VISCOSITY APPROXIMATION METHODS FOR STRONGLY POSITIVE AND MONOTONE OPERATORS

LU-CHUAN CENG1, ABDUL RAHIM KHAN2, QAMRUL HASAN ANSARI3 AND JEN-CHIH YAO4,*

1Department of Mathematics, Shanghai Normal University, Shanghai 200234, China
E-mail: zenglc@hotmail.com

2Department of Mathematics and Statistics, King Fahd University of Petroleum & Minerals
P.O. Box 2007, Dhahran 31261, Saudi Arabia
E-mail: arahim@kfupm.edu.sa

3Department of Mathematics and Statistics, King Fahd University of Petroleum & Minerals
P.O. Box 1169, Dhahran 31261, Saudi Arabia;
and Department of Mathematics, Aligarh Muslim University, Aligarh, India
E-mail: qhansari@kfupm.edu.sa

4Department of Applied Mathematics, National Sun Yat-sen University
Kaohsiung, Taiwan 804
E-mail: yaojc@math.nsysu.edu.tw

*Corresponding author

Abstract. In this paper, we suggest and analyze both explicit and implicit iterative schemes for two strongly positive operators and a nonexpansive mapping \(S \) on a Hilbert space. We also study explicit and implicit versions of iterative schemes for an inverse-strongly monotone mapping \(T \) and \(S \) by an extragradient-like approximation method. The viscosity approximation methods are employed to establish strong convergence of the iterative schemes to a common element of the set of fixed points of \(S \) and the set of solutions of the variational inequality for \(T \). As applications, we consider the problem of finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping which solves some variational inequalities. Our results improve and unify various celebrated results of viscosity approximation methods for fixed-point problems and variational inequality problems.

Key Words and Phrases: General iterative method, viscosity approximation method, hybrid viscosity approximation method, fixed points, inverse-strongly monotone mappings, nonexpansive mappings, variational inequalities, strongly positive operators.

Acknowledgement. In this research, the first author was partially supported by the National Science Foundation of China (10771141), Ph.D. Program Foundation of Ministry of Education of China (20070270004), Science and Technology Commission of Shanghai Municipality grant (075105118) and Shanghai Leading Academic Discipline Project (S30405). The second and third authors were supported by a KFUPM Funded Research Project IN070362. The fourth author was partially supported by the grant NSC 97-2115-M-110-001.

References

Received: March 18, 2008; Accepted: October 21, 2008.