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1. Introduction and preliminaries

We first review needed definitions. Let M be a subset of a metric space
(X, d). We shall use N to denote the set of positive integers, cl(S) to denote
the closure of a set S and wcl(S) to denote the weak closure of a set S. A
mapping T : M → M is called an I-contraction if, there exists 0 ≤ k < 1
such that d(Tx, Ty) ≤ k d(Ix, Iy) for any x, y ∈ M . If k = 1, then T is called
f -nonexpansive. Let I, T : M → M be mappings. A point x ∈ M is a coinci-
dence point (common fixed point) of I and T if Ix = Tx (x = Ix = Tx).
The set of coincidence points of I and T is denoted by C(I, T ). The set
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OT (x) = {x, Tx, T 2x, ...} is called the orbit of T relative to x. The pair {I, T}
is called (1) commuting if TIx = ITx for all x ∈ M ; (2) R-weakly commuting
[23] if for all x ∈ M there exists R > 0 such that d(ITx, TIx) ≤Rd(Ix, Tx); (3)
compatible [17] if limn d(TIxn, ITxn) = 0 whenever {xn} is a sequence such
that limn Txn = limn Ixn = t for some t in M ; (4) weakly compatible if they
commute at their coincidence points, i.e.,if ITx = TIx whenever Ix = Tx;
(5) pointwise R-weakly commuting [23] if given x ∈ X, there exists R > 0
such that d(ITx, TIx) ≤ Rd(Ix, Tx). The definition implies that pointwise
R-weakly commuting maps commute at their coincidence points. The con-
verse is also true. Thus pointwise R-weak commutativity of I and T at their
coincidence points is equivalent to weak compatibility of I and T [22]. If I

and T are compatible and do have a coincidence point, I and T are called [19]
nontrivially compatible. The set M of a normed space X is called q-starshaped
with q ∈ M if the segment [q, x] = {(1−k)q+kx : 0 ≤ k ≤ 1} joining q to x, is
contained in M for all x ∈ M . Suppose that M is q-starshaped with q ∈ F (I)
and is both T - and I-invariant. Then T and I are called (6) R-subweakly
commuting on M (see [21,25]) if for all x ∈ M, there exists a real number
R > 0 such that d(ITx, TIx) ≤ Rdist(Ix, [q, Tx]); (7) Cq-commuting [3,15] if
ITx = TIx for all x ∈ Cq(I, T ), where Cq(I, T ) = ∪{C(I, Tk) : 0 ≤ k ≤ 1}
and Tkx = (1−k)q+kTx. Clearly, Cq-commuting maps are weakly compatible
but not conversely in general (see for details [3,19]). The mapping T : M → M

is called demiclosed at 0 if for every sequence {xn} ∈ M such that {xn} con-
verges weakly to x and {Txn} converges strongly to 0, we have Tx = 0. The
mapping T : M → M is said to satisfy condition (C) [19] if A ∩ F (T ) 6= ∅
for any nonempty T -invariant closed set A ⊂ M . A Banach space X satisfies
Opial’s condition if for every sequence {xn} in X weakly convergent to x ∈ X,

the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for all y 6= x.

In 1995, Jungck and Sessa [20] extended the results of Singh [27,28], Smoluk
[30] and Subrahmanyam [31] to the pair of commuting maps. More recently,
Shahzad [25,26], Hussain and Jungck [12], Hussain et al. [14], O’Regan and
Shahzad [21], Jungck and Hussain [19] and O’Regan and Hussain [22] fur-
ther extended the above mentioned results to R-subweakly commuting and
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compatible maps. The aim of this paper is to establish common fixed point
theorems for weakly compatible generalized I-contractions with respect to a
comparison function φ (see [4] p. 43-44). As applications, certain common
fixed point and invariant approximation results for Cq-commuting and com-
patible maps are derived. Our results contain properly the recent results of
Al-Thagafi and Shahzad [3] and Shahzad [25,26] and unify and extend the
results of Agarwal et al. [1], Al-Thagafi [2], Berinde [5], Boyd and Wong [6],
Carbone, Rhoades and Singh [7], Ciric [8], Daffer and Kaneko [9], Hussain
[10], Hussain and Berinde [11], Hussain and Khan [13], Hussain, O’Regan and
Agarwal [14], Hussain and Rhoades [15], Jungck [16,18], Jungck and Sessa
[19], O’Regan and Hussain [22], Pant [23], Sahab et al. [24], Singh [27,28],
Subrahmanyam [31], and many others.

2. Main results

We begin with a result which extends and improves Theorem 2.2 in [1],
Theorems 2.1 in [2,3], Theorem 1 in [7], Theorem 2.4 in [9], Theorem 1 in [23]
and contains main results of Boyd and Wong [6], Ciric [8] and Jungck [16] as
special cases.
Theorem 2.1. Let M be a subset of a metric space (X, d), and I and T be
weakly compatible self-maps of M . Assume that clT (M) ⊂ I(M), clT (M) is
complete, and there exists a continuous nondecreasing function φ : [0,∞) →
[0,∞) satisfying φ(z) < z for z > 0 such that for x, y ∈ M , we have

d(Tx, Ty)≤φ

(
max

{
d (Ix, Iy) , d (Ix, Tx) , d (Iy, Ty) ,

1
2

[d (Ix, Ty) + d(Iy, Tx)]
})

.

Then F (I) ∩ F (T ) 6= ∅.
Proof. Fix x0 ∈ M arbitrarily. As T (M) ⊂ I(M), one can choose x1 in M ,
such that Tx0 = Ix1. Consider now Tx1. Since Tx1 ∈ I(M), there exists
x2 in M such that Tx1 = Ix2. By induction(see proof of Theorem 1[5]),
we construct a sequence {xn} of points in M such that Txn = Ixn+1 for
n = 0, 1, 2, 3, .... We claim that {Ixn} is a Cauchy sequence. To prove our
claim, we follow arguments of Agarwal et al. [1]. We first show that

d (Ixn, Ixn+1) ≤ φ (d (Ixn−1, Ixn)) for n ∈ {1, 2, 3, ...} . (2.1)
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Notice that

d(Ixn, Ixn+1) = d(Txn−1, Txn)

≤ φ[max{d(Ixn−1, Ixn), d(Ixn−1, Txn−1), d(Ixn, Txn),
1
2
[d(Ixn−1, Txn) + d(Ixn, Txn−1)]}]

≤ φ[max{d(Ixn−1, Ixn), d(Ixn−1, Ixn), d(Ixn, Ixn+1),
1
2
[d(Ixn−1, Ixn+1) + d(Ixn, Ixn)]}]

≤ φ[max{d(Ixn−1, Ixn), d(Ixn, Ixn+1),
1
2
[d(Ixn−1, Ixn) + d(Ixn, Ixn+1)]}]

Let

ηn =max
{
d (Ixn−1, Ixn) , d (Ixn, Ixn+1) ,

1
2

[d (Ixn−1, Ixn) + d (Ixn, Ixn+1)]
}

.

If ηn = d (Ixn−1, Ixn) then clearly (2.1) holds. If ηn = d (Ixn, Ixn+1) , then
d (Ixn, Ixn+1) = 0 since if not

d (Ixn, Ixn+1) ≤ φ (d (Ixn, Ixn+1)) < d (Ixn, Ixn+1)

a contradiction. Thus d (Ixn, Ixn+1) = 0 and (2.1) is immediate. Thus in all
cases (2.1) is true.

Next we show {Ixn} is a Cauchy sequence. Suppose it is not true. Then
we can find a δ > 0 and two sequences of integers {m (k)} , {n (k)} ,m(k) >

n(k) ≥ k with

rk = d
(
Ixn(k), Ixm(k)

)
≥ δ for k ∈ {1, 2, 3, 4, . . . , } . (2.2)

We may also assume that d
(
Ixm(k)−1, Ixn(k)

)
< δ by choosing m (k) to be

the smallest number exceeding n(k) for which (2.2) holds. Now (2.1) and (2.2)
imply

δ ≤ rk ≤ d
(
Ixm(k), Ixm(k)−1

)
+ d

(
Ixm(k)−1, Ixn(k)

)
≤ φm(k)−1(d (Ix1, Ix0)) + δ

and so lim
k→∞

rk = δ (note lim
n→∞

φn (a) = 0 for any a > 0, since if we let a > 0

and an = φn (a) then an = φ (an−1) ≤ an−1, thus an ↓ β (for some β), and
since β = φ(β) so β = 0 ). Also since

δ ≤ rk ≤ d
(
Ixn(k), Ixn(k)+1

)
+ d

(
Ixm(k)+1, Ixm(k)

)
+ d(Ixn(k)+1, Ixm(k)+1),
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we have from (2.1) that

δ ≤ rk ≤ φn(k)(d(Ix0, Ix1)) + φm(k)(d(Ix0, Ix1)) + d(Txn(k), Txm(k)).

Next notice that

d
(
Txn(k), Txm(k)

)
≤ φ[max{d(Ixn(k), Ixm(k)),

d(Ixn(k), Ixn(k)+1), d(Ixm(k), Ixm(k)+1),

1
2
[d(Ixn(k), Ixm(k)+1) + d

(
Ixm(k), Ixn(k)+1

)
]}]

≤ φ[max{rk, φ
n(k)(d(Ix0, Ix1)), φm(k)(d(Ix0, Ix1)),

1
2
[2rk + d(Ixn(k), Ixn(k)+1) + d(Ixm(k), Ixm(k)+1)]}]

≤ φ[max{rk, φ
n(k)(d(Ix0, Ix1)), φm(k)(d(Ix0, Ix1)),

rk +
1
2
φn(k)(d(Ix0, Ix1)) +

1
2
Φm(k)(d(Ix0, Ix1))}]

≤ φ
(
rk + φn(k)(d(Ix0, Ix1)) + φm(k)(d(Ix0, Ix1))

)
Thus we have

δ ≤ rk ≤ φn(k) (d (Ix0, Ix1)) + φm(k)(d (Ix0, Ix1))

+ φ
(
rk + φn(k)(d(Ix0, Ix1)) + φm(k)(d(Ix0, Ix1))

)
and let k → ∞ to obtain (use limk→∞ rk = δ and limn→∞ φn (a) = 0 for any
a > 0) δ ≤ φ (δ). This is a contradiction since φ (z) < z for z > 0 . Thus
{Ixn} is a Cauchy sequence and hence {Txn} is a Cauchy sequence. It follows
from the completeness of clT (M) that Txn → w for some w ∈ M and hence
Ixn → w as n → ∞. Consequently, limn Ixn = limn Txn = w ∈ clT (M) ⊂
I(M). Thus w = Iy for some y ∈ M . Notice that for all n ≥ 1, we have

d(w, Ty) ≤ d(w, Txn) + d(Txn, T y) ≤ d(w, Txn)

+φ(max{d(Ixn, Iy), d(Txn, Ixn), d(Ty, Iy),
1
2
[d(Ty, Ixn) + d(Txn, Iy)]}).

Letting n →∞, we obtain Iy = w = Ty. We now show that Ty is a common
fixed point of I and T . Since I and T are weakly compatible and Iy = Ty, we
obtain by the definition of weak compatibility that ITy = TIy.

Thus we have T 2y = TIy = ITy and then we get successively d(TTy, Ty) ≤

φ(max{d(ITy, Iy), d(ITy, TTy), d(Iy, Ty),
1
2
[d(ITy, Ty) + d(Iy, TTy)]})
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≤ φ(d(ITy, Ty)).

Hence TTy = Ty and so Ty = TTy = ITy. This implies that Ty is a common
fixed point of T and I. Hence F (I) ∩ F (T ) 6= ∅. �

In certain circumstances, it is possible to remove the condition that φ is
nondecreasing in Theorem 2.1. We prove the following extension of Theorem
2.3 [1], Corollary 2.2 [18] and Theorem 1 [23].
Theorem 2.2. Let M be a subset of a metric space (X, d), and I and T be
weakly compatible self-maps of M . Assume that clT (M) ⊂ I(M), clT (M) is
complete, and there exists a continuous function φ : [0,∞) → [0,∞) satisfying
Φ(z) < z for z > 0 such that

d(Tx, Ty) ≤ φ(max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty)}).

Then F (I) ∩ F (T ) 6= ∅.
Proof. Fix x0 ∈ M . As in the proof of Theorem 2.1, we construct a sequence
Txn = Ixn+1 for n = 0, 1, 2, 3, ....

We claim that {Ixn} is a Cauchy sequence. To prove our claim we will need
to prove

αn = d (Ixn+1, Ixn) = d (Txn, Txn−1) → 0 as n →∞ (2.3)

To see (2.3) notice that

αn = d (Ixn+1, Ixn) = d (Txn, Txn−1)

≤ φ (max {d (Ixn, Ixn−1) , d (Ixn, Txn) , d (Ixn−1, Txn−1)})

= φ (max {d (Ixn, Ixn−1) , d (Ixn, Ixn+1) , d (Ixn, Ixn−1)})

= φ (max {d (Ixn, Ixn−1) , d (Ixn, Ixn+1)}) = φ (max {αn−1, αn}) .

We now show that

αn ≤ φ (αn−1) . (2.4)

If max {αn−1, αn} = αn−1 then clearly (2.4) is true, whereas if we have
max {αn−1, αn} = αn, then

αn ≤ φ (αn) and so αn = 0, so (2.4) is immediate. Now since αn ≤
φ (αn−1) ≤ αn−1, there exists α ≥ 0 with αn ↓ α. Now αn ≤ φ (αn−1)
implies α ≤ φ (α) so α = 0, and this establishes (2.3). Suppose our
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claim is false then we can find a δ > 0 and two sequences of integers
{m (k)} , {l (k)} ,m (k) > l (k) with

rk = d(Ixl(k), Ixm(k)) ≥ δ for k ∈ {1, 2, 3, 4, ...} (2.5)

We may also assume d
(
Ixm(k)−1, Ixl(k)

)
< δ by choosing m(k) to be small-

est number exceeding l(k) for which (2.5) holds. Now

δ ≤ rk ≤ d(Ixm(k)−1, Ixl(k)) + d(Ixm(k), Ixm(k)−1) < δ + αm(k)−1,

from which with (2.3) we get

lim
k→∞

rk = δ. (2.6)

Note that

δ ≤ rk ≤ d
(
Ixl(k), Ixl(k)+1

)
+ d

(
Ixl(k)+1, Ixm(k)+1

)
+ d

(
Ixm(k)+1, Ixm(k)

)
= αl(k) + αm(k) + d

(
Txl(k), Txm(k)

)
≤ αl(k) + αm(k) + φ(max{d

(
Ixl(k), Ixm(k)

)
, d
(
Ixl(k), Txl(k)

)
,

d(Ixm(k), Txm(k))})

= αl(k) + αm(k)

+φ
(
max

{
d
(
Ixl(k), Ixm(k)

)
, d
(
Ixl(k), Ixl(k)+1

)
, d
(
Ixm(k), Ixm(k)+1

)})
= αl(k) + αm(k) + φ

(
max

{
rk, αl(k), αm(k)

})
,

and let k →∞ to obtain (using 2.3 and 2.6) δ ≤ φ (δ). Thus δ = 0, which is a
contradiction. As a result our claim is true. It follows from the completeness
of clT (M) that Txn → w for some w ∈ M and hence Ixn → w as n → ∞.
Consequently, limn Ixn = limn Txn = w ∈ clT (M) ⊂ I(M). Thus w = Iy for
some y ∈ M . The analysis similar to the proof of Theorem 2.1 implies that
F (I) ∩ F (T ) 6= ∅.

The first part of the proof of Theorem 2.2 establishes the following corollary.
Corollary 2.3. Let M be a subset of a metric space (X, d), and I and T be
self-maps of M . Assume that clT (M) ⊂ I(M), clT (M) is complete, and there
exists a continuous function φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0
such that for x, y ∈ M , we have

d(Tx, Ty) ≤ φ(max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty)}).

Then C(I, T ) 6= ∅.
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The following result extends and improves Theorem 2.1 of [2,3,15,22], The-
orem 1 [5] and Lemma 2.1 of [21,25].
Theorem 2.4. Let M be a subset of a metric space (X, d), and I and
T be weakly compatible self-maps of M with bounded orbits. Assume that
clT (M) ⊂ I(M), clT (M) is complete, and there exists a continuous nonde-
creasing function φ : [0,∞) → [0,∞) satisfying φn(z) → 0 for each z > 0 such
that

d(Tx, Ty) ≤ φ(max{d(Ix, Iy), d(Ix, Tx), d(Iy, Ty), d(Tx, Iy), d(Ty, Ix)}).

Then F (I) ∩ F (T ) 6= ∅.
Proof. Fix x0 ∈ M . As in the proof of Theorem 2.1, we construct a sequence
Txn = Ixn+1 for n ∈ N.

Then by following the proof of Theorem 1 [5], we get that {Ixn} is a Cauchy
sequence. It follows from the completeness of clT (M) that Txn → w for some
w ∈ M and hence Ixn → w as n →∞. Consequently, limn Ixn = limn Txn =
w ∈ clT (M) ⊂ I(M). Thus w = Iy for some y ∈ M . The analysis similar to
the proof of Theorem 2.1 implies that F (I) ∩ F (T ) 6= ∅. �

As an application of Theorem 2.2, we obtain the following generalization of
the corresponding results in [2,3,14,24-28].
Theorem 2.5. Let I and T be self-maps on a q-starshaped subset M of a
normed space X where q ∈ F (I) and I is affine. Suppose that there exists a
continuous function φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0 such
that for x, y ∈ M , we have

‖Tx− Ty‖ ≤ 1
k
φ(‖Ix− Iy‖) (2.7)

for each k ∈ (0, 1). If I and T are Cq-commuting, then F (T ) ∩ F (I) 6= ∅,
provided one of the following conditions holds;

(i) cl(T (M)) ⊂ I(M), cl(T (M)) is compact and T is continuous,
(ii) X is complete, wcl(T (M)) ⊂ I(M), wcl(T (M)) is weakly compact, I is

weakly continuous and either I − T is demiclosed at 0 or X satisfies Opial’s
condition.

Proof. Define Tn : M → M by

Tnx = (1− kn)q + knTx
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for some q and all x ∈ M and a fixed sequence of real numbers kn(0 < kn < 1)
converging to 1. Then, for each n, cl(Tn(M)) ⊂ I(M) as M is q-starshaped,
cl(T (M)) ⊂ I(M), I is affine and Iq = q. As I and T are Cq-commuting and
I is affine with Iq = q, then for each x ∈ Cq(I, T ) we have:

ITnx = (1− kn)q + knITx = (1− kn)q + knTIx = TnIx.

Thus ITnx = TnIx for each x ∈ C(I, Tn) ⊂ Cq(I, T ). Hence I and Tn are
weakly compatible for all n. Also by (2.7),

‖Tnx− Tny‖ = kn‖Tx− Ty‖ ≤ kn(
1
kn

φ(‖Ix− Iy‖)) = φ(‖Ix− Iy‖)

for each x, y ∈ M .
(i) Since cl(T (M)) is compact, cl(Tn(M)) is also compact. By Theorem

2.3, for each n ≥ 1, there exists xn ∈ M such that xn = Ixn = Tnxn. The
compactness of cl(T (M)) implies that there exists a subsequence {Txm} of
{Txn} such that Txm → y as m → ∞. Then the definition of Tmxm implies
xm → y, so by the continuity of T we have Ty = y. Since T (M) ⊆ I(M),
there exists z ∈ M such that Iz = Ty = y. Also, for each m, we have

‖Txm − Tz‖ ≤ 1
km

φ(‖Ixm − Iz‖) =
1

km
φ(‖xm − y‖),

which, on letting m → ∞, implies on the basis of continuity of φ that Iz =
Ty = y = Tz. This implies that C(I, T ) is nonempty. Since I and T are weakly
compatible, we obtain Iy = ITz = TIz = Ty = y. Thus F (I) ∩ F (T ) 6= ∅.

(ii) The analysis in (i), and the completeness of wcl(Tn(M)) guarantee that
there exists xn ∈ M such that xn = Ixn = Tnxn. The weak compactness of
wcl(T (M)) implies that there exists a subsequence {xm} of {xn} such that
xm → y weakly as m →∞. As I is weakly continuous, Iy = y. Since {xm} is
bounded, km → 1, and

‖xm − Txm‖ = ‖Ixm − Txm‖ = ‖((1− km)q + kmTxm)− Txm‖

≤ (1− km)(‖q‖+ ‖Txm‖),

then ‖xm − Txm‖ → 0 as m → ∞. If I − T is demiclosed at 0, (I − T )y = 0
and hence y = Iy = Ty.
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Suppose that X satisfies Opial’s condition. If y 6= Ty, then

lim inf
m→∞

‖xm − y‖ < lim inf
m→∞

‖xm − Ty‖

≤ lim inf
m→∞

‖xm − Txm‖+ lim inf
m→∞

‖Txm − Ty‖

= lim inf
m→∞

‖Txm − Ty‖ ≤ lim inf
m→∞

1
km

φ(‖Ixm − Iy‖)

= φ(lim inf
m→∞

‖xm − y‖)

which is a contradiction to the property φ(z) < z for z > 0. Thus Iy = y = Ty

and hence F (I) ∩ F (T ) 6= ∅. �

For φ(t) = kt, t ∈ [0,∞), 0 < k < 1, from Theorem 2.5 we obtain:
Corollary 2.6 [3, Theorem 2.2-Theorem 2.4]. Let I and T be self-maps
on a q-starshaped subset M of a normed space X where q ∈ F (I) and I is
affine. Suppose that I and T are Cq-commuting and T is I-nonexpansive,
then F (T ) ∩ F (I) 6= ∅, provided one of the following conditions holds;

(i) cl(T (M)) ⊂ I(M), cl(T (M)) is compact and T is continuous,
(ii) X is complete, wcl(T (M)) ⊂ I(M), wcl(T (M)) is weakly compact, I is

weakly continuous and either I − T is demiclosed at 0 or X satisfies Opial’s
condition.

The classes of compatible and Cq-commuting maps are mutually disjoint.
For this let X = R with usual norm and M = [1,∞). Let I(x) = 2x − 1 and
T (x) = x2, for all x ∈ M . Let q = 1. Then M is q-starshaped with Iq = q

and Cq(I, T ) = [1,∞). Note that I and T are compatible maps and T satisfies
condition (C) but I and T are not Cq-commuting and hence not R-subweakly
commuting maps.
An application of Corollary 2.3 provides the following result for compatible
maps.
Theorem 2.7. Let I and T be self-maps on a q-starshaped subset M of a
normed space X where q ∈ F (I) and I is affine. Suppose that there exists a
continuous function φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0 such
that I and T satisfy (2.7). If I and T are continuous and compatible and T

satisfies condition (C), then F (T ) ∩ F (I) 6= ∅, provided one of the following
conditions holds;

(i) cl(T (M)) ⊂ I(M) and cl(T (M)) is compact,
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(ii) X is complete, wcl(T (M)) ⊂ I(M), wcl(T (M)) is weakly compact and
either I − T is demiclosed at 0 or X satisfies Opial’s condition.
Proof. (i) Let {kn} and {Tn} be defined as in Theorem 2.5. The analysis in
Theorem 2.5 (using Corollary 2.3 above) guarantees that there exists xn ∈ M

such that Ixn = Tnxn (see for details [19]). The compactness of cl(T (M))
implies that there exists a subsequence {Txm} of {Txn} such that Txm → y

as m → ∞. Since km → 1, Ixm = (1 − km)q + kmTxm converges to y. Now
since I and T are continuous, TIxm → Ty and ITxm → Iy as m → ∞. By
the compatibility of I and T , we obtain Iy = Ty. Hence the pair {I, T} is
nontrivially compatible. Theorem 1.3 [19] guarantees that, F (I) ∩ F (T ) 6= ∅.

(ii) As in (i) there exists xn ∈ M such that Ixn = Tnxn. The weak com-
pactness of wcl(T (M)) implies that there exists a subsequence {xm} of {xn}
such that xm → y weakly as m → ∞. Since {xm} is bounded and km → 1,
so ‖Ixm − Txm‖ = ‖((1− km)q + kmTxm)− Txm‖ ≤ (1− km)(‖q‖+ ‖Txm‖)
converges to 0. If (I − T ) is demiclosed at 0 then (I − T )y = 0 and hence
Iy = Ty. Thus the pair {I, T} is nontrivially compatible and the conclusion
follows from Theorem 1.3 [19].

Suppose X satisfies Opial’s condition. If Iy 6= Ty, then

lim inf
m→∞

‖Ixm − Iy‖ < lim inf
m→∞

‖Ixm − Ty‖

≤ lim inf
m→∞

‖Ixm − Txm‖+ lim inf
m→∞

‖Txm − Ty‖

= lim inf
m→∞

‖Txm − Ty‖ ≤ lim inf
m→∞

1
km

φ(‖Ixm − Iy‖)

= φ(lim inf
m→∞

‖Ixm − Iy‖)

which is a contradiction to the property φ(z) < z for z > 0. Thus Iy = Ty.
Thus the pair {I, T} is nontrivially compatible and the conclusion follows from
Theorem 1.3 [19]. �

3. Concluding remarks

(3.1) Following the arguments as above and those in [1], we can prove Theorem
2.1 and Theorem 2.2 in the setup of gauge spaces.
(3.2) Theorem 2.1 can be used to find the solution of an operator equation of
the form Tx=Gx, under suitable conditions on G; consequently, Theorem 2
[7] is extended and improved.
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(3.3) Results similar to Theorems 2.5 and 2.7 for more general inequalities,

‖Tx− Ty‖ ≤ φ

(
max

{
‖Ix− Iy‖ , dist(Ix, [Tx, q]), dist(Iy, [Ty, q]),

1
2 [dist(Ix, [Ty, q]) + dist(Iy, [Tx, q])]

})
(2.8)

and

‖Tx− Ty‖ ≤ φ

(
max

{
‖Ix− Iy‖ , dist(Ix, [Tx, q]), dist(Iy, [Ty, q]),

dist(Ix, [Ty, q]), dist(Iy, [Tx, q])

})
(2.9)

can be obtained by applying our Theorems 2.1 and 2.4 respectively; which in
turn generalize the corresponding results in [12,19,21,22].
(3.4) As an application of Theorem 2.5, the analogue of all recent approxima-
tion results (Theorem 3.1-Theorem 4.4), due to Al-Thagafi and Shahzad [3]
and (Corollary 2.3-Corollary 2.10) due to O’Regan and Shahzad [21] can be
established for Cq-commuting pair {I, T} satisfying more general inequality
(2.7), or (2.8) or (2.9).
(3.5) As an application of Theorem 2.7, the analogue of all recent approxi-
mation results (Theorem 3.1-Theorem 4.4), due to Al-Thagafi and Shahzad
[3] and (Theorem 2.7-Theorem 2.10) due to Jungck and Hussain [19], can be
established for the compatible pair {I, T} satisfying inequality (2.7), or (2.8)
or (2.9).
(3.6) A subset M of a linear space X is said to have property (N) with respect
to T [11,14] if,

i) T : M → M ,
(ii) (1 − kn)q + knTx ∈ M , for some q ∈ M and a fixed sequence of real

numbers kn(0 < kn < 1) converging to 1 and for each x ∈ M.

A mapping I is said to be affine on a set M with property (N) if

I((1− kn)q + knTx) = (1− kn)Iq + knITx for each x ∈ M and n ∈ N.

Theorem 2.5-Theorem 2.7 remain valid, provided I is assumed to be surjec-
tive and the q-starshapedness of the set M is replaced by the property (N), in
the setup of p-normed space [11] and metrizable locally convex topological vec-
tor space (X, d) [14] where d is translation invariant and d(ax, ay) ≤ ad(x, y),
for each a with 0 < a < 1 and x, y ∈ X. Consequently, all of the results
of Hussain [10], Hussain and Berinde [11], Hussain, O’Regan and Agarwal
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[14], Hussain and Rhoades [15] and Theorem 2.2-Theorem 3.3 due to Hussain
and Khan [13] are improved and extended to the pair of Cq-commuting and
compatible maps. We leave details to the reader.
Acknowledgement. The authors would like to thank the referee for his/her
valuable suggestions to improve presentation of the paper.

References

[1] R.P. Agarwal, D. O’Regan and M. Sambandham, Random and deterministic fixed point

theory for generalized contractive maps, Appl. Anal., 83(2004), 711-725.

[2] M.A. Al-Thagafi, Common fixed points and best approximation, J. Approx. Theory,

85(1996), 318-323.

[3] M.A. Al-Thagafi and N. Shahzad, Noncommuting selfmaps and invariant approxima-

tions, Nonlinear Anal., 64(2006), 2778-2786.

[4] V. Berinde, Iterative Approximation of Fixed Points (Second edition), Lecture Notes in

Mathematics, 1912, Springer, Berlin, 2007.

[5] V. Berinde, A common fixed point theorem for quasi contractive type mappings, Ann.

Univ. Sci. Budapest, 46(2003), 81-90.

[6] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc.,

20(1969), 458-464.

[7] A. Carbone, B.E. Rhoades and S.P. Singh, A fixed point theorem for generalized con-

traction map, Indian J. Pure Appl. Math., 20(1989), 543-548.

[8] Lj.B. Ciric, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc.,

45(1974), 267-273.

[9] P.Z. Daffer and H. Kaneko, Applications of f-contraction mappings to nonlinear integral

equations, Bull. Inst. Math. Acad. Sinica, 22(1994), 69-74.

[10] N. Hussain, Common fixed point and invariant approximation results, Demonstratio

Math., 39(2006), 389-400.

[11] N. Hussain and V. Berinde, Common fixed point and invariant approximation results in

certain metrizable topological vector spaces, Fixed Point Theory and Appl., vol. 2006,

Article ID 23582, 1-13.

[12] N. Hussain and G. Jungck, Common fixed point and invariant approximation results for

noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl., 321(2006),

851-861.

[13] N. Hussain and A.R. Khan, Common fixed point results in best approximation theory,

Applied Math. Lett., 16(2003), 575-580.

[14] N. Hussain, D. O’Regan and R.P. Agarwal, Common fixed point and invariant approx-

imation results on non-starshaped domains, Georgian Math. J., 12(2005), 659-669.

[15] N. Hussain and B.E. Rhoades, Cq-commuting maps and invariant approximations, Fixed

Point Theory and Appl., 2006(2006), Article ID 24543, 1-9.



124 N. HUSSAIN, V. BERINDE AND N. SHAFQAT

[16] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976),

261-263.

[17] G. Jungck, Common fixed points for commuting and compatible maps on compacta,

Proc. Amer. Math. Soc., 103(1988), 977-983.

[18] G. Jungck, Coincidence and fixed points for compatible and relatively nonexpansive

maps, Int. J. Math. Math. Sci., 16(1993), 95-100.

[19] G. Jungck and N. Hussain, Compatible maps and invariant approximations, J. Math.

Anal. Appl., 325(2007), 1003-1012.

[20] G. Jungck and S. Sessa, Fixed point theorems in best approximation theory, Math.

Japon., 42(1995), 249-252.

[21] D. O’Regan and N. Shahzad, Invariant approximations for generalized I-contractions,

Numer. Func. Anal. Optimiz., 26(2005), 565-575.

[22] D. O’Regan and N. Hussain, Generalized I-contractions and pointwise R-subweakly com-

muting maps, Acta Math. Sinica, 23(2007), 1505-1508.

[23] R.P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl.,

188(1994), 436-440.

[24] S.A. Sahab, M.S. Khan and S. Sessa, A result in best approximation theory, J. Approx.

Theory, 55(1988), 349-351.

[25] N. Shahzad, Invariant approximations and R-subweakly commuting maps, J. Math.

Anal. Appl., 257(2001), 39-45.

[26] N. Shahzad, On R-subweakly commuting maps and invariant approximations in Banach

spaces, Georgian Math. J., 12(2005), 157-162.

[27] S.P. Singh, An application of fixed point theorem to approximation theory, J. Approx.

Theory, 25(1979), 89-90.

[28] S.P. Singh, Applications of fixed point theorems in approximation theory, in: V. Lak-

shmikantham (Ed.), Applied Nonlinear Analysis, Academic Press, New York, 1979,

389-394.

[29] S.P. Singh, B. Watson, and P. Srivastava, Fixed Point Theory and Best Approximation:

The KKM-Map Principle, Kluwer Academic Publishers, Dordrecht,1997.

[30] A. Smoluk, Invariant approximations, Mat. Stos., 17(1981), 17-22.

[31] P.V. Subrahmanyam, An application of a fixed point theorem to best approximation, J.

Approx. Theory, 20(1977), 165-172.

Received: January 4, 2007; Accepted: July 19, 2008.


