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Abstract. Based on the notion of A−maximal relaxed accretiveness, the convergence anal-

ysis of the over-relaxed proximal point algorithm in the context of the approximating the

solutions of a class of nonlinear variational inclusions is explored. Moreover, some results

on the general firm nonexpansiveness are also investigated. The obtained results are general

and application-oriented in nature.
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1. Introduction

Let us consider a real Banach space with the duality pairing 〈, .〉 between
the elements of X and the elements of X∗, the dual space of X, and the norm
‖·‖ on X and X∗. We consider the nonlinear inclusion problem: find a solution
to

0 ∈ M(x), (1)

where M : X → 2X is a set-valued mapping on X.

Recently Pennanen [10] considered the proximal point algorithm, introduced
by Eckstein and Bertsekas [3] in the context of solving (1), while achieving the
local convergence of the proximal point algorithm without monotonicity. As
a matter of fact, Rockafellar [14] generalized the algorithm of Martinet [9]
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when working on convex programming, which is referred to as the proximal
point algorithm in the literature. This work was followed by the formulation
[15] of the proximal point algorithm in conjunction with convex programming
duality theory to present a general convergence analysis for the multiplier
method in convex programming. Eckstein and Bertsekas [3] introduced the
relaxed proximal point algorithm and applied to the solvability of inclusion
problems of the form (1).

Recently the author [19-21], introduced and studied the notion of A-
maximal relaxed monotonicity in the context of solving variational inclusion
problems of the form (1) based on the resolvent operator techniques in Hilbert
space settings. The notion of A−maximal relaxed monotonicity generalizes
the general theory of multivalued maximal monotone mappings, including the
notion of H−maximal monotonicity introduced by Fang and Huang [5], and
provides a general framework to examining variational inclusion problems.
Lan, Cho and Verma [8] generalized the notion of A−maximal relaxed mono-
tonicity to the case of A−maximal relaxed accretiveness in a Banach space
setting, and studied the approximation solvability of a class of inclusion prob-
lems involving A−maximal relaxed accretive mappings based on the resolvent
operator technique. There exists an abundance amount of literature on re-
solvent operator methods and their applications to other fields, for instance
equilibria problems, optimization and control theory, operations research, and
mathematical programming,management and decision science.

Here, in this paper, we generalize the relaxed proximal point algorithm to
the case of A−maximal relaxed accretive monotone mappings, and then we
apply it to the approximation solvability of a class of nonlinear problems of
the form (1) in a real Banach space setting. We have successfully established
the linear convergence of the sequence. Furthermore, some results on the
generalized firm nonexpansiveness, Lipschitz continuity of the generalized re-
solvent operator corresponding to A−maximal relaxed accretive mappings are
included. For more literature, we recommend the reader [1-24].

2. A-maximal relaxed accretiveness and applications

In this section we first state some basic properties derived from the no-
tion of A−maximal (m)−relaxed accretiveness [ 8], and then we investigate
some results involving A−maximal (m)−relaxed accretiveness and the firm
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nonexpansiveness. Let X denote a real Banach space with the norm ‖ · ‖ on
X and X∗, the dual space of X, and with the duality pairing between the
elements of X and X∗. Let M : X → 2X be a multivalued mapping on X.

We shall denote both the map M and its graph by M, which means, the set
{(x, y) : y ∈ M(x)}. This is equivalent to stating that a mapping is any subset
M of X × X, and M(x) = {y : (x, y) ∈ M}. If M is single-valued, we shall
still use M(x) to represent the unique y such that (x, y) ∈ M rather than the
singleton set {y}. This interpretation shall much depend on the context. The
domain of a map M is defined (as its projection onto the first argument) by

dom(M) = {x ∈ X : ∃y ∈ X : (x, y) ∈ M} = {x ∈ X : M(x) 6= ∅}.

dom(T)=X, shall denote the full domain of M, and the range of M is defined
by

range(M) = {y ∈ X : ∃x ∈ X : (x, y) ∈ M}.

The inverse M−1 of M is {(y, x) : (x, y) ∈ M}. For a real number ρ and a
mapping M, let ρM = {x, ρy) : (x, y) ∈ M}. If L and M are any mappings,
we define

L + M = {(x, y + z) : (x, y) ∈ L, (x, z) ∈ M}.

Next, we define the generalized duality mapping Jq : X → 2X∗
by

Jq(x) = {f∗ ∈ X∗ : 〈x, f∗〉 = ‖x‖ · ‖f∗‖, ‖f∗‖ = ‖x‖q−1} ∀x ∈ X,

where q > 1.

For q = 2, Jq becomes the usual normalized duality mapping. It clearly
follows that Jq(x) = ‖x‖q−2J2(x) for all x 6= 0, and Jq is single-valued if X∗

is strictly convex. The modulus of smoothness function ρX : [0,∞) → [0,∞)
is defined by

ρX(t) = sup{1
2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t}.

In this context, a Banach space is uniformly smooth if

lim
t→0

ρX(t)
t

= 0,

and X is q−uniformly smooth if there is a positive constant c such that

ρX(t) ≤ ctq, for q > 1.
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Now we state the following lemma by Xu [23] for q−uniformly smooth Ba-
nach spaces, which is crucial to accomplishing the proofs.
Lemma 2.1. [23] If X is a real uniformly smooth Banach space. Then X

q-uniformly smooth if and only if there exists a constant cq > 0 such that

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q.

Definition 2.1. Let M : X → 2X be a multivalued mapping on X. The map
M is said to be:

(i) Accretive if

〈u∗ − v∗, Jq(u− v)〉 ≥ 0∀(u, u∗), (v, v∗) ∈ Graph(M).

(ii) (r)− strongly accretive if there exists a positive constant r such that

〈u∗ − v∗, Jq(u− v)〉 ≥ r‖u− v‖q ∀(u, u∗), (v, v∗) ∈ Graph(M).

(iii) (r)−strongly pseudoaccretive if

〈v∗, Jq(u− v)〉 ≥ 0

implies

〈u∗, Jq(u− v)〉 ≥ r‖u− v‖q ∀(u, u∗), (v, v∗) ∈ Graph(M).

(iv) (m)−relaxed accretive if there exists a positive constant m such that

〈u∗ − v∗, Jq(u− v)〉 ≥ (−m)‖u− v‖q ∀(u, u∗), (v, v∗) ∈ Graph(M).

(v) (c)− cocoercive if there is a positive constant c such that

〈u∗ − v∗, Jq(u− v)〉 ≥ c‖u∗ − v∗‖q ∀(u, u∗), (v, v∗) ∈ Graph(M).

Definition 2.2. Let M : X → 2X be a mapping on X. The map M is said to
be:

(i) Nonexpansive if

‖u∗ − v∗‖ ≤ ‖u− v‖ ∀(u, u∗), (v, v∗) ∈ Graph(M).

(ii) Firmly q−nonexpansive if

‖u∗ − v∗‖q ≤ 〈u∗ − v∗, Jq(u− v)〉 ∀(u, u∗), (v, v∗) ∈ Graph(M).
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(iii) (c)−firmly q−nonexpansive if there exists a constant c > 0 such that

‖u∗ − v∗‖q ≤ c〈u∗ − v∗, Jq(u− v)〉 ∀(u, u∗), (v, v∗) ∈ Graph(M).

Definition 2.3. [8] Let A : X → X be a single-valued mapping. The map
M : X → 2X is said to be A−maximal (m)−relaxed accretive if

(i) M is (m)−relaxed accretive
(ii) R(A + ρM) = X for ρ > 0.

Proposition 2.1. Let A : X → X be an (r)−strongly accretive single-valued
mapping and let M : X → 2X be an A−maximal (m)−relaxed accretive map-
ping. Then (A + ρM) is maximal accretive for 0 < ρ < r

m .

Proof. Since A is (r)−strongly accretive and M is A−maximal (m)−relaxed
accretive, it implies that A + ρM is (r − ρm)−strongly accretive. This in
turn implies that A + ρM is pseudoaccretive, and hence A + ρM is maximal
accretive under the given conditions.
Proposition 2.2. Let A : X → X be an (r)−strongly accretive mapping and
let M : X → 2X be an A−maximal (m)−relaxed accretive mapping. Then the
operator (A + ρM)−1 is single-valued.
Definition 2.4. Let A : X → X be an (r)−strongly accretive mapping and
let M : X → 2X be an A−maximal (m)−relaxed accretive mapping. Then
the generalized resolvent operator JM

ρ,A : X → X is defined by

JM
ρ,A(u) = (A + ρM)−1(u).

Definition 2.5. Let A, T : X → X be two mappings. Then map T is said to
be:

(i) accretive with respect to A if

〈T (x)− T (y), Jq(A(x)−A(y))〉 ≥ 0∀(x, y) ∈ X.

(ii) (r) − strongly accretive with respect to A if there exists a positive
constant r such that

〈T (x)− T (y), Jq(A(x)−A(y))〉 ≥ r‖x− y‖q ∀(x, y) ∈ X.

(iii) (γ, α)-relaxed q−cocoercive with respect to A if there exist positive
constants γ and α such that

〈T (x)− T (y), Jq(A(x)−A(y))〉 ≥ −γ‖T (x)− T (y)‖q + α‖x− y‖q

∀(x, y) ∈ X.
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3. A−Proximal point algorithm and application

This section primarily deals with the relaxed A−proximal point algorithm
and its application to approximation solvability of the inclusion problem (1).
Several results connecting the generalized A−maximal (m)−relaxed accretive-
ness and corresponding resolvent operator are established, which unify the
results on the firm expansiveness from Eckstein and Bertsekas [3]. Further-
more, some auxiliary results on A−maximal (m)−relaxed accretiveness, and
maximal accretiveness are discussed.

The solvability of the problem (1) depends on the equivalence between (1)
and the problem of finding the fixed point of the associated generalized resol-
vent operator.
Lemma 3.1. Let X be a real Banach space, let A : X → X be (r)−strongly
accretive, and let M : X → 2X be A−maximal (m)−relaxed accretive. Then
the generalized resolvent operator associated with M and defined by

JM
ρ,A(u) = (A + ρM)−1(u)∀u ∈ X,

is ( 1
r−ρm)−Lipschitz continuous r − ρm > 0.

Lemma 3.2. [22] Let X be a real Banach space, let A : X → X be
(r)−strongly accretive, and let M : X → 2X be A−maximal (m)−relaxed ac-
cretive. Then the generalized resolvent operator associated with M and defined
by

JM
ρ,A(u) = (A + ρM)−1(u)∀u ∈ X,

is ( 1
r−ρm)−firmly nonexpansive for r − ρm > 0.

Lemma 3.3. Let X be a real Banach space, let A : X → X be (r)−strongly
accretive, and let M : X → 2X be A−maximal (m)−relaxed accretive. Then
I − JM

ρ,A is firmly nonexpansive for r − ρm > 1.

Theorem 3.1. Let X be a real Banach space, let A : X → X be (r)−strongly
accretive, and let M : X → 2X be A−maximal (m)−relaxed accretive. Then
the following statements are mutually equivalent:

(i) An element u ∈ X is a solution to (1).
(ii) For an u ∈ X, we have

u = JM
ρ,A(A(u)).
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where
JM

ρ,A(u) = (A + ρM)−1(u).

Proof. It follows from the definition of the generalized resolvent operator
corresponding to M.

Theorem 3.2. Let X be a real q−uniformly smooth Banach space, let A :
X → X be (r)−strongly accretive and (s)−Lipschitz continuous, and let M :
X → 2X be A−maximal (m)−relaxed accretive. For an arbitrarily chosen
element x0, let the sequence {xk} be generated by the relaxed A−proximal
point algorithm

xk+1 = (1− αk)xk + αky
k for k ≥ 0

with
‖yk − JM

ρ,A(A(xk))‖ ≤ δk‖yk − xk‖,
where δk → 0,

yk+1 = (1− αk)xk + αkJ
M
ρ,A(A(xk)),

〈JM
ρk,A(A(xk))−JM

ρk,A(A(x∗)), Jq(xk−x∗)〉 ≥ γ‖JM
ρk,A(A(xk))−JM

ρk,A(A(x∗))‖q,

(2)
for γ > 0, JM

ρ,A = (A + ρkM)−1, and sequences {δk}, {αk} and {ρk} satisfy
αk > 1,

∑∞
k=0 δk ≤ ∞, and ρk ↑ ρ.

Then the sequence {xk} converges linearly to a unique solution x∗ of (1)
with rate

q

√
(1− α)q + [αqcq + qα(1− α)γ]

sq

(r − ρm)q
< 1,

where αq
kcq + qαk(1− αk)γ > 0 and α = lim supk→∞ αk.

Proof. Since from Theorem 3.1, x∗, a solution to (1), satisfies the relaxed
proximal point algorithm. It further follows from Theorem 3.1 that any solu-
tion to (1) is a fixed point of JM

ρk,AoA for all k ≥ 0.

Next, using Lemma 2.1 and (2), we find the estimate

‖yk+1 − x∗‖q = ‖(1− αk)xk + αkJ
M
ρk,A(A(xk))−

[(1− αk)x∗ + αkJ
M
ρk,A(A(x∗))‖q

= ‖(1− αk)(xk − x∗) + αk(JM
ρk,A(A(xk))− JM

ρk,A(A(x∗)))‖q

≤ (1−αk)q‖xk−x∗‖q +qαk(1−αk)〈JM
ρk,A(A(xk))−JM

ρk,A(A(x∗)), Jq(xk−x∗)〉+
αq

kcq‖JM
ρk,A(A(xk))− JM

ρk,A(A(x∗))‖q
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≤ (1− αk)q‖xk − x∗‖q + qαk(1− αk)γ‖JM
ρk,A(A(xk))− JM

ρk,A(A(x∗))‖q+

αq
kcq‖JM

ρk,A(A(xk))− JM
ρk,A(A(x∗))‖q

= (1−αk)q‖xk − x∗‖q + [αq
kcq + qαk(1−αk)γ]‖JM

ρk,A(A(xk))− JM
ρk,A(A(x∗))‖q

≤ (1− αk)q‖xk − x∗‖q + [αq
kcq + qαk(1− αk)γ]

sq

(r − ρkm)q
‖xk − x∗‖q

= {(1− αk)q + [αq
kcq + qαk(1− αk)γ]

sq

(r − ρkm)q
}‖xk − x∗‖q,

where αq
kcq + qαk(1− αk)γ > 0.

Therefore,
‖yk+1 − x∗‖ ≤ θk‖xk − x∗‖

and

θk = q

√
(1− αk)q + [αq

kcq + qαk(1− αk)γ]
sq

(r − ρkm)q
.

Clearly, it follows that

‖xk+1 − yk+1‖

= ‖(1− αk)xk + αky
k − [(1− αk)xk + αkJ

M
ρ,A(A(xk))]‖

= ‖αk(yk − JM
ρ,A(A(xk)))‖

≤ αkδk‖yk − xk‖.

Since
xk+1 = (1− αk)xk + αky

k,

it implies that
αk(yk − xk) = xk+1 − xk.

Now we estimate

‖xk+1 − x∗‖ = ‖yk+1 − x∗ + xk+1 − yk+1‖

≤ ‖yk+1 − x∗‖+ ‖xk+1 − yk+1‖

≤ ‖yk+1 − x∗‖+ αkδk‖yk − xk‖

= ‖yk+1 − x∗‖+ δk‖xk+1 − xk‖

≤ θk‖xk − x∗‖+ δk‖xk+1 − x∗‖+ δk‖xk − x∗‖. (3)

Therefore, we have

‖xk+1 − x∗‖ ≤ θk + δk

1− δk
‖xk − x∗‖, (4)
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where

lim sup
θk + δk

1− δk
= lim sup θk

= q

√
(1− α)q + [αqcq + qα(1− α)γ]

sq

(r − ρm)q
< 1.

Finally, to show the uniqueness of the solution, assume that x∗1 and x∗2 are
two distinct solutions of (1). By Theorem 3.1, we have

x∗1 = JM
ρk,A(A(x∗1)),

and
x∗2 = JM

ρk,A(A(x∗2)).

Since JM
ρk,A is ( 1

r−ρkm)− Lipschitz continuous and A is (s)− Lipschitz contin-
uous, we arrive at

‖x∗1 − x∗2‖ = ‖JM
ρk,A(A(x∗1))− JM

ρk,A(A(x∗2))‖

≤ 1
r − ρkm

‖A(x∗1)−A(x∗2)‖

≤ s

r − ρkm
‖x∗1 − x∗2‖.

Therefore, we find

‖x∗1 − x∗2‖ ≤
s

r − ρkm
(‖xk − x∗1‖+ ‖xk − x∗2‖).

It follows from this that
‖x∗1 − x∗2‖ = 0. �

4. Some applications

In this section, based on results from Sections 2 and 3, we derive a special
case of Theorem 3.2 for the maximal accretive mapping.
Theorem 4.1. Let X be a real q−uniformly smooth Banach space, and let
M : X → 2X be maximal accretive. For an arbitrarily chosen element x0, let
the sequence {xk} be generated by the relaxed proximal point algorithm

xk+1 = (1− αk)xk + αky
k) for k ≥ 0

with
‖yk − JM

ρ (xk)‖ ≤ δk‖yk − xk‖,
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where δk → 0,

yk+1 = (1− αk)xk + αkJ
M
ρ (xk),

JM
ρ = (I + ρkM)−1, and sequences {δk}, {αk} and {ρk} satisfy αk > 1,∑∞

k=0 δk ≤ ∞, and ρk ↑ ρ.

Then the sequence {xk} converges linearly to a unique solution x∗ of (1)
with rate √

1− α∗[2− α∗] < 1 for α∗ < 2,

where
α∗ = lim sup

k→∞
αk.
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