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Abstract. We use the analytical soliton solutions of the Korteweg-de Vries (KdV) equation

to test a new spectral numerical method for partial differential evolution equations with

unbounded spatial domain. The proposed spatial discretization uses Hermite functions in

the spectral space while the temporal discretization is performed by a symmetric exponential

integrator coupled with fixed point iterations. The algorithm could be used to numerically

describe the soliton behaviour, such as small-amplitude long waves on the free surface of

water.
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1. Introduction

A soliton is a self-reinforcing solitary wave that maintains its shape while

it travels at constant speed. Following Drazin and Johnson [4] the main prop-

erties of solitons are

a) they are of permanent form,

b) they are localized within a region,

c) they can interact with other solitons, and emerge unchanged from the

collision, except for a phase shift.

John Scott Russell was the first who described such a solitary wave, observed

in the Union Canal in Scotland, in 1834. This phenomenon can be expressed
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by the Korteweg-de Vries (1895) equation

ut + 6uux + uxxx = 0, x ∈ IR, t > 0 (1)

but solitons arise as the solutions of many other nonlinear dispersive partial

differential equations describing physical systems.

In 1965 Norman Zabusky and Martin Kruskal firstly demonstrated soliton

behaviour in a computational research using a finite difference approach for the

KdV equation and in 1967, Gardner, Greene, Kruskal and Miura discovered an

inverse scattering transform enabling analytical solution of the KdV equation

of the form

u =
c

2 cosh2
(√

c
2 (x− ct− f)

) .

This technique was extended to the solutions of many related soliton-

generating equations.

Nowadays the solitons are used to describe the complex dynamical be-

haviour of wave systems in hydrodynamics, optical fibers, plasmas, shock

waves, tornados, the Great Red Spot of Jupiter, etc.

The KdV equation is well suited as a test object in applying numerical

methods to non-linear PDEs with unbounded spatial domain, since we have

analytical solutions and we can appreciate the quality of the numerical ap-

proximation.

The next section presents the spatial discretization for an unbounded spa-

tial domain and proposes a technique using Hermite functions in the spectral

space. The third section deals with the temporal discretization using symmet-

ric exponential integrators coupled with fixed point iterations, while the last

section contains numerical examples and conclusions.

2. Spatial discretization

The main numerical methods used to describe the soliton propagation are

the finite difference method, the Fourier method and the spectral methods.

The main difficulty comes from the boundlessness of the spatial domain.

The finite differences method needs a bounded spatial domain. If we trun-

cate the unbounded domain and impose artificial homogeneous boundary con-

ditions, we must stop the calculations if the nonzero part of the solution over-

takes that boundary, in order to avoid the reflections. Finding transparent
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boundary conditions, which do not modify the solution is an active field of

research.

The Fourier method uses periodic functions. We must again truncate the

domain and impose periodic boundary conditions. In fact, we solve a modified

problem, not the given problem.

We can map the unbounded domain to a bounded one, but the transformed

equation is usually very complicated. A better idea is to use new families

of orthogonal functions which are images of classical Jacobi polynomials for

example, under suitable mappings, see Shen and Wang [7] for more details.

For problems on the whole real line, the natural choice is, however, to use

spectral methods based on Hermite polynomials/functions, because of their

close connection to the physics. Spectral methods have been used for solv-

ing problems on unbounded domains for over thirty years and one of the

early applications was the computation of interacting solitons by Fornberg

and Whithman in 1978. However, Weideman and Reddy [8] did not find in

2000 any references to the use of the Laguerre spectral collocation method

for the Schrödinger equation on [0,∞) or to the use of the Hermite spectral

method for the sine-Gordon equation on (−∞,∞). They suspected that their

package MATLAB Differentiation Matrix Suite contains the first application

of the Hermite spectral method to simulate solitons.

The modern applications of the Hermite spectral method are in fact pseudo-

spectral methods, i.e. they work with the physical values of the unknown

functions on a suitable grid (in the physical space), not with the coefficients

of the Fourier-Hermite expansions of that functions (in the spectral space).

If we apply a spectral method to a nonlinear equation, the best strategy is

to evaluate the derivatives in the spectral space and the nonlinear part in

the physical space. There exist fast transforms between physical space and

the spectral space for the Fourier or Chebyshev spectral methods but not

for Hermite spectral method. Consequently, the use of the physical space

only, even for the evaluation of the derivatives in the Hermite pseudospectral

method with a full pseudospectral differentiation matrix, seems to be more

efficient.

The computational power of the modern computers however changes the

hierarchy of the numerical methods from the efficiency point of view. The

lack of a fast transform between the spectral space and the physical space is
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no longer an impediment to use the Hermite spectral method in the spectral

space, with a two-diagonal spectral differentiation matrix.

If we have to solve numerically a nonlinear evolution equation on the whole

real line, like KdV equation (1), we perform at first a spatial semidiscretization

using the Hermite spectral method and we obtain a differential system for the

expansion coefficients. We shortly present this spectral method.

The solution is represented as a truncated series

uN (x) =

N−1
∑

n=0

cnψn(x) (2)

where

ψn(x) =
1

√

2nn!
√
π
Hn (x) , (3)

Hn are the usual Hermite polynomials and N is a truncation parameter. In

the matrix form,

uN (x) = T T (x) c (4)

where c is the column of the coefficients and T is the matrix of the values

of ψn(x) on the grid points x, (the upper script T transposes the matrix).

The grid points x, again a column vector, are the Gauss-Hermite quadrature

nodes, i.e.
∫ ∞

−∞
e−x2

f(x)dx ≈
N

∑

k=1

f(xk)wk

where wk are the weights of the formula. For MATLAB calculations, see the

functions [x,w]=pd(N)and T=x2t(N,x) from [6].

The coefficients ck are given by the formula

ck =

∫ ∞

−∞
e−x2

uN (x)ψk(x)dx, k = 0, ..., N − 1

or, in the matrix form,

c = T (x) (diag(w)uN (x)). (5)

The relations (4) and (5) give the transformations between the representation

of uN (x) in the physical space (uN (x1), ..., uN (xN )) and the representation in

the spectral space (c0, ..., cN−1) and involve only matrix times vector multi-

plications.
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We use now the recurrence relations for the Hermite polynomials

Hn+1 (x) = 2xHn (x) − 2nHn−1 (x) , H ′
n (x) = 2nHn−1 (x)

to calculate the matrices X (multiplication by x in the spectral space) and D

(differentiation matrix in the spectral space) so that

x · uN (x) = T T (Xc),
duN (x)

dx
= T T (Dc).

The functions D=deriv(N) and X=mult(N) from [6] give the two-diagonal

matrices D and X.

Taking into account the behaviour of our solutions at ±∞, we must use as

a basis the complete orthonormal sequence of Hermite-Weber functions

φn(x) =
1

√

2nn!
√
π
e−x2/2Hn (x) .

The multiplication matrix X is the same but the differentiation matrix D must

be replaced by D −X, denoted again by D. We refer to [7] for details about

the convergence of the Fourier-Hermite series and to [5], [6] for details about

this kind of spatial discretization and for MATLAB implementation.

3. Temporal discretization

Let us consider, as an example, the problem

∂u

∂t
= −∂

3u

∂x3
− u

∂u

∂x
, x ∈ (−∞,∞) , t > 0 (6)

u (±∞, t) = 0, t > 0

u(x, 0) = u0(x), x ∈ (−∞,∞)

The numerical solution is represented by c(t) = (c0(t), ..., cN−1(t))
T , the coef-

ficients of the truncated expansion

uN (x) =
N−1
∑

n=0

cn(t)φn(x) (7)

where x are the Gauss-Hermite nodes. From (6) we obtain the differential

system

c′(t) = −D3c(t) − T diag(w)
[

(T Tc) ·
(

T TDc
)]

, (8)

c(0) = T diag(w)u0(x). (9)
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where (v1, ..., vN )T · (w1, ..., wN )T = (v1w1, ..., vNwN )T . The equation (6) has

the general form

∂u

∂t
= Lu+ N [u] (10)

where L is the linear part and N is the nonlinear part. The differential system

for the coefficients has the general form

c′ (t) = Lc (t) + N [c (t)] (11)

and it is a stiff system, with a sparse matrix L. We consider only matrices L
with large and imaginary eigenvalues (the KdV equation case) or with large

and negative eigenvalues.

In order to avoid the small time step imposed by explicit integrators, we

will use an exponential time differencing integrator for (11), that is an exact

method when N = constant.

If we multiply (11) by the exponential matrix e−Lt as an integrating factor,

we obtain
d

dt

(

e−Ltc (t)
)

= e−LtN [c (t)]

or, by integrating between time levels tn and tn+1 and denoting cn = c(tn),

e−Ltn+1cn+1 − e−Ltncn =

∫ tn+1

tn

e−LτN [c (τ)] dτ.

Finally we obtain

cn+1 = eLhcn +

∫ h

0
e−L(τ−h)N [c (tn + τ)] dτ,

where h = tn+1 − tn is the time step.

Now we approximate N [c (tn + τ)] by a polynomial in τ and do the integral

exactly. For simplicity, assuming N [c (tn + τ)] = constant = N [c (tn)] = Nn

we obtain

cn+1 = eLhcn +
(

eLh − I
)

L−1Nn

where I is the N × N identity matrix. Denoting by Φ1(z) = (ez − 1) /z, we

obtain the explicit exponential time differencing Euler method,

cn+1 = eLhcn + hΦ1(Lh)Nn.
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Assuming N [c (tn + τ)] = constant = N [c (tn + h)] = Nn+1 we obtain the

implicit exponential time differencing Euler method,

cn+1 = eLhcn + hΦ1(Lh)N [cn+1] .

These methods can be combined into a symmetric exponential integrator

c =eL
h

2 cn +
h

2
Φ1(L

h

2
)N [c] , (12)

cn+1 = eL
h

2 c +
h

2
Φ1(L

h

2
)N [c] ,

n = 0, 1, ..., c0 = c(0)

and we refer to [3] for the properties of the symmetric exponential integrators

and to [1] for higher order exponential integrators and MATLAB implemen-

tation.

In order to solve the first (implicit) relation with respect to c

c = f(c) :=eL
h

2 cn +
h

2
Φ1(L

h

2
)N [c]

we can calculate the fixed point iterations

c[k+1]=eL
h

2 cn +
h

2
Φ1(L

h

2
)N

[

c[k]
]

, c[0] = cn.

The iteration error err[k] = c[k] − c verifies

err[k+1] =
h

2
Φ1(L

h

2
)
(

N
[

c[k]
]

−N [c]
)

≈ h

2
Φ1(L

h

2
)N ′ [c] err[k].

For the KdV equation we have

N [c] = −T diag(w)
[

(T T c) ·
(

T ′Dc
)]

so that

N ′ [c] err[k] = −T diag(w)
[

T Tc·T TD err[k] + T TDc·T T err[k]
]

=

= −T diag(w)
[

diag(T Tc)T TD + diag(T TDc)T T
]

err[k].

For a fixed spatial discretization and a bounded solution c(t), N ′ [c] is

bounded, the norm of Φ1(Lh
2 ) is bounded by 1 and then, for a sufficiently

small time step h, c[k] converges toward c and the relations (12), (7) give the

approximate solution at the time level tn+1.
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4. Numerical experiments

The above algorithm was tested on the KdV equation with a concrete initial

condition

∂u

∂t
+
∂3u

∂x3
+ 6u

∂u

∂x
= 0, x ∈ (−∞,∞) , t > 0 (13)

u(±∞, t) = 0, u(x, 0) = 2sech2(x)

with the exact solution u(x, t) = 2sech2(x− 4t). We choose the time interval

[0, 4] with the time step h = 0.001 and N = 256. At each time level, 4

fixed point iterations are necessary to obtain
∥

∥c[4] − c[3]
∥

∥ ≤ 10−7. Finally, the

global error between the exact and numerical solution is less than 3 × 10−4.

The KdV equation has as time invariants

I1 =

∫ ∞

−∞
u(x, t)dx, I2 =

∫ ∞

−∞
u2(x, t)dx, I3 =

∫ ∞

−∞
(u2

x − u3)dx.

For this example we obtain

I1 ∈ [3.999984842240054, 4.000000878927037]

I2 ∈ [5.333333308695872, 5.333333333326634]

I3 ∈ [−4.266700574817008,−4.266665604040662]

which confirm the qualities of the algorithm. We remark that the algorithm

is stable even for h = 0.01 but in this case the global error is about 0.05 and

higher order exponential integrators must be used.

As a second test we take a nonlinear superposition of two solitons again for

the KdV equation (13). We use the exact solution [2]

u(x, t)=−
2 (b1 − b2)

[

b1sech
2

(

√

b1
2 (x− 2tb1)

)

+ b2csch
2

(

√

b2
2 (x− 2tb2)

)]

[

−
√

2b2coth

(

√

b2
2 (x− 2tb2)

)

+
√

2b1tanh

(

√

b1
2 (x− 2tb1)

)]2

for b1 = 0.5 and b2 = 1. For the numerical calculation we take the initial

condition u(x, 0) from this exact solution.

We choose the time interval [−4, 4] with the time step h = 0.01 and

N = 256. At each time level 6 fixed point iterations are necessary to ob-

tain
∥

∥c[6] − c[5]
∥

∥ ≤ 10−7. Finally, the global error between the exact and

numerical solution is less than 8 × 10−4 and
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I1 ∈ [4.828410267676169, 4.828462604082842].

Figure 1 shows a plot of the numerical solution, figure 2 contains the first 100

coefficients of the solution at t = 4 and figure 3 shows the error at t = 4.
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Figure 1. Numerical solution for nonlinear superposition of

two solitons

The pseudospectral algorithm using DMS [8] does not work for N = 256

(the differentiation matrix is ”singular, close to singular or badly scaled”). If

N = 180 the computing time for one time-step is 0.0030 sec for our spectral

Hermite method while DMS needs 0.0034 sec, i.e. 13% more computing time.

As a final conclusion, we appreciate that the presented algorithm is a useful

algorithm for partial differential evolution equations on unbounded domains

with soliton type solutions, taking into account the fact that the methods

for calculating analytical solutions are difficult to apply for arbitrary initial

conditions. Our algorithm acts directly on the equation on the whole real

line, without imposing any unnatural boundary conditions. The combination

between the spectral Hermite method (formulated in spectral space) and the
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Figure 2. The first 100 coefficients of the solution at t = 4
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Figure 3. The error at t = 4

exponential integrators (for the resulting differential system) give an accurate,

fast and stable algorithm with a reasonable time step and spatial grid.
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