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Abstract. The aim of this paper is to obtain the existence of continuous solutions for

a second order retarded differential inclusion under some hypothesis of Henstock-Lebesgue

integrability. Also, some compactness properties in the sense of Sobolev-type spaces are

given.
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1. Introduction

In the present paper, we study, in a separable Banach space, the existence
of solutions and the properties of solutions set for the second order retarded
differential inclusion with three boundary conditions{

u”(t) ∈ F (t, ut, u
′(t)), a.e. t ∈ [0, 1]

u(0) = 0, u(θ) = u(1).

Here θ ∈]0, 1[, r is a positive number and, for each t ∈ [0, 1], ut :
[−r, 0] → X defined by ut(s) = u(t + s) is a measure of the taking into
account the system’s history. The multifunction governing the inclusion is
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F : [0, 1] × HL([−r, 0], X) × X → Pkc(X), where HL([−r, 0], X) is the col-
lection of X-valued Henstock-Lebesgue-integrable functions on [−r, 0] (in the
sense of [3]). The set-valued function is supposed to be Henstock-integrably
bounded.

We obtain, applying Kakutani-Ky Fan’s fixed point theorem and a charac-
terization of Henstock-integrable compact convex-valued multifunctions given
in [6], that the family of W 2,1

HL,X -solutions is nonempty. By W 2,1
HL,X we mean

the Sobolev-type space containing all X-valued functions u that are contin-
uous on [0, 1], a.e. differentiable with the derivative u′ continuous and a.e.
differentiable and the second derivative u

′′
Henstock-Lebesgue integrable. Fi-

nally, we study the properties of solutions set. We prove its compactness, as
well as some properties similar to those already known in the classical setting.

Our main theorem is more general than the previously obtained results in
the theory of retarded differential equations. The generalization concerns two
aspects. Firstly, the vector-valued integral used throughout is more general
than those involved in the previous papers and secondly, we consider the set-
valued case. Let us remind that retarded equations were studied in the classical
continuous case and in the Carathéodory setting (see [9], [11]), then in the
case of Lebesgue integrable functions and lately in the less restrictive case of
Henstock-Kurzweil integral (e.g. in [5], [18]). Moreover, problems involving
such type of equations were investigated in the case of a general Banach space
via Bochner integral, respectively Henstock-Lebesgue integral (see [17]).

2. Notations and preliminary facts

The Henstock-type integrals in Banach spaces are defined following the same
line as for the Henstock-Kurzweil integral on the real line. Let us then begin
by recalling the basic facts on Henstock-Kurzweil integrability, a concept that
extends the classical Lebesgue integrability.

A gauge δ on [0, 1] (the real unit interval provided with the σ-algebra Σ
of Lebesgue measurable sets and with the Lebesgue measure µ) is a positive
function. A partition of [0, 1] is a finite family (Ii, ti)

n
i=1 of nonoverlapping

intervals covering [0, 1] with tags ti ∈ Ii; a partition is said to be δ-fine if
for each i ∈ {1, ..., n}, Ii ⊂ ]ti − δ(ti), ti + δ(ti)[. A function f : [0, 1]→R is
said to be Henstock-Kurzweil (shortly HK-) integrable if there exists a real,
denoted by (HK)

∫ 1
0 f(t)dt, satisfying that, for every ε > 0, there is a gauge
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δε such that
∣∣∣∑n

i=1 f(ti)µ(Ii)− (HK)
∫ 1
0 f(t)dt

∣∣∣ < ε, for every δε-fine partition
P=(Ii, ti)n

i=1 of [0, 1]. For properties of HK-integral, we refer the reader to [8].
The following auxiliary result was proved in [16]:

Lemma 1. Let (fn)n be an uniformly HK-integrable, pointwisely bounded se-
quence of real functions defined on [0, 1]. Then f̃n(·) = (HK)

∫ ·
0 fn(t)dt is an

uniformly equi-continuous sequence.

Through the paper, X is a real separable Banach space, X∗ is its topological
dual with unit ball B∗ and Pkc(X) stands for the family of its compact convex
subsets. On Pkc(X) the Hausdorff distance D is considered and, for every
A ∈ Pkc(X), we put |A| = D(A, {0}).

The following notion extends the real HK-integral to the vector case.

Definition 2. A function f : [0, 1] → X is Henstock-Lebesgue (HL-) integrable
if there exists f̃ : [0, 1] → X such that, for every ε > 0, there is a gauge δε > 0
satisfying that

∑n
i=1

∥∥∥f(ti)µ((xi−1, xi))−
[
f̃(xi)− f̃(xi−1)

]∥∥∥ < ε, for each δε-

fine partition P = ((xi−1, xi), ti)
n
i=1. The notation (HL)

∫ t
0 f(s)ds = f̃(t) is

used.

A Henstock-Lebesgue integrable function is Henstock-Lebesgue integrable
on every subinterval. Any Bochner integrable function is Henstock-Lebesgue-
integrable. As the following theorem states, the Henstock-Lebesgue integrable
Banach-valued functions possess (like the Bochner integrable ones) an impor-
tant property of differentiability, essential for solving our problem.

Theorem 3. ([3] or [8] for X = R) Let f : [0, 1] → X be Henstock-Lebesgue-

integrable. Then f̃ is continuous, a.e. differentiable and
(
f̃
)′

(t) = f(t) a.e.

The following integration by parts result can be proved, with some obvious
modifications, in the same way as Theorem 12.8 in [8]:

Lemma 4. Let f : [0, 1] → X be Henstock-Lebesgue integrable and g : [0, 1] →
R be absolutely continuous. Then fg is Henstock-Lebesgue integrable and

(HL)
∫ t
0 f(s)g(s)ds = g(t)(HL)

∫ t
0 f(s)ds−

∫ t
0

(
g′(s)(HL)

∫ s
0 f(τ)dτ

)
ds,∀t ∈ [0, 1] .

We denote the support functional of A ∈ Pkc(X) by σ (·, A). A function
f : [0, 1]→X is a selection of Γ if f(t) ∈ Γ(t) a.e. For all concepts of measura-
bility, we refer the reader to [4]. A multifunction Γ is said to be:
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i) integrably bounded if the real function |Γ(·)| is Lebesgue integrable.
ii) scalarly HK-integrable if, for every x∗ ∈ X∗, σ (x∗,Γ(·)) is HK-integrable;
iii) A Pkc(X)-valued function Γ is ”Henstock-integrable in Pkc(X)” (shortly,

Henstock-integrable) [6] if there exists (H)
∫ 1
0 Γ(t)dt ∈ Pkc(X) satisfying that,

for every ε > 0, there is a gauge δε such that for any δε-fine partition of [0, 1],

D

(
(H)

∫ 1

0
Γ(t)dt,

n∑
i=1

Γ(ti)µ(Ii)

)
< ε.

iv) A Pkc(X)-valued function Γ is said to be Henstock-integrably bounded
if every measurable selection is Henstock-Lebesgue-integrable. In this case,
the HL-integral of Γ is defined (in the Aumann way) by the collection of HL-
integrals of its integrable selections.

In the particular case of a single-valued function, the definition iii) gives
the notion of vector Henstock integral (see [3]). Obviously, any Henstock-
Lebesgue integrable function is Henstock-integrable too (the two notions co-
incide in the finite dimensional case, thanks to Saks-Henstock’s Lemma, see
[8]). We can consider (using the fact, proved in [14], that linear continu-
ous functionals on the space of real HK-integrable functions are given by
bounded variation functions) the space of all Henstock-integrable X-valued
functions provided with the topology induced by the tensor product of the
space of real functions of bounded variation and X∗ (we call it the weak-
Henstock-Kurzweil-Pettis topology and denote it by w-HKP, as in [16]). That
is: fα → f if, for every g : [0, 1] → R of bounded variation and every x∗∈X∗,
(HK)

∫ 1
0 g(s) 〈x∗, fα(s)〉 ds → (HK)

∫ 1
0 g(s) 〈x∗, f(s)〉 ds.

Let us recall following characterizations of Henstock-integrable multifunc-
tions (for definition and properties of Pettis set-valued integral we refer to [7]):

Theorem 5. (Theorem 1 in [6]) Let Γ : [0, 1] → Pkc(X) be scalarly HK-
integrable. Then the following conditions are equivalent:

i) Γ is Henstock-integrable;
ii) Γ has at least one Henstock-integrable selection and for any Henstock-

integrable selection f there exists a Pettis integrable multifunction Γ1 : [0, 1] →
Pkc(X) such that, for every t ∈ [0, 1], Γ(t) = f(t) + Γ1(t);

iii) each measurable selection of Γ is Henstock-integrable.

and
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Proposition 6. (Proposition 1 in [6]) If Γ : [0, 1] → Pkc(X) is scalarly HK-
integrable, then the following conditions are equivalent:

i) Γ is Henstock-integrable;
ii) the collection {σ(x∗,Γ(·));x∗ ∈ B∗} is HK-equi-integrable;
iii) each countable subset of {σ(x∗,Γ(·));x∗ ∈ B∗} is HK-equi-integrable.

Applying Theorem 5 gives that every Henstock-integrably bounded multi-
function is Henstock-integrable and the HL-integral coincides with the Hen-
stock integral, therefore it is compact and convex. Moreover, using a weak
compactness result on the family of integrable selections in the Pettis integra-
bility settings (which can be found in [1]), one can prove that:

Proposition 7. The family of all Henstock-Lebesgue-integrable selections of
a Henstock-integrably bounded set-valued function is sequentially w-HKP com-
pact.

In the study of three boundary value second order differential inclusions,
we will use a Hartman-type function (as those considered for the first time
in the study of two boundary problems for ordinary differential equations in
[10]). Consider G : [0, 1]× [0, 1] → R the Hartman function introduced in [2]:

if 0 ≤ t < θ, G(t, s) =


−s, if 0 ≤ s ≤ t;
−t, if t < s ≤ θ;
t(s−1)
1−θ , if θ < s ≤ 1,

and

if θ ≤ t ≤ 1, G(t, s) =


−s, if 0 ≤ s < θ;
θ(s−t)+s(t−1)

1−θ , if θ ≤ s ≤ t;
t(s−1)
1−θ , if t < s ≤ 1.

In [2] it is proved that G(·, s) is differentiable, for every s ∈ [0, 1]:

if 0 ≤ t < θ,
∂G

∂t
(t, s) =


0, if 0 ≤ s < t;
−1, if t < s ≤ θ;
s−1
1−θ , if θ < s ≤ 1,

and

if θ ≤ t ≤ 1,
∂G

∂t
(t, s) =


0, if 0 ≤ s ≤ θ;
s−θ
1−θ , if θ < s < t;
s−1
1−θ , if t < s ≤ 1.

Obviously,
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Lemma 8. For every t ∈ [0, 1], G(t, ·) and ∂G
∂t (t, ·) are differentiable on [0, 1]\

{t, θ} and their derivatives are absolutely continuous.

3. Main result

Consider the Sobolev-type space W 2,1
HL,X ([0, 1]) of all X-valued functions u

that are continuous on [0, 1], a.e. differentiable with the derivative u′ contin-
uous and a.e. differentiable and the second derivative u” Henstock-Lebesgue
integrable.

Let r be some positive number and, following [9], we define, for each t ∈
[0, 1], ut : [−r, 0] → X defined by ut(s) = u(t + s). It is an expression of
the taking into account the history of process modeling the evolution of the
system. Let φ be a fixed X-valued Henstock-Lebesgue-integrable function on
[−r, 0] and make the convention that whenever for a continuous function on
[0, 1] the function us will intervene, u will be considered prolonged to [−r, 0]
by φ.

Using the Hartman-type function G we can obtain W 2,1
HL,X ([0, 1])-functions:

Lemma 9. Let f : [0, 1] → X be a Henstock-Lebesgue integrable function.
Then:
1) for every t ∈ [0, 1], G(t, ·)f(·) and ∂G

∂t (t, ·)f(·) are Henstock-Lebesgue inte-
grable and the function uf : [0, 1] → X, uf (t) = (HL)

∫ 1
0 G(t, s)f(s)ds,∀t ∈

[0, 1] satisfies the following conditions: uf (0) = 0, uf (θ) = uf (1), and
2) uf is continuous;
3) uf is a.e. differentiable and its derivative is (uf )′(t) =
(HL)

∫ 1
0

∂G
∂t (t, s)f(s)ds;

4) (uf )′ is a.e. differentiable and its derivative satisfies (uf )” = f .

Proof. Lemma 8 and Lemma 4 yield the first assertion. By definition, uf (θ) =
uf (1) and uf (0) = (HL)

∫ 1
0 G(0, s)f(s)ds = 0. In order to prove the assertions

2) – 4), consider only the case t ∈ [0, θ[. Then uf (t) = (HL)
∫ t
0 −sf(s)ds −

t(HL)
∫ θ
t f(s)ds + t(HL)

∫ 1
θ

s−1
1−θf(s)ds. By Theorem 3, it is a.e. differentiable

and (uf )′(t)= − (HL)
∫ θ
t f(s)ds + (HL)

∫ 1
θ

s−1
1−θf(s)ds=(HL)

∫ 1
0

∂G
∂t (t, s) f(s)ds

and also (uf )′ is a.e. differentiable and (uf )”(t) = f(t). �

One can easily deduce
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Proposition 10. Let f : [0, 1] → X be a Henstock-Lebesgue integrable func-
tion. Then the second order differential equation{

u”(t) = f(t), a.e. t ∈ [0, 1]
u(0) = 0, u(θ) = u(1)

has an unique W 2,1
HL,X ([0, 1])-solution, namely uf (t) = (HL)

∫ 1
0 G(t, s)f(s)ds.

We proceed now to give the main result of the paper, on the existence
of W 2,1

HL,X ([0, 1])-solutions for the second order retarded differential inclusion
considered at the beginning of the paper. In order to obtain the existence of
solutions, we make use of Kakutani-Ky Fan’s fixed point theorem (as in [2]).

Theorem 11. Let Γ : [0, 1] → Pkc(X) be measurable, Henstock-integrably
bounded and F : [0, 1] × HL([−r, 0], X) × X → Pkc(X) satisfy the following
conditions:
1) F (t, x, y) ⊂ Γ(t), for all t ∈ [0, 1], x ∈ HL([−r, 0], X) and y ∈ X;
2) F (·, x, y) is measurable, for every x ∈ HL([−r, 0], X) and y ∈ X;
3) F (t, ·, ·) is upper semi-continuous on HL([−r, 0], X)×X, for each t ∈ [0, 1],
where HL([−r, 0], X) is considered endowed with the topology of pointwise con-
vergence. Then the W 2,1

HL,X ([0, 1])-solutions set of retarded differential inclu-
sion {

u”(t) ∈ F (t, ut, u
′(t)), a.e.t ∈ [0, 1]

u(0) = 0, u(θ) = u(1)

is nonempty and C([0, 1], X)-compact. Moreover, if a sequence (un)n of solu-
tions converges uniformly to u, then the sequence (u′

n)n pointwisely converges
to u′ and (un”)n converges to u” with respect to the w-HKP topology.

Proof. Step I. Let us prove, at this point, that if Γ : [0, 1] → Pkc(X) is
a Henstock-integrably bounded set-valued function, then the W 2,1

HL,X ([0, 1])-
solutions set of the second order differential inclusion{

u”(t) ∈ Γ(t), a.e. t ∈ [0, 1]
u(0) = 0, u(θ) = u(1)

is nonempty, convex and compact in C ([0, 1], X) provided with the topology
of the uniform convergence. We will also show that if a sequence (un)n of solu-
tions converges uniformly to u, then the sequence (u′

n)n pointwisely converges
to u′ and (un”)n converges to u” with respect to the w-HKP topology.
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By Lemma 9, any W 2,1
HL,X ([0, 1])-solution u of this inclusion is characterized

by the existence of a Henstock-Lebesgue-integrable selection f of Γ such that

u(t) = uf (t) = (HL)
∫ 1

0
G(t, s)f(s)ds,∀t ∈ [0, 1].

The set of solutions is non-empty and it is convex, since Γ is convex-valued.
We will use Ascoli’s theorem to prove the compactness of solution set.
By Lemma 4, the Pkc(X)-valued function s 7→ sΓ(s) is Henstock-integrably
bounded. Fix ε > 0. By Proposition 6 and Lemma 1, one can find δε > 0
such that max

(∣∣∣(HK)
∫ t2
t1

σ(x∗,Γ(s))ds
∣∣∣ , ∣∣∣(HK)

∫ t2
t1

σ(−x∗,Γ(s))ds
∣∣∣) < ε, for

all x∗ ∈ B∗ and t1, t2 ∈ [0, 1] with |t1 − t2| < δε. From the fact that for every
HL-integrable selection of Γ,∣∣∣∣(HK)

∫ t2

t1

〈x∗, f(s)〉ds

∣∣∣∣
≤ max

(∣∣∣∣(HK)
∫ t2

t1

σ(x∗,Γ(s))ds

∣∣∣∣ , ∣∣∣∣(HK)
∫ t2

t1

σ(−x∗,Γ(s))ds

∣∣∣∣) ,

we deduce that ‖(HL)
∫ t2
t1

f(s)ds‖ < ε, ∀|t1− t2| < δε. It is not difficult to see
that one can choose δε such that ‖(HL)

∫ t2
t1

sf(s)ds‖ < ε when |t1 − t2| < δε.
Considering the three possible cases (t1 < t2 < θ, t1 < θ ≤ t2 and θ ≤ t1 < t2)
we obtain ‖uf (t1)− uf (t2)‖ ≤ ε, thus the equi-continuity is proved.
Fix now t∈[0, 1]. Again by Lemma 4, G(t, ·)Γ(·) is Henstock-integrably
bounded. For every solution u = uf of our inclusion (where f is a Henstock-
Lebesgue-integrable selection of Γ),

u(t) = uf (t) = (HL)
∫ 1

0
G(t, s)f(s)ds ∈ (HL)

∫ 1

0
G(t, s)Γ(s)ds

that is compact and convex.
It remains us to prove only the closeness of the solution set in C([0, 1], X). Con-
sider a sequence (un)n of solutions, uniformly convergent to u ∈ C([0, 1], X),
and prove that u is a solution too.
We can find a sequence (fn)n of Henstock-Lebesgue-integrable selections of
Γ such that un(t) = ufn(t) = (HL)

∫ 1
0 G(t, s)fn(s)ds, for every t ∈ [0, 1]. By

Proposition 7, we are able to extract a subsequence (fkn)n which w-HKP con-
verges to a HL-integrable selection f of Γ such that the sequence s 7→ sfkn(s)
be w-HKP convergent to the function s 7→ sf(s). By considering again the
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two possible cases (t ∈ [0, θ[ and t ∈ [θ, 1]), we obtain that (ukn)n pointwisely
weakly converges to uf (t) = (HL)

∫ 1
0 G(t, s)f(s)ds, therefore uf = u; the so-

lutions set is closed in C([0, 1], X) and thus the compactness is proved.
Similarly, we can prove that (ufn)′(t) = (HL)

∫ 1
0

∂G
∂t (t, s)fn(s)ds converges to

(uf )′(t) = (HL)
∫ 1
0

∂G
∂t (t, s)f(s)ds. Since a.e. (ufn)” = fn and (uf )” = f ,

the w-HKP convergence of (ufn)” to (uf )” follows from the sequential w-HKP
compactness of the set of all Henstock-Lebesgue-integrable selections of Γ.

Step II. Denote by K the W 2,1
HL,X ([0, 1])-solutions set of{

u”(t) ∈ Γ(t), a.e. t ∈ [0, 1]
u(0) = 0, u(θ) = u(1)

Following the first step of the proof, K is convex and compact in C([0, 1], X).
On K, consider the set-valued function defined by

Ξ(u) =
{
v ∈ K : v”(t) ∈ F (t, ut, u

′(t)), a.e.
}

.

Show that Ξ satisfies the hypothesis of Kakutani-Ky Fan’s fixed point theo-
rem.
Ξ is nonempty-valued. Indeed, passing through a sequence of simple functions
as in the first part of the proof of Theorem 3.3 in [2], we can find a measurable
selection of F (·, u·, u

′(·)) which is a selection of Γ, so it is Henstock-Lebesgue-
integrable. The claim follows from Lemma 9.
It is obvious that Ξ has convex values. Let us prove that is is closed-
(thus, compact-) valued. Take a sequence (vn)n ⊂ Ξ(u) uniformly conver-
gent to v ∈ C([0, 1], X) and show that v ∈ Ξ(u). The set-valued func-
tion Γ has a sequence (fn)n of Henstock-Lebesgue-integrable selections sat-
isfying that fn(t) ∈ F (t, ut, u

′(t)) a.e. and vn(t) = (HL)
∫ 1
0 G(t, s)fn(s)ds.

By Lemma 9, (fn)n w-HKP converges to v” and, following Proposition 7,
v”(t) ∈ F (t, ut, u

′(t)) a.e.
It remains us to show that Ξ is upper semi-continuous or, equivalently in this
case, to show that its graph is closed.
Consider (un, vn)n ⊂ Graph(Ξ) convergent in C([0, 1], X) × C([0, 1], X)
to (u, v) and prove that (u, v) ∈ Graph(Ξ). For all n ∈ N, vn”(t) ∈
F (t, unt , u

′
n(t)) a.e. Again by Lemma 9, (u′

n)n (resp. (v′n)n) pointwisely con-
verges to u′ (resp. v′) and (un”)n (resp. (vn”)n) w-HKP converges to u” (resp.
v”).



328 B. SATCO

As F (t, ·, ·) is upper semi-continuous, for every neighborhood V of the ori-
gin there are W 2

t,V neighborhood of 0 in X and W 1
t,V neighborhood of the

origin of HL([−r, 0], X) such that, for all z1, z2 verifying z1 − ut ∈ W 1
t,V

and z2 − u′(t) ∈ W 2
t,V , one has F (t, z1, z2) ⊂ F (t, ut, u

′(t))+V . Since (un)n

C([0, 1], X)-converges to u and (u′
n)n pointwisely converges to u′, there exists

nt,V ∈ N such that ut−unt ∈ W 1
t,V and u′(t)−u′

n(t) ∈ W 2
t,V , for each n ≥ nt,V

(here we had to take into account the convention made at the beginning of
the section). Consequently, F (t, unt , u

′
n(t)) ⊂ F (t, ut, u

′(t)) + V , ∀n ≥ nt,V .
Using a classical result on measurable selections of a compact convex-valued
multifunction (see e.g. [16] for the case of the weak topology), we obtain a
sequence of convex combinations of {vm”,m ≥ n} a.e. convergent to v”, and
then v”(t) ∈ F (t, ut, u

′(t)) a.e. Thus, Graph(Ξ) is closed.
We can now apply Kakutani-Ky Fan’s fixed point theorem and deduce that
Ξ has a fixed point, and so, our differential inclusion possess a continuous
solution. �

Remark 12. Theorem 11 is new in the field of retarded differential equations
and it extends the results given in the ordinary case in [2] (via Bochner and
Pettis integrals) and [15] (using Henstock-Lebesgue integral).
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