempty closed convex subset of H, and let F : C → H be
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a nonlinear operator. We consider the problem of finding a point x∗ with the
property

V I(C,F ) : x∗ ∈ C, 〈Fx∗, x− x∗〉 ≥ 0, ∀ x ∈ C. (1.1)

This is known as the variational inequality problem, initially introduced and
studied by Stampacchia [15] in 1964. In recent years, variational inequal-
ity problems have been extended to study a large variety of problems arising
in structural analysis, economics, optimization, operations research and engi-
neering sciences, see [1-19] and the references therein. Using the projection
technique, it has been shown that the variational inequality problems are
equivalent to the fixed point problems.

Lemma 1.1. Given a point z ∈ H. Then u ∈ C satisfies the inequality

〈z − u, v − u〉 ≤ 0, ∀ v ∈ C (1.2)

if and only if u = PCz, where PC is the metric projection operator of H onto
the closed convex set C; that is, u is the unique point in C such that

‖u− z‖ = inf
v∈C

‖v − z‖.

It is well known that the projection PC is nonexpansive; namely,

‖PCx− PCy‖ ≤ ‖x− y‖, ∀ x, y ∈ H. (1.3)

Using Lemma 1.1, one can easily show that V I(C,F ) (1.1) is equivalent to
the fixed point problem (see, for example, [13]).

Lemma 1.2. x∗ ∈ C is a solution of variational inequality (1.1) if and only
if x∗ ∈ C satisfies the fixed-point relation:

x∗ = PC(I − λF )x∗, (1.4)

where λ > 0 is an arbitrary constant.

Recall that an operator F : C → H is called monotone, if

〈Fx− Fy, x− y〉 ≥ 0 for all x, y ∈ C.

Moreover, a monotone operator F is called strictly monotone if the equality
‘=’ holds only when x = y in the last relation. It is easy to see that V I(C,F )
(1.1) has at most one solution if F is strictly monotone.



VARIATIONAL INEQUALITIES 247

For variational inequality (1.1), F is generally assumed to be κ-Lipschitzian
and η-strongly monotone on C, that is, for some constants κ, η > 0, F satisfies
the conditions

‖Fx− Fy‖ ≤ κ‖x− y‖, ∀ x, y ∈ C (1.5)

and

〈Fx− Fy, x− y〉 ≥ η‖x− y‖2, ∀ x, y ∈ C. (1.6)

Under these two conditions, it is not difficult to show that the operator PC(I−
λF ) : C → C is a contraction provided the constant λ is selected such that 0 <

λ < 2η/κ2. By using the well-known Banach contraction mapping principle,
PC(I−λF ) has a unique fixed point. This fact together with Lemma 1.2 leads
to the following result which we will use in the sequel repeatedly.

Lemma 1.3. Assume that F satisfies the conditions (1.5) and (1.6). Then
the variational inequality problem (1.1) has a unique solution. Moreover, for
any 0 < λ < 2η/κ2, the sequence {xn} with initial guess x0 ∈ C and defined
recursively by

xn+1 = PC(I − λF )xn, n ≥ 0

converges strongly to the unique solution of VI (1.1).

Attempts are worth making to weaken the Lipschitz condition (1.5) or the
strong monotonicity condition (1.6) so that existence of solutions of varia-
tional inequality (1.1) is still guaranteed. One of the purposes of this paper
is to weaken the Lipschitz condition (1.5). We will call that F : C → H is
boundedly Lipschitzian on C if it is Lipschitzian on each bounded subset of
C; namely, for each nonempty bounded subset B of C, there exists a positive
constant κB depending only on the set B such that

‖Fx− Fy‖ ≤ κB‖x− y‖, ∀x, y ∈ B. (1.7)

We will prove that variational inequality (1.1) has a unique solution if F is
boundedly Lipschitzian and η-strongly monotone on C. We will also devise
three iterative algorithms which generate sequences from an initial point cho-
sen arbitrarily in a certain bounded subset C∗ = S(u, r)∩C of C, where u ∈ C

is an arbitrary fixed point, positive constant r > ‖F (u)‖/η, and S(u, r) is a
closed ball of H, i.e., S(u, r) = {x : x ∈ H, ‖x− u‖ ≤ r}. These sequences are
shown to converge strongly to the unique solution x∗ of variational inequality
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(1.1). In the case where C is the set of fixed points of a nonexpansive mapping,
we also establish a hybrid iterative algorithm that converges in norm to the
solution of the variational inequality (1.1).

We need the demiclosedness pricinple for nonexpansive mappings.

Lemma 1.4. (Demiclosedness Principle; cf. [6]) Let T : C → C be a non-
expansive mapping with Fix(T ) 6= ∅. If {xn} is a sequence in C weakly con-
verging to x and if {(I − T )xn} converges strongly to y, then (I − T )x = y; in
particular, Tx = x if y = 0.

We also need the following technical result.

Lemma 1.5. (cf. [17]) Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} and {βn} are sequences in (0,1) and {δn} is a sequence in R such
that

(i)
∑∞

n=1 γn = ∞;
(ii) either lim supn→∞ δn ≤ 0 or

∑∞
n=1 γn|δn| < ∞.

Then limn→∞ an = 0.

We will use the notations:

• ⇀ for weak convergence and → for strong convergence.
• ωw(xn) = {x : ∃ xnj ⇀ x} denotes the weak ω-limit set of {xn}.
• S(u, r) = {x : x ∈ H, ‖x− u‖ ≤ r} denotes a closed ball with center u

and radius r.

2. Existence and Uniqueness

It is well-known that if F is (globally) κ-Lipschitzian and η-strongly mono-
tone on C, then V I(C,F ) has a unique solution which is also the unique fixed
point of the contraction PC(I − λF ) whenever 0 < λ < 2η/κ2. In this section
we aim to weaken the global Lipschitzian condition of F . Any of such weak-
enings would make the mapping PC(I−λF ) fail to be (globally) a contraction
on the entire set C. We introduce a bounded Lipschitz condition for F which
makes the mapping PC(I−λF ) to be a contraction on each of bounded subsets
of C which is sufficient to guarantee the existence and uniqueness of solutions
of V I(C,F ). Below is the main result of this section.
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Theorem 2.1. Assume that F : C → H is boundedly Lipschitzian on C (i.e.,
for each bounded subset B of C, F is Lipschizian on B). Assume also that F

is η-strongly monotone on C. Then variational inequality (1.1) has a unique
solution x∗ ∈ C such that

‖x∗ − u‖ ≤ 1
η
‖Fu‖, (2.1)

where u ∈ C is an arbitrary fixed point.

Proof. First observe that VI (1.1) has at most one solution due to the strict
monotonicity of F . We next prove the existence of solutions of VI (1.1).

Take a point u ∈ C and a number r ∈ R such that r ≥ ‖F (u)‖/η. Let
Cr = S(u, r) ∩ C; then Cr is a bounded closed subset of C. Now since F ,
restricted to Cr, is Lipschitzian and strongly monotone, the V I(Cr, F )

x∗ ∈ Cr, 〈Fx∗, x− x∗〉 ≥ 0, x ∈ Cr (2.2)

has a unique solution x∗ ∈ Cr by Lemma 1.3.
We next prove that x∗ is actually the unique solution of VI (1.1). To see

this, take an arbitrary z ∈ C and consider the closed convex bounded subset
of C, C̃ := co({z}∪Cr). Since again F is Lipschitzian and strongly monotone
on C̃, there exists a unique solution x̃ ∈ C̃ to the variational inequality

x̃ ∈ C̃, 〈Fx̃, x− x̃〉 ≥ 0, x ∈ C̃. (2.3)

Since F is η-strongly monotone, we get

〈Fu, u− x̃〉 ≥ 〈Fx̃, u− x̃〉+ η‖u− x̃‖2

≥ η‖u− x̃‖2 (2.4)

since 〈Fx̃, u− x̃〉 ≥ 0 by (2.3). But (2.4) implies that

‖u− x̃‖ ≤ 1
η
‖Fu‖. (2.5)

That is, x̃ ∈ Cr. This shows that x̃ also solves VI (2.2). By uniqueness we get
x̃ = x∗. This combined with (2.3) asserts that (noticing z ∈ C̃),

〈Fx∗, z − x∗〉 = 〈Fx̃, z − x̃〉 ≥ 0.

Therefore (1.1) is satisfied for every z ∈ C. Finally, that (2.1) holds follows
from (2.5). �
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Remark 2.2. Similarly, we can also introduce bounded strong monotonicity of
operator. An operator F : C → H is called boundedly strong monotone on
C, if for arbitrary bounded subset B of C, there exists a positive constant ηB

depending only on the set B such that

〈F (x)− F (y), x− y〉 ≥ ηB‖x− y‖2, ∀x, y ∈ B.

So a natural question gives rise to this: is it possible also to replace the
strong monotonicity of F by bounded strong monotonicity so that the result
of Theorem 2.1 is still guaranteed? The following simple example gives us a
negative answer.

Consider the exponential function f(x) = ex, x ∈ R. It follows from the
mean value theorem that, for an arbitrary positive constant r > 0,

|f(x)− f(y)| ≤ er|x− y|

and
(f(x)− f(y))(x− y) ≥ e−r|x− y|2

hold for all x, y ∈ R with |x|, |y| ≤ r. Obviously, f is boundedly Lipschitzian
and boundedly strong monotone on R. But it is easy to see that there is no
x∗ ∈ R so that f(x∗)(x− x∗) ≥ 0 holds for all x ∈ R.

3. Iterative algorithms

Throughout this section, we always assume that F : C → H is boundedly
Lipschitzian and η-strongly monotone on C. Denote by u an arbitrary fixed
point in C and denote by r a positive fixed constant such that

r ≥ 1
η
‖Fu‖.

Set Cr = S(u, r) ∩ C and denote by κr the Lipschitz constant of F on the
bounded closed convex subset Cr.

Since V I(C,F ) (1.1) and V I(Cr, F ) (2.2) have the same solution, we can
devise iterative methods for V I(Cr, F ) (2.2) and get the unique solution of
V I(C,F ) (1.1). This is our idea. In this regard, we present three results.

Theorem 3.1. Define a sequence {xn} recursively by the iterative algorithm{
x0 ∈ Cr arbitrarily,

xn+1 = PCr(I − λF )xn,
(3.1)
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where 0 < λ < 2η/κ2
r . Then {xn} converges strongly to the unique solution x∗

of VI (1.1).

Proof. By Theorem 2.1, VI (1.1) has a unique solution x∗ which is also the
unique solution of VI (2.2) on Cr. Now Lemma 1.3 says that the sequence {xn}
generated by the algorithm (3.1) converges in norm to the unique solution of
VI (2.2) and hence, of VI (1.1). This clearly ends the proof. �

Observe that the stepsize λ in Theorem 3.1 is constant. For varying step-
sizes, we have the following result.

Theorem 3.2. Define a sequence {xn} by the iterative algorithm:

{
x0 ∈ Cr arbitrarily,

xn+1 = PCr(I − λnF )xn,
(3.4)

where the sequence {λn} satisfies the condition

0 < lim
n→∞

λn ≤ lim
n→∞

λn <
2η

κ2
r

. (C1)

Then {xn} converges strongly to the unique solution x∗ of VI (1.1).

Proof. By condition (C1), there exists some natural number N and positive
constants a and b such that 0 < a ≤ b < 2η/κ2

r and a ≤ λn ≤ b for all n ≥ N .
Set

h = max
a≤λ≤b

√
1− λ(2η − λκ2

r).

Then 0 ≤ h < 1 and it is easy to see that 0 ≤
√

1− λn(2η − λnκ2
r) ≤ h for all

n ≥ N .
By using Theorem 2.1, we assert that x∗ ∈ Cr. Observing that x∗ is also the

unique solution of VI (2.2), we have from Lemma 1.2 that x∗ = PCr(I−λnF )x∗

holds for all n ≥ 0. The algorithm (3.4) implies that {xn} ⊂ Cr. Thus, for all
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n ≥ N, we have

‖xn+1 − x∗‖2 = ‖PCr(I − λnF )xn − PCr(I − λnF )x∗‖2

≤ ‖(I − λnF )xn − (I − λnF )x∗‖2

= ‖(xn − x∗)− λn(Fxn − Fx∗)‖2

= ‖xn − x∗‖2 + λ2
n‖Fxn − Fx∗‖2 −2λn〈xn − x∗, Fxn − Fx∗〉

≤ [1− λn(2η − λnκ2
r)]‖xn − x∗‖2

≤ h2‖xn − x∗‖2.

Consequently

‖xn+1 − x∗‖ ≤ h‖xn − x∗‖ ≤ · · · ≤ hn−N+1‖xN − x∗‖.

Clearly limn→∞ ‖xn − x∗‖ = 0. �

Theorem 3.2 asserts that if the parameter sequence {λn} is bounded away
below from zero and above from 2η/κ2

r , then the sequence {xn} generated by
the algorithm (3.4) converges in norm to the unique solution of VI (1.1). The
result below shows that we can allow {λn} to close either zero or 2η/κ2

r and
still keep the strong convergence of the sequence {xn}. (However, the rate of
convergence would possibly be slower.)

Theorem 3.3. Assume that the sequence {λn} satisfies the condition

0 < λn <
2η

κ2
r

for all n and
∞∑

n=0

λn

(
2η

κ2
r

− λn

)
= ∞. (C2)

Then the sequence {xn} generated by the algorithm (3.4) converges strongly to
the unique solution x∗ of VI (1.1).

Proof. The first part of condition (C2) assures that that the mapping PCr(I−
λnF ) : Cr → Cr is a contraction with the coefficient

√
1− λn(2η − λnκ2

r) for
all n ≥ 0. Observing {xn} ⊂ Cr, x∗ ∈ Cr and x∗ = PCr(I − λnF )x∗ (n ≥ 0),
we have

‖xn+1 − x∗‖ = ‖PCr(I − λnF )xn − PCr(I − λnF )x∗‖
≤

√
1− λn(2η − λnκ2

r)‖xn − x∗‖
≤ ‖xn − x∗‖.

(3.5)
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Thus r = limn→∞ ‖xn − x∗‖ exists. Assume r > 0. We then derive from (3.5)
that

‖xn+1 − x∗‖ ≤
(

1− 1
2
λn(2η − λnκ2

r)
)
‖xn − x∗‖.

Hence
κ2

r

2
λn

(
2η

κ2
r

− λn

)
‖xn − x∗‖ ≤ ‖xn − x∗‖ − ‖xn+1 − x∗‖. (3.6)

Noting ‖xn − x∗‖ ≥ r, we have from (3.6) that

1
2
rκ2

rλn

(
2η

κ2
r

− λn

)
≤ ‖xn − x∗‖ − ‖xn+1 − x∗‖.

It turns out that
∞∑

n=1

λn

(
2η

κ2
r

− λn

)
< ∞.

This contradicts the second part of condition (C2). Thus we must have r = 0;
that is, {xn} converges strongly to x∗. �

4. Extension of Yamada’s hybrid method

In this section, we extend Yamada’s hybrid method using the result of
Theorem 2.1. Consider VI (1.1) where the feasible set C is composed of fixed
points of a nonexpansive mapping; that is, C if of the form

C ≡ Fix(T ) := {x ∈ H : Tx = x},

where T : H → H is a nonexpansive mapping (i.e., ‖Tx−Ty‖ ≤ ‖x−y‖ for all
x, y ∈ H). We always assume that Fix(T ) 6= ∅ so that C = Fix(T ) is closed,
convex and nonempty. Thus, our variational inequality is reformulated as

x∗ ∈ Fix(T ), 〈Fx∗, x− x∗〉 ≥ 0, x ∈ Fix(T ). (4.1)

In this regard, Yamada [18] obtained the following hybrid iterative method
for solving VI (4.1).

Theorem 4.1. ([18]) Assume that F : H → H is η−strongly monotone and
κ-Lipschitzian. Fix a constant µ satisfying 0 < µ < 2η/κ2. Assume also that
a sequence {λn} ⊂ (0, 1) satisfies the conditions

(i) limn→∞ λn = 0,

(ii)
∑∞

n=1 λn = ∞,

(iii) either
∑+∞

n=1 |λn+1 − λn| < +∞ or limn→∞ λn/λn+1 = 1.
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Define a sequence {xn} recursively by the hybrid iterative algorithm{
x0 ∈ C arbitrarily,

xn+1 = Txn − λnµF (Txn), n ≥ 0.
(4.2)

Then {xn} converges strongly to the unique solution x∗ of VI (4.1).

Using Theorem 2.1, we are able to relax the global Lipschitz condition on
F in Theorem 4.1 to the weaker bounded Lipschitz condition.

Theorem 4.2. Assume that F : H → H is η−strongly monotone and bound-
edly Lipschitzian. Fix an x0 ∈ C = Fix(T ) arbitrarily and let Ĉ be the closed
ball centered at x0 and with radius 2‖Fx0‖/η (i.e., Ĉ = S(x0, 2‖Fx0‖/η)).
Denote by κ̂ the Lipschitz constant of F on Ĉ, and take a constant µ satisfy-
ing 0 < µ < η/κ̂2. Assume a sequence {λn} in the unit interval (0, 1) satisfies
the same conditions (i)-(iii) as in Theorem 4.1. Suppose that the sequence
{xn} is generated by the following hybrid iterative algorithm

xn+1 = Txn − λnµF (Txn), n ≥ 0. (4.3)

Then {xn} converges strongly to the unique solution x∗ of VI (4.1).

Proof. The core of the proof lies in proving that the sequence {xn} generated
by the algorithm (4.3) remains in the set Ĉ so that the κ̂-Lipschiz continuity
and η-strong monotonicity of F on Ĉ can be utilized.

First we observe that the κ̂-Lipschitz continuity and η−strong monotonicity
of F on Ĉ immediately yields η ≤ κ̂.

For each 0 < λ < 1, define a mapping T λ by

T λ = (I − λµF )T.

Then it is not hard to find that T λ, restricted to Ĉ, is a contraction with
coefficient 1− λτ ; that is,

‖T λx− T λy‖ ≤ (1− λτ)‖x− y‖, x, y ∈ Ĉ. (4.4)

where

τ =
1
2
µ(2η − µκ̂2) ∈ (0, 1).
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As a matter of fact, we compute

‖T λx− T λy‖2 = ‖Tx− Ty − λµ(F (Tx)− F (Ty))‖2

= ‖Tx− Ty‖2 + λ2µ2‖F (Tx)− F (Ty)‖2

−2λµ〈Tx− Ty, F (Tx)− F (Ty)〉

≤ [1 + λ2µ2κ̂2 − 2λµη]‖T (x)− T (y)‖2

≤ [1− λµ(2η − λµκ̂2)]‖x− y‖2.

It turns out that

‖T λx− T λy‖ ≤
√

1− λµ(2η − λµκ̂2)‖x− y‖

≤ [1− 1
2
λµ(2η − λµκ̂2)]‖x− y‖

≤ (1− λτ)‖x− y‖.

This is (4.4). We can rewrite the algorithm (4.3) as

xn+1 = T λnxn, n ≥ 0. (4.5)

We claim that xn ∈ Ĉ for all n ≥ 0. We prove this by induction. It is trivial
that x0 ∈ Ĉ.

Suppose we have proved xn ∈ Ĉ, i,e.,

‖xn − x0‖ ≤
2
η
‖Fx0‖. (4.6)

We then derive from (4.5) and (4.6) that

‖xn+1 − x0‖ = ‖T λnxn − x0‖

≤ ‖T λnxn − T λnx0‖+ ‖T λnx0 − x0‖

≤ (1− λnτ)‖xn − x0‖+ λnµ‖Fx0‖

≤ (1− λnτ)‖xn − x0‖+ λnτ
µ

τ
‖Fx0‖

≤ max
{
‖xn − x0‖,

µ

τ
‖Fx0‖

}
≤ max

{
2
η
,
µ

τ

}
‖Fx0‖. (4.7)

However, since 0 < µ < η

k̂2
, we get

µ

τ
=

µ
1
2µ(2η − µκ̂2)

=
2

η + (η − µκ̂2)
≤ 2

η
.
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This together with (4.7) implies that

‖xn+1 − x0‖ ≤
2
η
‖Fx0‖. (4.8)

This proves that xn+1 ∈ Ĉ. Therefore, xn ∈ Ĉ for all n ≥ 0. In particular, all
sequences {xn} , {Txn} and {F (Txn)} are bounded.

Since λn → 0, it is straitforward from (4.3) that

‖xn+1 − Txn‖ → 0 (n →∞). (4.9)

By (4.4) and (4.5), we have

‖xn+1 − xn‖ = ‖T λnxn − T λn−1xn−1‖

≤ ‖T λnxn − T λnxn−1‖

+‖T λnxn−1 − T λn−1xn−1‖

≤ (1− τλn)‖xn − xn−1‖+ µ|λn − λn−1|‖F (Txn−1)‖

≤ (1− τλn)‖xn − xn−1‖+ µM |λn − λn−1|,

where M = sup ‖F (Txn)‖ < ∞. By Lemma 1.4 together with the conditions
(i)-(iii) assumed in the statement of the theorem, we conclude that

‖xn+1 − xn‖ → 0 (n →∞). (4.10)

Thus combining (4.9) and (4.10) yields that

‖xn − Txn‖ → 0 (n →∞). (4.11)

By Lemma 1.4 and (4.11), we obtain

ωw(xn) ⊂ Fix(T ). (4.12)

Notice that Theorem 2.1 asserts that VI (4.1) has a unique solution x∗ ∈ Ĉ.
Now we turn to prove that ‖xn−x∗‖ → 0 (n →∞). It is well-known that the
following inequality holds: for each x, y ∈ H, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

Using this inequality, (4.3) and (4.4), we have

‖xn+1 − x∗‖2 = ‖T λnxn − x∗‖2

= ‖(T λnxn − T λnx∗) + (T λnx∗ − x∗)‖2

≤ (1− τλn)‖xn − x∗‖2 + 2µλn〈−Fx∗, xn+1 − x∗〉. (4.13)
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Let us next show that

lim sup
n→∞

〈−F (x∗), xn − x∗〉 ≤ 0. (4.14)

In fact, there exists a subsequence {xnj} ⊂ {xn} such that

lim sup
n→∞

〈−F (x∗), xn − x∗〉 = lim
j→∞

〈−F (x∗), xnj − x∗〉.

Without loss of generality, we may further assume that xnj ⇀ x̃. Notice that
x̃ ∈ Fix(T ) by virtue of (4.12).

Since x∗ is the solution of VI (4.1), we get

lim sup
n→∞

〈−F (x∗), xn − x∗〉 = lim
j→∞

〈−F (x∗), xnj − x∗〉

= −〈F (x∗), x̃− x∗〉 ≤ 0.

Finally the conditions (i)-(iii) and (4.14) allow us to apply Lemma 1.5 to
the relation (4.13) to conclude that limn→∞ ‖xn − x∗‖ = 0. �
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