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1. Introduction

Our starting point in this paper consists of some interesting results of L-J.
Lin, Z-T. Yu, Q.H. Ansari and L-P. Lai (see [7]) and the seminal paper [8]
of S. Park. Actually, the main starting point of this paper (and of [7]) is a
theorem of Q.H. Ansari and J.C. Yao [2, Theorem 1], concerning the existence
of a fixed point for a family of multimaps in the Hausdorff topological vector
spaces setting.

Many mathematicians worked in the fixed point theory of multimaps defined
on product spaces. N.C. Yannelis and N.D. Prabhakar (1983), X.P. Ding,
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W.W. Kim and K.K. Tan (1992) X. Wu and S. Shen (1996), X. Wu (1997)
studied fixed point theorems for a family of multimaps defined on product
spaces, with compactness assumptions on the range sets. By using a partition
of unity, in 1998, K.Q. Lan and J. Webb obtained some fixed point theorems
for a family of multimaps on product spaces without compactness assumptions
on the domain and the range sets.

In this paper, using compactness hypothesis on the range sets, we give some
results concerning the fixed points of a family of multimaps defined on product
spaces. As an application, we solve some problems of nonempty intersection
for sets with nonempty sections.

Let I be an index set. Let also (Xi)i∈I be a family of convex sets, each in
a Hausdorff topological vector space. Write X =

∏
Xi

i∈I

and let (Ai)i∈I be a

family of subsets of X. Then, the problem of nonempty intersection for this
family is to find suitable conditions on (Ai)i∈I such that the intersection of
this family is nonempty.

When I is a finite set and X is compact, Ky Fan (1969) first imposed
a convexity and an openness condition on each Ai, which assures that the
intersection of the family (Ai)i∈I is nonempty. F.E. Browder (1968), using
his celebrated fixed point theorem, gave another proof of the above mentioned
Fan’s result. The result of Fan was improved by E. Tarafdar and H.B. Thomp-
son (1978) and, later, by E. Tarafdar (1982), but their fixed point technique
cannot be applied to treat the case when I is infinite. Fan’s result was ex-
tended for I an infinite set, by T.W. Ma (1969) and, later, by M.H. Shih and
K.K. Tan (1985) for noncompact settings.

In 1998, K. Lan and J. Webb and, independently, S. Park gave some results
concerning the intersection problem for an arbitrary (possible infinite) family
of sets.

It is well known that, for example, the intersection theorems for sets hav-
ing nonempty sections have applications in the minimax inequalities of von
Neumann type and in the game theory (for example the Nash’s equilibrium
point theorem is an immediate consequence of an intersection theorem). In
the last section of our paper, as an application of one of our theorems concern-
ing the intersection for sets with nonempty sections, we give a Nash-Ma type
equilibrium theorem, finding a solution for a system of variational inequalities.
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2. Preliminaries

In this section we recall some definitions and notations.
For a nonempty set X, 2X denotes the class of all subsets of X. A multimap

is a function T : X −→ 2Y (in another terminology a multimap is also known
as a set-valued function, a mapping, a map or a correspondence).

The biggest difference between functions and multimaps has to do with the
definitions of an inverse image:

a) the inverse image of a set A under a function f is the set {x : f (x) ∈ A};
b) for a multimap T : X −→ 2Y , the inverse of B by T is defined by

T−1 (B) = {x ∈ X : T (x) = B} .

There are two reasonable generalizations for the inverse of a set by a mul-
timap:

- the upper inverse of B by T is the set T+ (B) = {x ∈ X : T (x) ⊂ B}.
- the lower inverse of B by T is the set T− (B) = {x ∈ X : T (x) ∩B 6= ∅}.
Note that in this paper, we will use only the lower inverse of a set B by a

multimap T , but we will write T−1(B) instead of T−(B). We will denote also
T−1(y) instead of T−({y}). Therefore, x ∈ T−1(y) if and only if y ∈ T (x).

A multimap T : X −→ 2Y is nonempty-valued (convex-valued or compact-
valued) if the set T (x) is a nonempty (respectively convex, or compact), for
each x ∈ X.

The fiber of the multimap T : X −→ 2Y at the point y ∈ Y is the set
T−1 ({y}).

Recall that a real-valued function g : X −→ R, on a topological vector space,
is lower (respectively upper) semicontinuous if the set {x ∈ X : g (x) > r}
(respectively {x ∈ X : g (x) < r}) is open for each r ∈ R.

If X is a convex set in a vector space, then the function g : X −→ R is
concave if g (λx1 + (1− λ) x2) ≥ λg (x1) + (1− λ) g (x2), for each x1, x2 ∈ X

and λ ∈ [0, 1].

3. Collectively fixed point theorems

Our starting point in this section is a result of Q.H. Ansari and J.C. Yao
(see [2, Theorem 1]), concerning the existence of a fixed point for a family of
multimaps (see Corollary 3.1 below) in the following framework.
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Let I be an index set and for each i ∈ I, let Ei be a Hausdorff topological
vector space. Let (Xi)i∈I be a family of nonempty convex subsets with each
Xi in Ei. Let X =

∏
i∈I

Xi and E =
∏
i∈I

Ei.

In the result of Ansari and Yao, there are two families of multimaps (Si)i∈I

and (Ti)i∈I , related by the condition coSi (x) ⊆ Ti (x), for each i ∈ I and
x ∈ X.

Also, let us observe that imposing some conditions to the family (Si)i∈I , we
obtain a common fixed point for the family (Ti)i∈I .

The Ansari and Yao’s result was generalized in a certain sense, in 2003, by
L-J. Lin, Z-T. Yu, Q.H. Ansari and L.P. Lai (see [7, Theorem 3.1]). Inspired
by their result we formulated another generalization of the Ansari and Yao
result. In our first theorem, we have only a single family of multimaps, these
multimaps being nonempty-valued and convex-valued.

Theorem 1. For each i ∈ I, let Ti : X −→ 2Xi be a nonempty-valued and
convex-valued multimap (that is, for each x ∈ X, the set Ti (x) is a nonempty
convex subset of X ). Suppose that the following conditions hold:

1) for each i ∈ I, X can be covered with the interiors of all fibers of Ti, i.e.

X =
⋃ {

intXT−1
i (yi) : yi ∈ Xi

}
;

2) if X is not compact, and C ⊂ X is a nonempty compact set, assume
that for each i ∈ I and for each finite subset Fi of Xi, there exists a nonempty
compact convex set CFi in Xi, such that CFi ⊇ Fi and X\C can be covered
with the interiors of all fibers of Ti at the points of CFi, i.e.

X\C ⊆
⋃ {

intXT−1
i (yi) : yi ∈ CFi

}
.

Then, there exists x̃ = (x̃i)i∈I ∈ X, such that x̃i ∈ Ti (x̃), for each i ∈ I.

We omit the proof of this theorem, because it is not the subject of this paper.
Let us remark only that this proof (very technical but standard) follows the
ideea of the original theorem of Ansari and Yao, that is to use the partition of
unity subordinated to a finite subcovering of a compact product space and to
apply the Tychonoff’s fixed point theorem (”if X is a compact set in a locally
convex Hausdorff topological vector space and h : X −→ X is a continuous
function, then h has a fixed point” – see for example [9]).
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With understanding changes in the proof of Theorem 1 we can also prove
the following collectively fixed point theorem which generalizes [2, Theorem
1].

Theorem 2. For each i ∈ I, let Si, Ti : X −→ 2Xi be two nonempty valued
multimaps such that:

0) for each i ∈ I and each x ∈ X, coSi (x) ⊆ Ti (x);
1) for each i ∈ I, X can be covered with the interiors of all fibers of Si,

that is
X =

⋃ {
intXS−1

i (yi) : yi ∈ Xi

}
;

2) if X is not compact, and C ⊂ X is a nonempty compact set, assume
that for each i ∈ I and each finite subset Fi of Xi, there exists a nonempty
compact convex set CFi in Xi such that CFi ⊇ Fi and

X\C ⊆
⋃ {

intXS−1
i (yi) : yi ∈ CFi

}
.

Then there exists x̃ ∈ X such that x̃i ∈ Ti (x̃), for each i ∈ I.

Remark 1. Obviously, according to the condition 0), only Si must be a non-
empty-valued multimap.

As a simple consequence of Theorem 2 we obtain the following result:

Corollary 1. (see [2, Theorem 1]) For each i ∈ I, let Si, Ti : X −→ 2Xi

nonempty-valued multimaps such that:
0) for each i ∈ I and each x ∈ X, coSi (x) ⊆ Ti (x);
1) X =

⋃ {
intXS−1

i (yi) : yi ∈ Xi

}
;

2) if X is not compact, and C ⊂ X is a nonempty compact set, assume
that for each i ∈ I, there exists a nonempty compact convex subset Ci of Xi

such that
X\C ⊆

⋃ {
intXS−1

i (yi) : yi ∈ Ci

}
.

Then, there exists x̃ ∈ X such that x̃i ∈ Ti (x̃), for each i ∈ I.

Proof. For each i ∈ I and each finite subset Fi of Xi, we define CFi =
co (Ci ∪ Fi). Therefore, it follows that CFi ⊇ Fi and the set CFi is compact
and convex. Now we apply Theorem 2. �

Remark 2. If in the above theorems we suppose that I is a singleton set we
obtain corresponding results concerning fixed point theorems for a multimap.
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For example, from Theorem 2 we obtain:

Corollary 2. Let X be a nonempty convex set in a Hausdorff topological vector
space E and let C be a nonempty compact subset of X. Let S, T : X −→ 2X be
two nonempty-valued multimaps. Suppose that the following conditions hold:

0) for each x ∈ X, coS (x) ⊆ T (x);
1) X =

⋃ {
intXS−1 (y) : y ∈ X

}
;

2) if X is not compact, and C ⊂ X is a nonempty compact set, assume
that for every finite subset F of X, there exists a nonempty compact convex
subset CF of X such that CF ⊇ F and X\C ⊆

⋃ {
intXS−1 (y) : y ∈ CF

}
.

Then, there exists x̃ ∈ X such that x̃ ∈ T (x̃).

4. Intersection theorems for sets with nonempty sections

The collectively fixed point theorems can be reformulated to generalize var-
ious Neumann type intersection theorems for sets with nonempty sections.

Let I be an index set, having at least two elements. Let (Xi)i∈I be a family
of sets and let i ∈ I be fixed. Let X =

∏
j∈I

Xj and Xi =
∏

j∈I\{i}
Xj .

For A ⊂ X a nonempty set and xi ∈ Xi, let A
(
xi

)
={

yi ∈ Xi :
[
xi, yi

]
∈ A

}
be the set of the sections of A at xi, where

[
xi, yi

]
∈

Xi×Xi is the element of X having the ith coordinate yi, and, for j 6= i, having
its jth coordinate xi

j .

Definition 1. We say that the set A ⊆ X has nonempty sections if for any
i ∈ I and x ∈ X, the set A

(
xi

)
is nonempty.

In the following two definitions we introduce two new notions.

Definition 2. Let I be an index set, having at least two elements and, for
each i ∈ I, let Xi be a set in a Hausdorff topological vector space Ei. Let
X =

∏
i∈I

Xi and let A be a subset of X. If i ∈ I is a fixed index, we say that

the nonempty set D ⊆ X can be (A, i) sectioned with a common element of
Xi if there exists yi ∈ Xi such that

yi ∈
⋂ {

A
(
zi

)
: z ∈ D

}
(that is

[
zi, yi

]
∈ A, for each z ∈ D).
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Definition 3. Let I, Ei, Xi and X be as in the previous definition. Let M

be an arbitrary subset of X, and for each i ∈ I, let Ai and Li subsets of X,
and respectively of Xi. We say that M can be locally covered with a family
(Di)i∈I of open sets of X such that the set Di can be (Ai, i) sectioned with a
common element of Li, for each i ∈ I, if for each x ∈ M , there exists a family
of open sets (Di)i∈I in X, such that, for each i ∈ I, x ∈ Di and there exists
an element yi ∈ Li with

yi ∈
⋂ {

Ai

(
zi

)
: z ∈ Di

}
.

Examples.
1. If I,Ei, Xi, X and Ai are as in the frame of the Definition 3, for M = X

and Li = Xi (i ∈ I) and if we define the multimap Ti : X −→ 2Xi by

Ti (x) = Ai

(
xi

)
, for each x ∈ X,

then:
a) Ai

(
xi

)
6= ∅ if and only if Ti is nonempty-valued ;

b) Ai

(
xi

)
is convex if and only if Ti is convex-valued ;

c) Definition 3 is equivalent with the equality

X =
⋃ {

intT−1
i (yi) : yi ∈ Xi

}
(4.1)

We will prove “c)”. We fix i ∈ I. Then, for each x ∈ X, there exist yi ∈ Xi

and an open set Di ⊆ X such that x ∈ Di and yi ∈
⋂ {

Ai

(
zi

)
: z ∈ Di

}
,

that is yi ∈ Ti (z), for all z ∈ Di. Then, Definition 3 is equivalent with the
following: for each x ∈ X, there exist yi ∈ Xi and an open set Di ⊆ X such
that x ∈ Di ⊆ T−1

i (yi). It follows that x ∈
⋃ {

intT−1
i (yi) : yi ∈ Xi

}
.

2. Also, if I,Ei, Xi, X, Ai are in the frame of Definition 3, for C ⊂ X a
nonempty compact set, M = X\C and Li = Ci a nonempty compact convex
set in Xi, then Definition 3 is equivalent with the inclusion

X\C ⊆
⋃ {

intT−1
i (yi) : yi ∈ Ci

}
(4.2)

Note that the conditions (4.1) and (4.2) are used in the literature and,
therefore the notions defined in our Definition 2 and 3 seem to be useful.

Indeed, we will use these notions to solve “the problem of nonempty inter-
section”. The problem of nonempty intersection for the sets (Ai)i∈I (with Ai
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a subset of X, for each i ∈ I), having nonempty sections, asks when the set⋂
{Ai : i ∈ I} is nonempty.
The following result solves this problem applying Theorem 2 (a collectively

fixed point theorem).

Theorem 3. Let I be an index set, and, for each i ∈ I, let Xi be a nonempty
convex subset of a Hausdorff topological vector space Ei and let X =

∏
i∈I

Xi.

Let also C be a nonempty compact subset of X , and, for each i ∈ I, let Ai

and Bi be subsets of X , having nonempty sections. Suppose that:
0) for each i ∈ I, and each xi ∈ Xi, coBi

(
xi

)
⊆ Ai

(
xi

)
;

1) X can be locally covered with open sets which can be (Bi, i) sectioned
with a common element of Xi (i ∈ I), that is, for each i ∈ I, and x ∈ X,
there exists an element yi ∈ Xi and an open set Di ⊆ X, such that x ∈ Di

and yi ∈
⋂ {

Bi

(
zi

)
: z ∈ Di

}
;

2) if X is not compact, assume that X\C can be locally covered with open
sets which can be (Bi, i) sectioned with a common element in a nonempty
compact convex set CFi, associated to a finite set Fi ⊆ Xi (i ∈ I), that is,
for each i ∈ I and for each finite subset Fi of Xi, there exists a nonempty
compact convex subset CFi of Xi such that CFi ⊇ Fi and for each x ∈ X\C,
there exists yi ∈ CFi and an open subset Di of X , such that x ∈ Di and
yi ∈

⋂ {
Bi

(
zi

)
: z ∈ Di

}
.

Then,
⋂
{Ai : i ∈ I} 6= ∅.

Proof. We apply Theorem 2 with Si, Ti : X −→ 2Xi , the nonempty-valued
multimaps given by Si (x) = Bi

(
xi

)
and Ti (x) = Ai

(
xi

)
, for each x ∈ X(i ∈

I).
Then, for each i ∈ I, we have:
(0) for each x ∈ X, coSi (x) ⊆ Ti (x);
(1) for each i ∈ I, X =

⋃ {
intS−1

i (yi) : yi ∈ Xi

}
;

(2) for each i ∈ I and for each finite subset Fi of Xi, there exists a nonempty
compact convex subset CFi of Xi such that CFi ⊇ Fi and

X\C ⊆
⋃ {

intXS−1
i (yi) : yi ∈ CFi

}
.

Therefore, by the Theorem 2, there exists x̃ ∈ X such that x̃i ∈ Ti (x̃) =
Ai

(
x̃i

)
, for each i ∈ I. So, x̃ =

[
x̃i, x̃i

]
∈

⋂
{Ai : i ∈ I}. This completes the

proof. �
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Similarly, applying Corollary 1 instead of Theorem 2, we can prove the
following intersection type theorem.

Theorem 4. In the Theorem 3 we change the condition 2) as follows:
2’) if X is not compact, assume that X\C can be locally covered with open

sets which can be (Bi, i) sectioned with a common element in a nonempty
compact convex subset Ci of Xi (i ∈ I), that is, for each i ∈ I, there ex-
ists a nonempty compact convex subset Ci of Xi such that for each x ∈ X,
there exist yi ∈ Ci and an open subset Di of X, such that x ∈ Di and
yi ∈

⋂ {
Bi

(
zi

)
: z ∈ Di

}
.

Then,
⋂
{Ai : i ∈ I} 6= ∅.

5. An equilibrium theorem

Some results concerning the fixed point theory can be applied in the equi-
librium theory. For example, using our first intersection theorem and an idea
of S. Park (see [8, Theorem 8.2]), we can obtain a Nash-Ma type equilibrium
theorem (which, in its analitic form, gives a solution for a system of variational
inequalities).

Theorem 5. (Nash-Ma type equilibrium theorem) Let I be an index set hav-
ing at least two elements and, for each i ∈ I, let Xi be a nonempty compact
convex subset in a Hausdorff topological vector space. Let also X = Xi ×Xi,
where Xi =

∏
Xj

j∈I\{i}
, and, for each i ∈ I, let fi, gi : X −→ R be two functions.

Suppose that:
(1) gi (x) 6 fi (x), for each i ∈ I and x ∈ X;
(2) for each xi ∈ Xi, fi

[
xi, ·

]
is concave on Xi;

(3) for each xi ∈ Xi, gi

[
xi, ·

]
is upper semicontinuous on Xi;

(4) for each xi ∈ Xi, gi [·, xi] is lower semicontinuous on Xi;
(5) for any ε > 0, x ∈ X and yi ∈ Xi, if z ∈ X is such that gi

[
zi, yi

]
>

Mi (x) − ε, then gi

[
zi, yi

]
> Mi (z) − ε, where, for any x ∈ X, Mi (x) =

max
yi∈Xi

gi

[
xi, yi

]
; is the ”value function” corresponding to gi

[
xi, ·

]
.

Then, there exists x̃ ∈ X such that fi (x̃) > Mi (x̃) for any i ∈ I.

Proof. Firstly, we remark that the ”value function” Mi exists, according to
(3), because Xi is compact and we can apply [1, Theorem 2.43, p.44].

Now, for all ε > 0 and i ∈ I, we define the following sets:



108 RODICA-MIHAELA DĂNEŢ, IOAN-MIRCEA POPOVICI AND FLORICA VOICU

Aε,i = {x ∈ X : fi (x) > Mi (x)− ε}
Bε,i = {x ∈ X : fi (x) > Mi (x)− ε}

We will prove that the hypothesis of Theorem 3 are fulfilled. Indeed, the
sets Aε,i and Bε,i have nonempty sections, that is, for each x ∈ X,

Aε,i

(
xi

)
=

{
yi ∈ Xi :

[
xi, yi

]
∈ Aε,i

}
6= ∅

Bε,i

(
xi

)
=

{
yi ∈ Xi :

[
xi, yi

]
∈ Bε,i

}
6= ∅

(To prove this, we remark that there exists yi ∈ Xi such that

Mi (x)− ε < gi

[
xi, yi

]
6 fi

[
xi, yi

]
,

that is yi ∈ Bε,i

(
xi

)
and yi ∈ Aε,i

(
xi

)
, too.) Also, we have that coBε,i

(
xi

)
⊆

Aε,i

(
xi

)
, because Bε,i ⊆ Aε,i (from (1)) and the set Aε,i is convex (from (2)).

Let now i ∈ I and x ∈ X, fixed. There exists yi ∈ Xi such that

gi

[
xi, yi

]
> Mi (x)− ε.

Denote by Di the set
{
zi ∈ Xi : gi

[
zi, yi

]
> Mi (x)− ε

}
×Xi. This set is open,

according to (4). Obviously, x ∈ D and for each z ∈ Di, it follows that

gi

[
zi, yi

]
> Mi (x)− ε.

Then, using (5), we obtain that

gi

[
zi, yi

]
> Mi (z)− ε, that is yi ∈

⋂ {
Bε,i

(
zi

)
: z ∈ Di

}
.

Because X =
∏
i∈I

Xi is compact, we can apply Theorem 3, obtaining that⋂
i∈I

Aε,i 6= ∅, for each ε > 0. If x̃ε ∈ Aε,i, for each i ∈ I, it follows that

fi (x̃ε) > Mi (x̃ε) − ε. Because X is compact, there exists x̃ ∈ X such that
fi (x̃) > Mi (x̃) (see the same argument in the proof of Theorem 8.2 in [8] ; see
also [3,p.56]). �
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