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Abstract. We show that a projection applied to Browder’s and Halpern’s methods can find

the minimum-norm fixed point of a nonexpansive mapping. This supplements the results in

existing literature on iterative methods for finding fixed points of nonexpansive mappings.

An application to finding the minimum-norm solution of a convex minimization problem is

included.
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1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset
of H. Recall that a mapping T : C → C is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C.

A point x ∈ C is said to be a fixed point of T provided Tx = x. We will use
F (T ) to denote the set of fixed points of T ; that is, F (T ) = {x ∈ C : x = Tx}.
Note that F (T ) is always closed convex (but may be empty). A sufficient
condition that guarantees F (T ) 6= ∅ is that there is a point x ∈ C for which
the trajectory {Tnx} is bounded (for more details see the monograph [3].)
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Suppose that F (T ) 6= ∅. Then F (T ) is a nonempty closed convex subset of
a Hilbert space; hence there is a unique point x† ∈ F (T ) with the minimum-
norm property

‖x†‖ = min{‖x‖ : x ∈ F (T )}. (1.1)

In another word, x† is the metric (nearest point) projection of the origin onto
F (T ): x† = PF (T )(0). We here refer x† to as the minimum-norm fixed point
of T .

An interesting problem is how to find x† through an iterative method? To
the best of our knowledge, there is no direct investigation on this problem,
in general. Let us review the existing results which relate to this problem.
There are basically two methods: Browder’s (implicit) method and Halpern’s
(explicit) method.

Browder’s method [2]. Fix u ∈ C. For each t ∈ (0, 1), let xt be the unique
fixed point in C of the contraction from C into C:

Ttx = tu + (1− t)Tx, x ∈ C. (1.2)

Browder proved that
s− lim

t↓0
xt = PF (T )u. (1.3)

That is, the strong limit of {xt} as t → 0+ is the fixed point of T which is
closest from F (T ) to u.

Halpern’s method [4]. This is an iterative method. Again fix u ∈ C. For
a given sequence {tn} in (0,1) and an initial guess x0 ∈ C, define a sequence
{xn} by the recursive formula:

xn+1 = tnu + (1− tn)Txn, n ≥ 0. (1.4)

It is now known that this sequence {xn} converges in norm to the same limit
PF (T )u as Browder’s method provided the sequence {tn} satisfies the condi-
tions (C1), (C2), and either (C3) or (C4) (e.g., tn = 1/(n + 1)) as follows:

(C1) limn→∞ tn = 0;

(C2)
∞∑

n=1

tn = ∞;

(C3)
∞∑

n=1

|tn+1 − tn| < ∞;

(C4) lim
n→∞

(tn/tn+1) = 1.
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We notice that the above two methods can be used to find the minimum-
norm fixed point x† of T if 0 ∈ C. However, if 0 6∈ C, then neither Browder’s
nor Halpern’s method works any more since the contraction Ttx = (1− t)Tx

may be a nonself-mapping of C (so that Tt may fail to have a fixed point)
or the point (1 − tn)Txn may not belong to C (consequently, xn+1 may be
undefined).

In order to overcome the difficulties caused by possible exclusion of the
origin from C, we introduce the following two remedies:

For Browder’s method, we consider the contraction x 7→ PC((1 − t)Tx).
Since this contraction clearly maps C into C, it has a unique fixed point
which is still denoted by xt; thus

xt = PC((1− t)Txt). (1.5)

For Halpern’s method, we consider the following modification of (1.4)

xn+1 = PC((1− tn)Txn), n ≥ 0. (1.6)

It is easily seen that the sequence {xn} is well-defined (i.e., xn ∈ C for all n).
Note that if 0 ∈ C, then (1.5) and (1.6) are reduced to (1.2) and (1.4) with

u = 0, respectively.
The purpose of this paper is to prove that both implicit and explicit methods

(1.5) and (1.6) converge strongly to the minimum-norm fixed point x† of the
nonexpansive mapping T as t → 0+ and n → ∞, respectively (for (1.6),
we assume (C1), (C2), and either (C3) or (C4)). For recent convergence
studies on Browder’s and Halpern’s methods, the reader can consult Lions [5],
Marino-Xu [6], O’Hara-Pillay-Xu [7, 8], Reich [10], Wittmann [11], and Xu
[12, 13, 14, 15, 16, 17, 18].

2. Preliminaries

Let H be a real Hilbert space and let C be a closed convex subset of H. The
metric (or nearest point) projection PC from H onto C is defined as follows:
for each x ∈ H, PCx is the unique point in C with the property

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

Proposition 2.1. (Basic properties of projections.)

(i) 〈x− PCx, y − PCx〉 ≤ 0 for all x ∈ H and y ∈ C;
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(ii) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 for all x, y ∈ H.
(iii) ‖x− PCx‖2 ≤ ‖x− y‖2 − ‖y − PKC‖2 for all x ∈ H and y ∈ C

Lemma 2.2. (Demiclosedness Principle) (cf. [3, 9]) Let T : C → C be a
nonexpansive mapping with Fix(T ) 6= ∅. If {xn} is a sequence in C weakly
converging to x and if {(I−T )xn} converges strongly to y, then (I−T )x = y.
In particular, if y = 0, then x ∈ F (T ).

Lemma 2.3. Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + γnδn, n ≥ 0,

where {γn} is a sequence in (0,1) and {δn} is a sequence in R such that

(i)
∞∑

n=1

γn = ∞;

(ii) either
∞∑

n=1

γn|δn| < ∞ or lim supn→∞ δn ≤ 0.

Then lim
n→∞

an = 0.

The following notation is employed:

• xn → x means that xn → x strongly;
• xn ⇀ x means that xn → x weakly;
• ωw(xn) := {x : ∃xnj ⇀ x} is the weak ω-limit set of the sequence
{xn}.

3. Convergence results

Recall that we are concerned with the minimum-norm fixed point x† of a
nonexpansive mapping T : C → C, with C a nonempty closed convex subset
of a real Hilbert space H, and we assume F (T ) 6= ∅. In this section we present
two methods, one implicit and one explicit, to find x†.

3.1. Implicit method.

Theorem 3.1. Let H be a real Hilbert space, C a nonempty closed convex
subset of H, and T : C → C a nonexpansive mapping with F (T ) 6= ∅. For each
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t ∈ (0, 1), let xt be the unique fixed point in C of the contraction PC((1− t)T );
that is, xt is the unique solution of the fixed point equation (1.5). Then

s− lim
t↓0

xt = x†.

Proof. First we prove that (xt) is bounded. As a matter of fact, taking any
point p ∈ F (T ), we derive that

‖xt− p‖ = ‖PC((1− t)T )xt− p‖ ≤ ‖(1− t)Txt− p‖ = ‖(1− t)(Txt−Tp)− tp‖

≤ ‖(1− t)‖xt − p‖+ t‖p‖.
This implies that, for all t ∈ (0, 1),

‖xt − p‖ ≤ ‖p‖. (3.1)

So (xt) is bounded. Let M > 0 satisfy M ≥ max{‖xt‖, ‖Txt‖} for all t ∈ (0, 1).
We then find that

‖xt−Txt‖ = ‖PC((1−t)T )xt−Txt‖ ≤ ‖(1−t)Txt−Txt‖ = t‖Txt‖ ≤ tM → 0,

as t → 0. By applying Lemma 2.2 we get that ωw(xt) ⊂ F (T ); that is, if (tn)
is a null sequence in (0, 1) such that xtn ⇀ x̄, then x̄ ∈ F (T ).

Next set yt = (1− t)Txt. Then xt = PCyt and for x̃ ∈ F (T ) we deduce that

xt − x̃ = PCyt − x̃ = (yt − x̃) + PCyt − yt

= (1− t)(Txt − x̃) + t(−x̃) + (PCyt − yt).

Using xt− x̃ to make inner product from both sides of the above equation, we
get

‖xt − x̃‖2 = (1− t)〈Txt − x̃, xt − x̃〉+ t〈−x̃, xt − x̃〉+ 〈PCyt − yt, xt − x̃〉

≤ (1− t)‖xt − x̃‖2 + t〈−x̃, xt − x̃〉+ 〈PCyt − yt, PCyt − x̃〉.(3.2)

However, 〈PCyt − yt, PCyt − x̃〉 ≤ 0. It then follows from (3.2) that

‖xt − x̃‖2 ≤ 〈−x̃, xt − x̃〉. (3.3)

Now if x̄ ∈ ωw(xt) and xtn ⇀ x̄ for some null sequence (tn) in (0, 1). Then,
since x̄ ∈ F (T ), we may substitute x̄ for x̃ and tn for t in (3.3) to obtain that
xtn → x̄. Hence, (xt) is indeed relatively compact (as t → 0) in the norm
topology.
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Note that (3.3) is equivalent to

‖xt‖2 ≤ 〈xt, x̃〉. (3.4)

Hence,

‖xt‖ ≤ ‖x̃‖, t ∈ (0, 1), x̃ ∈ F (T ). (3.5)

This clearly implies that if x̄ ∈ ωw(xt) = ω(xt), then

‖x̄‖ ≤ ‖x̃‖ ∀x̃ ∈ F (T ).

Therefore, x̄ = x†, where x† is the minimum-norm fixed point of T (i.e.,
x† = arg minx∈F (T ) ‖x‖), and we conclude that xt → x† as t → 0. �

Corollary 3.2. Let H be a real Hilbert space, C a nonempty closed convex
subset of H such that 0 ∈ C, and T : C → C a nonexpansive mapping with
F (T ) 6= ∅. For each t ∈ (0, 1), let xt be the unique fixed point in C of the
contraction (1− t)T mapping C into C; that is, xt is the unique solution in C

of the fixed point equation xt = (1− t)Txt. Then

s− lim
t↓0

xt = x†.

3.2. Explicit method.

Theorem 3.3. Let H be a real Hilbert space, C a nonempty closed convex
subset of H, and T : C → C a nonexpansive mapping with F (T ) 6= ∅. Let
{tn} be a sequence in (0, 1) satisfying conditions (C1), (C2), and either (C3)
or (C4)) introduced in Section 1. Define a sequence {xn} according to the
recursive formula (1.6). Then

s− lim
n→∞

xn = x†.

Proof. We divide the proof into several steps.
(1) We prove that (xn) is bounded. Indeed, take a p ∈ F (T ) to deduce from

(1.6), that:

‖xn+1 − p‖ = ‖PC((1− tn)Txn)− p‖ ≤ ‖(1− tn)Txn − p‖

= ‖(1− tn)(Txn− p)− tnp‖ ≤ (1− tn)‖xn− p‖+ tn‖p‖ ≤ max{‖xn− p‖, ‖p‖}.

By induction, we get

‖xn − p‖ ≤ max{‖x0 − p‖, ‖p‖}, for all n ≥ 0.
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Hence (xn) is bounded. Let M > 0 such that M ≥ max{‖xn‖, ‖Txn‖} for all
n ∈ N.

(2) We show that ‖xn+1 − xn‖ → 0. We compute, using the fact that PC is
nonexpansive,

‖xn+1 − xn‖ = ‖PC((1− tn)Txn)− PC((1− tn−1)Txn−1)‖

≤ ‖(1−tn)Txn−(1−tn−1)Txn−1‖ = ‖(1−tn)(Txn−Txn−1)+(tn−1−tn)Txn−1‖

≤ (1− tn)‖xn − xn−1‖+ M |tn−1 − tn| (3.6)

= (1− tn)‖xn − xn−1‖+ Mtn|1− (tn−1/tn)|. (3.7)

Now applying Lemma 2.3 to either (3.6) (if (C3) holds) or (3.7) (if (C4) holds),
we find that ‖xn+1 − xn‖ → 0.

(3) We show that ωn(xn) ⊂ F (T ). Indeed, we have

‖xn−Txn‖≤‖xn+1−xn‖+‖xn+1−Txn‖=‖xn+1−xn‖+‖PC((1−tn)Txn)−Txn‖

= ‖xn+1 − xn‖+ tn‖Txn‖ ≤ ‖xn+1 − xn‖+ tnM → 0, as n → +∞.

It follows from Lemma 2.2 that ωn(xn) ⊂ F (T ).
(4) We prove that lim supn→∞〈x† − xn, x†〉 ≤ 0. To see this, we take a

subsequence {xn′} of {xn} such that

lim sup
n→∞

〈x† − xn, x†〉 = lim
n′→∞

〈x† − xn′ , x
†〉.

Since (xn) is bounded, we may assume without loss of generality that xn′ ⇀

x′ ∈ F (T ). Since x† = PF (T )(0), we obtain by Proposition 2.1(i) and from the
last equation

lim sup
n→∞

〈x† − xn, x†〉 = 〈x† − x′, x†〉 ≤ 0.

(5) Finally we prove that xn → x†. We compute

‖xn+1 − x†‖2 = ‖PC((1− tn)Txn)− x†‖2 ≤ ‖(1− tn)Txn − x†‖2

= ‖(1− tn)(Txn − x†)− tnx†‖2 = (1− tn)2‖Txn − x†‖2

+2tn(1− tn)〈Txn − x†,−x†〉+ t2n‖x†‖2 ≤ (1− tn)‖xn − x†‖2 + tnδn (3.8)

where

δn = 2(1− tn)〈Txn − x†,−x†〉+ tn‖x†‖2

= 2(1− tn)(〈Txn − xn,−x†〉+ 〈xn − x†,−x†〉) + tn‖x†‖2

≤ 2‖xn − Txn‖‖x†‖+ 2(1− tn)〈x† − xn, x†〉+ tn‖x†‖2.
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From steps 3 and 4, we get lim supn→∞ δn ≤ 0. Then we apply Lemma 2.3 to
(3.8) to get ‖xn − x†‖ → 0. This completes the proof. �

Corollary 3.4. Let H be a real Hilbert space, C a nonempty closed convex
subset of H such that 0 ∈ C, and T : C → C a nonexpansive mapping with
F (T ) 6= ∅. Let {tn} be sequence in (0, 1) satisfying conditions (C1), (C2), and
either (C3) or (C4)) introduced in Section 1. Define a sequence {xn} by

xn+1 = (1− tn)Txn, n ≥ 0.

Then

s− lim
n→∞

xn = x†.

4. An application

Consider the minimization problem

min
x∈C

ϕ(x) (4.1)

where C is a closed convex subset of a real Hilbert space H and ϕ : C → R is a
continuously Frechet differentiable convex function. Denote by S the solution
set of (4.1); that is,

S = {z ∈ C : ϕ(z) = min
x∈C

ϕ(x)}.

Assume S 6= ∅.
It is known that a point z ∈ C is a solution of (4.1) if and only if the

following optimality condition holds:

z ∈ C, 〈∇ϕ(z), x− z〉 ≥ 0, x ∈ C. (4.2)

(Here ∇ϕ(x) denotes the gradient of ϕ at x ∈ C.) It is also known that the
optimality condition (4.2) is equivalent to the following fixed point problem

z = Tγz, Tγ = PC(I − γ∇ϕ) (4.3)

where PC is the metric projection onto C and γ > 0 is any positive number.
Suppose now that the gradient ∇ϕ is Lipschitz continuous on C; that is,

there is a constant L > 0 such that

‖∇ϕ(x)−∇ϕ(y)‖ ≤ L‖x− y‖, x, y ∈ C. (4.4)
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It is then not hard to see that if 0 < γ < 2/L, the mapping Tγ is nonexpan-
sive. As a matter of fact, noticing the fact that the Lipschitz condition (4.4)
implies (see [1]) that the gradient ∇ϕ satisfies the inequality

〈x− y,∇ϕ(x)−∇ϕ(y)〉 ≥ 1
L
‖∇ϕ(x)−∇ϕ(y)‖2, x, y ∈ C, (4.5)

we derive that

‖Tγx−T γy‖2 =‖PC(I−γ∇ϕ)x−PC(I−γ∇ϕ)y‖2≤‖(x−y)−γ(∇ϕ(x)−∇ϕ(y))‖2

= ‖x− y‖2 − 2γ〈x− y,∇ϕ(x)−∇ϕ(y)〉+ γ2‖∇ϕ(x)−∇ϕ(y)‖2

≤ ‖x− y‖2 − γ

(
2
L
− γ

)
‖∇ϕ(x)−∇ϕ(y)‖2 ≤ ‖x− y‖2.

Hence, T γ is nonexpansive.
Using Theorems 3.1 and 3.3, we immediately arrive at the following result.

Theorem 4.1. Assume the objective function ϕ is continuously Frechet dif-
ferentiable and convex and its gradient ∇ϕ satisfies the Lipschitz condition
(4.4). Assume the solution set S of the minimization (4.1) is nonempty. Fix
γ such that 0 < γ < 2/L.

(i) For each t ∈ (0, 1), let xt be the unique solution to the fixed point
equation

xt = PC((1− t)PC(I − γ∇ϕ)xt). (4.6)

Then {xt} converges in norm to the minimum-norm solution of the
minimization (4.1).

(ii) Define a sequence {xn} via the recursive algorithm:

xn+1 = PC((1− tn)PC(I − γ∇ϕ)xn), (4.7)

where the sequence {tn} satisfies the conditions (C1), (C2), and either
(C3) or (C4) introduced in Section 1. Then {xn} converges in norm
to the minimum-norm solution of the minimization (4.1).

Proof. Replacing the mapping T in both (1.5) and (1.6) with the mapping
Tγ and noticing that the solution set S of (4.1) is precisely F (Tγ), we see that
the conclusions of Theorem 4.1 are immediate consequences of Theorems 3.1
and 3.3. �
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