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1. Introduction

Let X be a real Banach space with norm ‖ · ‖ and let X∗ be its dual. The
value of x∗ ∈ X∗ at x ∈ X will be denoted by 〈x, x∗〉. The (normalized) duality
mapping J from X into the family of nonempty (by Hahn-Banach theorem)
weak-star compact subsets of its dual X∗ is defined by

J(x) = {ϕ ∈ X∗ : 〈x, ϕ〉 = ‖x‖2 = ‖ϕ‖2}, ∀x ∈ X.

It is known that the norm of X is said to be Gâteaux differentiable (and X is
said to be smooth) if

lim
t→0

‖x + ty‖ − ‖x‖
t

(1.1)

exists for each x, y in U = {x ∈ X : ‖x‖ = 1} the unit sphere of X. It
is said to be uniformly Gâteaux differentiable if for each y ∈ U , this limit is
attained uniformly for x ∈ U . Finally, the norm is said to be uniformly Fréchet
differentiable (and X is said to be uniformly smooth) if the limit in (1.1) is
attained uniformly for (x, y) ∈ U × U . Since the dual X∗ of X is uniformly
convex if and only if the norm of X is uniformly Fréchet differentiable, every
Banach space with a uniformly convex dual is reflexive and has a uniformly
Gâteaux differentiable norm. The converse implication is false. A discussion
of these and related concepts may be found in [21].

Recall also that if X is smooth then J is single-valued and continuous
from the norm topology of X to the weak star topology of X∗, i.e., norm-to-
weak∗ continuous. It is also well-known that if X has a uniformly Gâteaux
differentiable norm, then J is uniformly continuous on bounded subsets of X

form the strong topology of X to the weak star topology of X∗, i.e., uniformly
norm-to-weak∗ continuous on each bounded subset of X. Moreover, if X is
uniformly smooth then J is uniformly continuous on bounded subsets of X

form the strong topology of X to the strong topology of X∗, i.e., uniformly
norm-to-norm continuous on each bounded subset of X. See [13] for more
details.

Let C be a nonempty closed convex subset of a real Banach space X. A
mapping f : C → C is said to be a contraction if there exists a constant
α ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ α‖x− y‖, ∀x, y ∈ C.
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We use Π C to denote the collection of all contractions on C. That is,

ΠC = {f : f : C → C a contraction}.

Let D be a nonempty subset of C. A retraction from C to D is a mapping
Q : C → D such that Qx = x for all x ∈ D. A retraction Q from C to
D is nonexpansive if Q is nonexpansive (i.e., ‖Qx − Qy‖ ≤ ‖x − y‖ for all
x, y ∈ C). A retraction Q from C to D is sunny if Q satisfies the property:
Q(Qx+t(x−Qx)) = Qx for each x ∈ C and t ≥ 0 whenever Qx+t(x−Qx) ∈ C.
A retraction Q from C to D is sunny nonexpansive if Q is both sunny and
nonexpansive.

It is well known that in a smooth Banach space X, a retraction Q from C to
D is a sunny nonexpansive retraction from C to D if and only if the following
inequality holds:

〈x−Qx, J(y −Qx)〉 ≤ 0, ∀x ∈ C, y ∈ D.

If C is a nonempty closed convex subset of a Hilbert space H, then the nearest
point projection PC from H onto C is a sunny nonexpansive retraction. This
however is not true for Banach spaces. It is known that if C is a closed convex
subset of a uniformly smooth Banach space X and there is a nonexpansive
retraction from X to C, then there exists a sunny nonexpansive retraction
from X to C. See [1, 5, 11, 15] for more details.

A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Denote by Fix(T ) the set of fixed points of T , that is, Fix(T ) := {x ∈ C :
Tx = x}. See, e.g., [2, 7]. Let G be an unbounded subset of [0,∞) such that
t + h ∈ G for all t, h ∈ G and t − h ∈ G for all t, h ∈ G with t > h (for
instance, G = [0,∞) or G = N , the set of nonnegative integers). Recall that
a one-parameter family T = {Tt : t ∈ G} of self-mappings of C is said to be a
nonexpansive semigroup on C if the following conditions are satisfied:

(H1) T0x = x, ∀x ∈ C;
(H2) Tt+sx = TtTsx, ∀t, s ∈ G, x ∈ C;
(H3) for each x ∈ C, Ttx is continuous in t ∈ G when G has the relative

topology of [0,∞);
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(H4) for each t ∈ G, there holds

‖Ttx− Tty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Denote by F the set of common fixed points of T , i.e.,

F = {x ∈ C : Tsx = x, ∀s ∈ G}.

Let C be a nonexpansive retract of a smooth Banach space X and f ∈ ΠC .
The purpose of this paper is to propose and analyze the following iterative
scheme for a family T = {Tt : t ∈ G} of nonexpansive nonself-mappings from
C to X, that is,

Algorithm 1.1. Let {αn}, {βn} and {γn} be three sequences in (0, 1)
satisfying αn + βn + γn = 1 and let {rn} be a sequence in G with rn → ∞.
For an arbitrarily initial x0 ∈ C define a sequence {xn} recursively by the
following explicit iterative scheme:

xn+1 = αnf(xn) + βnxn + γnQTrnxn, n ≥ 0,

where Q is the nonexpansive retraction of X onto C.

If the family T = {Tn : n ∈ N}, where T is a nonexpansive self-mapping on
C, then Algorithm 1.1 reduces to the following algorithm of Benavides, Acedo
and Xu [11]:

Algorithm 1.2. Take a sequence {rn} in N+ with rn →∞ and a sequence
{αn} in [0, 1]. Starting with an arbitrarily initial x0 ∈ C, define a sequence
{xn} recursively by the following explicit iterative scheme

xn+1 = αnu + (1− αn)T rnxn, n ≥ 0,

where u is an arbitrary but fixed point in C. For the convergence analysis of
Algorithm 1.2; see [11].

First, under the lack of the assumptions that every weakly compact convex
subset of X has the fixed point property for nonexpansive mappings and that
the family T = {Tt : t ∈ G} of nonexpansive mappings is a semigroup which
were imposed in [20], we prove that as s → ∞, zs converges strongly to a
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common fixed point of T in a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm, where

zs = αsf(zs) + (1− αs)QTszs.

Second, we establish the strong convergence of the sequence {xn} generated
by Algorithm 1.1 under some control conditions in a uniformly convex Ba-
nach space with both a uniformly Gâteaux differentiable norm and a weakly
sequentially continuous duality mapping. Moreover, we deduce that these
strong limits are solutions of certain variational inequality. Results in the re-
cent literature related to the results of this paper can be found, e.g., in [3-5,
20, 23-27].

Notation: ⇀ stands for weak convergence and → for strong convergence.

2. Preliminaries

Let X be a real Banach space with the dual X∗. We denote by J the
normalized duality mapping from X to 2X∗

defined by

J(x) = {ϕ ∈ X∗ : 〈x, ϕ〉 = ‖x‖2 = ‖ϕ‖2}, ∀x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing between X and X∗. Let C

be a nonempty closed convex subset of X and let T : C → C be a mapping.
Then we denote by Fix(T ) the set of fixed points of T , i.e., Fix(T ) := {x ∈
C : Tx = x}. A mapping f : C → C is said to be a contraction on C with a
contractive constant α ∈ (0, 1), if

‖f(x)− f(y)‖ ≤ α‖x− y‖, ∀x, y ∈ C.

In the sequel, we always use ΠC to denote the collection of all contractions on
C with a suitable contractive constant α ∈ (0, 1). That is,

ΠC := {f : C → C, a contraction with a suitable contractive constant}.

A mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Let U = {x ∈ X : ‖x‖ = 1} be a unit sphere of X. Then the Banach space
X is called smooth if

lim
t→0

‖x + ty‖ − ‖x‖
t
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exists for each x, y ∈ U . It is also said to be uniformly smooth if the limit
is attained uniformly for x, y ∈ U . Recall also that if X is smooth then J is
single-valued and if X is uniformly smooth, then J is uniformly norm-to-norm
continuous on bounded subsets of X. We shall still denote the single-valued
duality mapping by J .

If Banach space X admits sequentially continuous duality mapping J from
the weak topology to the weak star topology, then by [22, Lemma 1], we know
that duality mapping J is single-valued. In this case, duality mapping J is
also said to be weakly sequentially continuous, i.e., for each {xn} ⊂ X with
xn ⇀ x, then J(xn) ∗

⇀ J(x) [22, 23].

Before starting the main results of this paper, we also include some lemmas.

Lemma 2.1. [12] Let X be a real Banach space. Then for all x, y ∈ X

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉,

for all j(x + y) ∈ J(x + y).

Lemma 2.2. (See [6]) Let {xn} and {yn} be bounded sequences in a
Banach space X and let {an} be a sequence in [0, 1] with 0 < lim infn→∞ αn ≤
lim supn→∞ αn < 1. Suppose xn+1 = αnxn + (1− αn)yn for all integers n ≥ 0
and lim supn→∞(‖yn+1−yn‖−‖xn+1−xn‖) ≤ 0. Then, limn→∞ ‖yn−xn‖ = 0.

Lemma 2.3. [13] Let X be a reflexive Banach space, C be a nonempty
closed convex subset of X, and T : C → X be a nonexpansive mapping.
Suppose that X admits a weakly sequentially continuous duality mapping.
Then the mapping I − T is demiclosed at zero, i.e.,

xn ⇀ x

xn − Txn → 0

}
implies x = Tx.

Here I is the identity operator of X.

Lemma 2.4. [10, 14] Let {an} be a sequence of nonnegative real numbers
satisfying the property

an+1 ≤ (1− sn)an + sntn, n ≥ 0,
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where {sn} ⊂ (0, 1) and {tn} are such that
(i)

∑∞
n=0 sn = ∞,

(ii) either lim supn→∞ tn ≤ 0 or
∑∞

n=0 |sntn| < ∞.
Then limn→∞ an = 0.

Recall that µ is said to be a mean on the set N+ of all positive integers if µ

is a continuous linear functional on l∞ satisfying ‖µ‖ = 1 = µ(1). It is known
that µ is a mean on N+ if and only if

inf{an : n ∈ N+} ≤ µ(a) ≤ sup{an : n ∈ N+}

for every a = (a1, a2, ...) ∈ l∞. According to time and circumstances, we use
µn(an) instead of µ(a). A mean µ on N+ is called a Banach limit if

µn(an) = µn(an+1)

for every a = (a1, a2, ...) ∈ l∞. Using the Hahn-Banach theorem, we can prove
the existence of a Banach limit. It is also known that if µ is a Banach limit,
then

lim inf
n→∞

an ≤ µn(an) ≤ lim sup
n→∞

an

for every a = (a1, a2, ...) ∈ l∞. Let {xn} be a bounded sequence in X. Then
we can define the real valued continuous convex function φ on X by

φ(x) = µn‖xn − x‖2

for all x ∈ X.
The following proposition is actually a variant of Lemma 1.2 in Reich [1].

Proposition 2.1. Let C be a nonempty closed convex subset of a Banach
space X with a uniformly Gâteaux differentiable norm and let {xn} be a
bounded sequence in X. Let µ be a Banach limit and p ∈ C. Then

µn‖xn − p‖2 = min
y∈C

µn‖xn − y‖2

if and only if

µn〈x− p, J(xn − p)〉 ≤ 0

for all x ∈ C, where J is the duality mapping of X.
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3. Main Results

Let X be a smooth Banach space, C be a nonexpansive retract of X and f ∈
ΠC . Now we first consider the existence of Q(f) which solves the variational
inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Let {αs}s∈G be a net in the interval (0, 1) such that lims→∞ αs = 0 and let
T = {Tt : t ∈ G} be a family of nonexpansive nonself-mappings from C to X.
By Banach’s contraction principle, for each s ∈ G, we have a unique solution
zs ∈ C of the equation

zs = αsf(zs) + (1− αs)QTszs. (3.1)

Theorem 3.1. Let X be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm. Let C be a nonempty closed convex subset of
X and T = {Ts : s ∈ G} be a family of nonexpansive nonself-mappings on C.
Suppose that C is a nonexpansive retract of X, that for a fixed contraction f ∈
ΠC , {zs}s∈G is the net generated by (3.1), and that T satisfies the uniformly
left asymptotically regular condition on bounded subsets of C, i.e., for each
bounded subset C̃ of C, there holds

lim
s∈G,s→∞

sup
x∈ eC

‖TrQTsx−QTsx‖ = 0, r ∈ G. (ULARC)

Then F = {x ∈ C : Tsx = x, ∀s ∈ G} is nonempty if and only if {zs}s∈G is
bounded and in this case, zs converges strongly as s →∞ to a common fixed
point of T . If we define Q : ΠC → F by

Q(f) = lim
s→∞

zs, f ∈ ΠC , (3.2)

then Q(f) solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

In particular, if f = u ∈ C is a constant, then the limit (3.2) defines the sunny
nonexpansive retraction Q from C to F ,

〈Q(u)− u, J(Q(u)− p)〉 ≤ 0, u ∈ C, p ∈ F.



APPROXIMATE COMMON FIXED POINTS FOR ONE-PARAMETER FAMILY 207

Proof. If the common fixed point set F of T is nonempty, then {zs}s∈G is
bounded. Indeed, take p ∈ F arbitrarily. Then we have for each s ∈ G

‖zs − p‖ ≤ αs‖f(zs)− p‖+ (1− αs)‖QTszs − p‖
≤ ααs‖zs − p‖+ αs‖f(p)− p‖+ (1− αs)‖zs − p‖.

which implies that

‖zs − p‖ ≤ 1
1− α

‖f(p)− p‖,

and hence {zs}s∈G is bounded.

Suppose conversely that {zs}s∈G is bounded. Let us show that F is
nonempty and that zs converges strongly as s →∞ to a common fixed point
of T . Next we divide the proof into several steps.

Step 1. We claim that for each {sn} ⊂ G with sn → ∞ (n → ∞) the
following set

D = {u ∈ C : µn‖zsn − u‖2 = min
x∈C

µn‖zsn − x‖2}

consists of one point, where µ is a Banach limit.
Indeed, let {sn} be a sequence of G such that limn→∞ sn = ∞. Define a

function φ : C → [0,∞) by

φ(x) := µn‖zsn − x‖2, x ∈ C.

Since φ is continuous and convex, φ(x) →∞ as ‖x‖ → ∞, and X is reflexive,
φ attains its infimum over C (cf. [8, p. 79]), that is, there exists z ∈ C such
that

µn‖zsn − z‖2 = min
x∈C

µn‖zsn − x‖2.

Then
D = {u ∈ C : φ(u) = min

x∈C
φ(x)}.

is nonempty because z ∈ D. From Proposition 2.1 we know that z ∈ D if and
only if

µn〈x− z, J(zsn − z)〉 ≤ 0

for all x ∈ C. Now let w ∈ D such that w 6= z. Then, by [9, Theorem 1], there
exists a positive number k > 0 such that

〈zsn − z − (zsn − w), J(zsn − z)− J(zsn − w)〉 ≥ k > 0
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for every n. Therefore we get

µn〈w − z, J(zsn − z)− J(zsn − w)〉 ≥ k > 0.

Furthermore, since z, w ∈ D, from Proposition 2.1 we have

µn〈w − z, J(zsn − z)〉 ≤ 0 and µn〈z − w, J(zsn − w)〉 ≤ 0.

Hence we have

µn〈w − z, J(zsn − z)− J(zsn − w)〉 ≤ 0.

This leads to a contradiction. Therefore z = w and so D = {z}.

Step 2. We claim that for a given {sn} ⊂ G with sn → ∞ (n → ∞) we
have D = {z} ⊂ F .

Indeed, since C is a nonexpansive retract of X, the point z is also the unique
global minimum point (over all of X) and hence Tsz = z for all s ∈ G. As
a matter of fact, let Q be a nonexpansive retraction from X to C. Then for
each x ∈ X we have

µn‖zsn − x‖2 ≥ µn‖Qzsn −Qx‖2

= µn‖zsn −Qx‖2 ≥ µn‖zsn − z‖2

and hence

z ∈ M = {u ∈ X : φ(u) = min
x∈X

φ(x)}.

Repeating the same argument as in Step 1, we can conclude that the above
global minimum point z is also unique, that is, M = {z}. Note that {zs}s∈G is
bounded. So it is easy to see that both {f(zs)}s∈G and {Tszs}s∈G are bounded.
Consequently, we have

‖zs −QTszs‖ = αs‖f(zs)−QTszs‖ → 0 (s →∞). (3.3)

Utilizing (ULARC) we conclude that for each r ∈ G

φ(Trz) = µn‖zsn − Trz‖2 ≤ µn{‖zsn −QTsnzsn‖+ ‖QTsnzsn − Trz‖}2

= µn‖QTsnzsn − Trz‖2 ≤ µn{‖QTsnzsn − TrQTsnzsn‖+ ‖TrQTsnzsn − Trz‖}2

= µn‖TrQTsnzsn − Trz‖2 ≤ µn‖QTsnzsn − z‖2

≤ µn{‖QTsnzsn − zsn‖+ ‖zsn − z‖}2 = µn‖zsn − z‖2 = φ(z).

This implies that Trz ∈ M = {z} for all r ∈ G. Therefore z ∈ F .
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Step 3. We claim that zs converges strongly as s →∞ to a common fixed
point of T .

Indeed, take w ∈ F arbitrarily. Then we have

〈zsn −QTsnzsn , J(zsn − w)〉
= 〈zsn −QTsnw + QTsnw −QTsnzsn , J(zsn − w)〉
= ‖zsn −QTsnw‖2 − 〈QTsnzsn −QTsnw, J(zsn − w)〉
≥ ‖zsn −QTsnw‖2 − ‖QTsnzsn −QTsnw‖‖zsn − w‖
≥ ‖zsn −QTsnw‖2 − ‖zsn −QTsnw‖2 = 0

for all n. Since zsn −QTsnzsn = αsn(f(zsn)−QTsnzsn), we get from the last
inequality

0 ≤ 〈zsn −QTsnzsn , J(zsn − w)〉
= αsn〈f(zsn)−QTsnzsn , J(zsn − w)〉,

and hence

〈QTsnzsn − f(zsn), J(zsn − w)〉 ≤ 0

for all n. This implies that

µn〈QTsnzsn − f(zsn), J(zsn − w)〉 ≤ 0. (3.4)

Thus from (3.3) and (3.4), we obtain

µn〈zsn − f(zsn), J(zsn − w)〉
= µn〈zsn −QTsnzsn + QTsnzsn − f(zsn), J(zsn − w)〉
= µn〈zsn −QTsnzsn , J(zsn − w)〉+ µn〈QTsnzsn − f(zsn), J(zsn − w)〉
= µn〈QTsnzsn − f(zsn), J(zsn − w)〉 ≤ 0,

and hence

µn〈zsn − f(zsn), J(zsn − w)〉 ≤ 0 (3.5)

for each w ∈ F . From Proposition 2.1 it follows that

µn〈x− z, J(zsn − z)〉 ≤ 0

for all x ∈ C. In particular, we have

µn〈f(z)− z, J(zsn − z)〉 ≤ 0. (3.6)
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Since f ∈ ΠC , by combining (3.5) with (3.6) we obtain

αµn‖zsn − z‖2 ≥ µn〈f(zsn)− f(z), J(zsn − z)〉
≥ µn{〈f(zsn)− f(z), J(zsn − z)〉+ 〈f(z)− z, J(zsn − z)〉}
= µn〈f(zsn)− z, J(zsn − z)〉
= µn{〈f(zsn)− zsn , J(zsn − z)〉+ 〈zsn − z, J(zsn − z)〉}
≥ µn〈zsn − z, J(zsn − z)〉
= µn‖zsn − z‖2,

and hence

µn‖zsn − z‖2 ≤ 0.

Therefore, there exists a subsequence {zsnj
} of {zsn} which converges strongly

to z. In order to show zsn → z (n → ∞), suppose that there is another
subsequence {zsmi

} of {zsn} which converges strongly to (say) y ∈ C. Then y

must be a common fixed point of T . In fact, observe that

‖y − Try‖ ≤ ‖y − zsmi
‖+ ‖zsmi

−QTsmi
zsmi

‖
+‖QTsmi

zsmi
− TrQTsmi

zsmi
‖+ ‖TrQTsmi

zsmi
− Trzsmi

‖
+‖Trzsmi

− Try‖
≤ 2‖y − zsmi

‖+ 2‖zsmi
−QTsmi

zsmi
‖

+‖QTsmi
zsmi

− TrQTsmi
zsmi

‖.

Thus, (ULARC) together with (3.3) implies that y = Try for all r ∈ G. That
is, y ∈ F . Consequently, from (3.5) it follows that

〈z − f(z), J(z − y)〉 ≤ 0

and

〈y − f(y), J(y − z)〉 ≤ 0.

Adding these two inequalities yields

(1− α)‖z − y‖2 ≤ 〈z − y, J(z − y)〉 − 〈f(z)− f(y), J(z − y)〉
= 〈z − f(z), J(z − y)〉+ 〈y − f(y), J(y − z)〉 ≤ 0,

and thus z = y. Therefore, zs converges strongly as s →∞ to a point in F .

Step 4. We claim that if we define Q : ΠC → F by

Q(f) = lim
s→∞

zs, f ∈ ΠC ,
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then Q(f) solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Indeed, define Q : ΠC → F

Q(f) = lim
s→∞

zs, f ∈ ΠC .

Since zs = αsf(zs) + (1− αs)QTszs, we have

(I − f)zs = −1− αs

αs
(I −QTs)zs.

Hence for each p ∈ F ,

〈(I − f)zs, J(zs − p)〉 = −1− αs

αs
〈(I − Ts)zs − (I − Ts)p, J(zs − p)〉 ≤ 0.

Letting s →∞ yields

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0.

In particular, if f = u ∈ C is a constant, then

〈Qu− u, J(Qu− p)〉 ≤ 0, u ∈ C, p ∈ F.

Therefore Q is a sunny nonexpansive retraction from C to F . This completes
the proof. �

We remark that the important condition (ii) in Theorem 3.2 was introduced
by Suzuki [6].

Theorem 3.2. Let X be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm. Let C be a nonempty closed convex subset of X,
f ∈ ΠC and T = {Ts : s ∈ G} be a family of nonexpansive nonself-mappings on
C such that F 6= ∅. Suppose that C is a nonexpansive retract of X and that
X admits a weakly sequentially continuous duality mapping. Let {αn}, {βn}
and {γn} be three sequences in (0, 1) and {rn} be a sequence in G. Let {αn}
satisfy the control conditions (C1) limn→∞αn = 0 and (C2)Σ∞n=0αn = ∞.
Assume that

(i) αn + βn + γn = 1;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) rn →∞ such that Trn+1xn − Trnxn → 0, ∀{xn} bounded in C;
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(iv) T satisfies (ULARC) on bounded subsets of C, i.e., for each bounded
subset C̃ of C, there holds

lim
s∈G,s→∞

sup
x∈ eC

‖TrQTsx−QTsx‖ = 0, r ∈ G. (ULARC)

Then the sequence {xn} generated by{
x0 ∈ C chosen arbitrarily,

xn+1 = αnf(xn) + βnxn + γnQTrnxn,
(3.7)

converges strongly to Q(f) ∈ F , where Q(f) is a solution of the variational
inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Proof. We divide the proof into several steps.

Step 1. We claim that {xn} is bounded.
Indeed, take p ∈ F arbitrarily. Then we have

‖xn+1 − p‖ = ‖αnf(xn) + βnxn + γnQTrnxn − p‖
≤ αn‖f(xn)− p‖+ βn‖xn − p‖+ γn‖QTrnxn − p‖
≤ αn‖f(xn)− f(p)‖+ αn‖f(p)− p‖
+βn‖xn − p‖+ γn‖xn − p‖
≤ ααn‖xn − p‖+ (1− αn)‖xn − p‖+ αn‖f(p)− p‖
= [1− (1− α)αn]‖xn − p‖+ αn‖f(p)− p‖
≤ max{‖xn − p‖, ‖f(p)−p‖

1−α }.

By induction we have

‖xn − p‖ ≤ max{‖x0 − p‖, ‖f(p)− p‖
1− α

}, n ≥ 0.

Thus, it follows that {xn} is bounded, and so are {Trnxn} and {f(xn)}.

Step 2. We claim that limn→∞ ‖xn+1 − xn‖ = 0.
Indeed, define a sequence {xn} by

xn+1 = βnxn + (1− βn)yn. (3.8)
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Then we observe that

yn+1 − yn = xn+2−βn+1xn+1

1−βn+1
− xn+1−βnxn

1−βn

=
αn+1f(xn+1)+γn+1QTrn+1xn+1

1−βn+1
− αnf(xn)+γnQTrnxn

1−βn

= αn+1

1−βn+1
f(xn+1)− αn

1−βn
f(xn)

+ γn+1

1−βn+1
(QTrn+1xn+1 −QTrn+1xn)

+QTrn+1xn −QTrnxn + αn
1−βn

QTrnxn − αn+1

1−βn+1
QTrn+1xn.

It follows that

‖yn+1 − yn‖ − ‖xn+1 − xn‖
≤ αn+1

1−βn+1
(‖f(xn+1)‖+ ‖QTrn+1xn‖) + αn

1−βn
(‖f(xn)‖+ ‖QTrnxn‖)

+ γn+1

1−βn+1
‖QTrn+1xn+1 −QTrn+1xn‖

+‖QTrn+1xn −QTrnxn‖ − ‖xn+1 − xn‖
≤ αn+1

1−βn+1
(‖f(xn+1)‖+ ‖QTrn+1xn‖) + αn

1−βn
(‖f(xn)‖+ ‖QTrnxn‖)

+‖Trn+1xn − Trnxn‖.

(3.9)

According to condition (iii) and αn → 0, we conclude from (3.9) that

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Thus, by Lemma 2.2, we have

lim
n→∞

‖yn − xn‖ = 0.

Consequently, it follows from (3.8) that

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− βn)‖yn − xn‖ = 0. (3.10)

Step 3. We claim that for each fixed s ∈ G, Tsxn − xn → 0 (n →∞).
Indeed, observe that

‖xn+1 −QTrnxn‖ ≤ αn‖f(xn)−QTrnxn‖+ βn‖xn −QTrnxn‖
≤ αn‖f(xn)−QTrnxn‖+ βn‖xn − xn+1‖
+βn‖xn+1 −QTrnxn‖,

and hence

‖xn −QTrnxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 −QTrnxn‖
≤ ‖xn − xn+1‖
+ 1

1−βn
(αn‖f(xn)−QTrnxn‖+ βn‖xn − xn+1‖).

(3.11)
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So, from (3.10), (3.11) and conditions (C1), (ii), we derive

lim
n→∞

‖xn −QTrnxn‖ = 0. (3.12)

Let C̃ be any bounded subset of C which contains the sequence {xn}. It
follows that for each fixed s ∈ G

‖Tsxn − xn‖ ≤ ‖Tsxn − TsQTrnxn‖+ ‖TsQTrnxn −QTrnxn‖
+‖QTrnxn − xn‖
≤ 2‖QTrnxn − xn‖+ ‖TsQTrnxn −QTrnxn‖
≤ 2‖QTrnxn − xn‖+ sup

x∈ eC
‖TsQTrnx−QTrnx‖.

So (ULARC) together with (3.12) yields

lim
n→∞

‖Tsxn − xn‖ = 0. (3.13)

Step 4. We claim that lim supn→∞〈(I − f)Q(f), J(Q(f) − xn+1)〉 ≤ 0,
where Q : ΠC → F is defined in Theorem 3.1.

Indeed, the mapping Q : ΠC → F is defined well by virtue of Theorem 3.1.
Since X is reflexive and {xn} is bounded, there exists a subsequence {xnj+1}
of {xn} such that xnj+1 ⇀ q and

lim sup
n→∞

〈(I − f)Q(f), J(Q(f)− xn+1)〉 = lim
j→∞

〈(I − f)Q(f), J(Q(f)− xnj+1)〉.

It follows from (3.13) that limj→∞ ‖xnj+1 − Tsxnj+1‖ = 0. Hence, by Lemma
2.3 we get q ∈ F . On the other hand, since Q(f) ∈ F satisfies

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F,

utilizing the weakly sequential continuity of duality mapping J , we have

lim sup
n→∞

〈(I − f)Q(f), J(Q(f)− xn+1)〉

= lim
j→∞

〈(I − f)Q(f), J(Q(f)− xnj+1)〉

= 〈(I − f)Q(f), J(Q(f)− q)〉 ≤ 0.

Step 5. We claim that limn→∞ ‖xn −Q(f)‖ = 0.
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Indeed, utilizing Lemma 2.1, we obtain

‖xn+1 −Q(f)‖2

= ‖αnf(xn) + βnxn + γnQTrnxn −Q(f)‖2

≤ ‖βn(xn −Q(f)) + γn(QTrnxn −Q(f))‖2

+2αn〈f(xn)−Q(f), J(xn+1 −Q(f))〉
≤ (βn‖xn −Q(f)‖+ γn‖QTrnxn −Q(f)‖)2

+2αn〈f(xn)− f(Q(f)), J(xn+1 −Q(f))〉
+2αn〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉
≤ (1− αn)2‖xn −Q(f)‖2 + 2ααn‖xn −Q(f)‖‖xn+1 −Q(f)‖
+2αn〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉
≤ (1− αn)2‖xn −Q(f)‖2 + ααn(‖xn −Q(f)‖2 + ‖xn+1 −Q(f)‖2)
+2αn〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉.

It then follows that

‖xn+1 −Q(f)‖2

≤ 1−(2−α)αn+α2
n

1−ααn
‖xn −Q(f)‖2

+ 2αn
1−ααn

〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉
≤ 1−(2−α)αn

1−ααn
‖xn −Q(f)‖2 + α2

n
1−ααn

M

+ 2αn
1−ααn

〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉,

(3.14)

where M := supn≥0 ‖xn −Q(f)‖2. Put

sn =
2(1− α)αn

1− ααn

and

tn =
Mαn

2(1− α)
+

1
1− α

〈f(Q(f))−Q(f), J(xn+1 −Q(f))〉.

From Step 3 and conditions (C1), (C2) it follows that sn → 0,
∑∞

n=0 sn = ∞
and lim supn→∞ tn ≤ 0. Observe that in this case, (3.14) reduces to

‖xn+1 −Q(f)‖2 ≤ (1− sn)‖xn −Q(f)‖2 + sntn.

Therefore, utilizing Lemma 2.4, we have

lim
n→∞

‖xn −Q(f)‖ = 0.

This completes the proof. �

The following result is immediate from Theorem 3.2.
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Corollary 3.1. Let X be a uniformly convex Banach space with both a
uniformly Gâteaux differentiable norm and a weakly sequentially continuous
duality mapping. Let C be a nonempty closed convex subset of X, f ∈ ΠC

and T = {Ts : s ∈ G} be a semigroup of nonexpansive mappings on C such
that F 6= ∅. Let {αn}, {βn} and {γn} be three sequences in (0, 1) and {rn} be
a sequence in G. Let {αn} satisfy the control conditions (C1), (C2). Assume
that

(i) αn + βn + γn = 1;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) rn →∞ such that Trn+1xn − Trnxn → 0, ∀{xn} bounded in C;
(iv) T satisfies (ULARC) on bounded subsets of C, i.e., for each bounded

subset C̃ of C, there holds

lim
s∈G,s→∞

sup
x∈ eC

‖TrTsx− Tsx‖ = 0, r ∈ G. (ULARC)

Then the sequence {xn} generated by{
x0 ∈ C chosen arbitrarily,

xn+1 = αnf(xn) + βnxn + γnTrnxn,

converges strongly to Q(f) ∈ F , where Q(f) is a solution of the variational
inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.

Proof. Whenever T is a semigroup of nonexpansive mappings on C, by the
careful analysis of the proof of Theorems 3.1 and 3.2, it is easy to see that, the
restriction that C is a nonexpansive retract of X can be removed. Therefore,
by Theorem 3.2 we obtain the desired conclusion. This completes the proof.
�

Note that in the case when X = H a Hilbert space, the nonempty closed
convex subset C is a sunny nonexpansive retract of H, the nearest point
projection P of C onto F is a sunny nonexpansive retraction and the duality
mapping J is the identity mapping I. It is clear that the following results
immediately follow from Theorems 3.1 and 3.2.



APPROXIMATE COMMON FIXED POINTS FOR ONE-PARAMETER FAMILY 217

Corollary 3.2. Let H be a Hilbert space and C be a nonempty closed
convex subset of H. Let T = {Ts : s ∈ G} be a family of nonexpansive nonself-
mappings on C. Denote by PC the nearest point projection of H onto C.
Assume that for a fixed contraction f ∈ ΠC , {zs}s∈G is the net generated by

zs = αsf(zs) + (1− αs)PCTszs, s ∈ G,

and that T satisfies the uniformly left asymptotically regular condition on
bounded subsets of C, i.e., for each bounded subset C̃ of C, there holds

lim
s∈G,s→∞

sup
x∈ eC

‖TrPCTsx− PCTsx‖ = 0, r ∈ G. (ULARC)

Then F = {x ∈ C : Tsx = x, ∀s ∈ G} is nonempty if and only if {zs}s∈G is
bounded and in this case, zs converges strongly as s →∞ to a common fixed
point of T . If we define Q : ΠC → F by

Q(f) = lim
s→∞

zs, f ∈ ΠC , (3.15)

then Q(f) is the unique solution the variational inequality

〈(I − f)Q(f), Q(f)− p〉 ≤ 0, f ∈ ΠC , p ∈ F.

In particular, if f = u ∈ C is a constant, then (3.15) reduces to the nearest
point projection P from C onto F ,

〈P (u)− u, P (u)− p〉 ≤ 0, u ∈ C, p ∈ F.

Corollary 3.3. Let H be a Hilbert space and C be a nonempty closed
convex subset of H. Let f ∈ ΠC and T = {Ts : s ∈ G} be a family of
nonexpansive nonself-mappings on C such that F 6= ∅. Denote by PC the
nearest point projection of H onto C. Let {αn}, {βn} and {γn} be three
sequences in (0, 1) and {rn} be a sequence in G. Let {αn} satisfy the control
conditions (C1), (C2). Assume that

(i) αn + βn + γn = 1;
(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(iii) rn →∞ such that Trn+1xn − Trnxn → 0, ∀{xn} bounded in C;
(iv) T satisfies (ULARC) on bounded subsets of C, i.e., for each bounded

subset C̃ of C, there holds

lim
s∈G,s→∞

sup
x∈ eC

‖TrPCTsx− PCTsx‖ = 0, r ∈ G. (ULARC)
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Then the sequence {xn} generated by{
x0 ∈ C chosen arbitrarily,

xn+1 = αnf(xn) + βnxn + γnPCTrnxn,

converges strongly to Q(f) ∈ F , where Q(f) is the unique solution of the
variational inequality

〈(I − f)Q(f), Q(f)− p〉 ≤ 0, f ∈ ΠC , p ∈ F.

Let D be a subset of a Banach space X. Recall that a mapping T : D → X

is said to be firmly nonexpansive if, for each x, y ∈ D, the convex function
φ : [0, 1] → [0,∞) defined by

φ(t) = ‖(1− t)x + tTx− ((1− t)y + tTy)‖,

is nonincreasing. Since φ is convex, it is easy to check that a mapping T :
D → X is firmly nonexpansive if and only if

‖Tx− Ty‖ ≤ ‖(1− t)(x− y) + t(Tx− Ty)‖,

for each x, y ∈ D and t ∈ [0, 1]. It is obvious that every firmly nonexpansive
mapping is nonexpansive.

Corollary 3.4. Let X be a uniformly convex and uniformly smooth Banach
space. Let C be a nonempty closed convex subset of X and T = {Ts : s ∈ G}
be a family of firmly nonexpansive nonself-mappings on C such that F 6=
∅. Suppose that C is a nonexpansive retract of X, and that T satisfies the
(ULARC) on bounded subsets of C, i.e., for each bounded subset C̃ of C,
there holds

lim
s∈G,s→∞

sup
x∈ eC

‖TrQTsx−QTsx‖ = 0, r ∈ G. (ULARC)

Then the net {zs}s∈G generated by (3.1) converges strongly to Q(f) ∈ F ,
where Q(f) is a solution of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΠC , p ∈ F.
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