Fixed Point Theory, Volume 8, No. 2, 2007, 297-301 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

A GENERAL SELECTION THEOREM FOR MULTIVALUED FUNCTIONS SATISFYING AN IMPLICIT RELATION

VALERIU POPA

Department of Mathematics, University of Bacău Strada Spiru Haret Nr. 8, 600114 Bacău Romania E-mail: vpopa@ub.ro

Abstract. J.R. Jachymski [3] initiated the study of Caristi selection. Some generalizations of J.R. Jachymski result are proved in [9], [10], [11]. In this paper a general selection theorem for multivalued functions satisfying an implicit relation which generalizes the results by [9], [10] and [11] is proved.

Key Words and Phrases: Multivalued function, selection, Caristi mapping, implicit relation.

2000 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

J. Caristi's fixed point theorem [1] states that each operator f from a complete metric space (X, d) into itself satisfying the condition:

(*) there exists a lower semicontinuous $g: X \to \mathbb{R}_+$ such that $d(x, f(x)) \leq g(x) - g(f(x))$, for each $x \in X$,

has at least a fixed point.

For the multivalued case, there exist several results involving multivalued Caristi type conditions (see for example [2], [4], [5]). There are several extensions and generalizations of these important principles of nonlinear analysis (see for example the references listed in [8], [10]).

Let (X, d) be a metric space and P(X) the space of all nonempty subsets of X. We denote by $P_{cl}(X)$ the space of all nonempty closed subsets of X. We

²⁹⁷

consider the following functionals:

$$D: P(X) \times P(X) \to \mathbb{R}_+, \ D(A, B) = \inf \{ d(a, b) | a \in A, b \in B \},\$$

$$H: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}, \ H(A,B) = \max\{\sup_{a \in A} D(a,B), \sup_{b \in B} D(b,A)\}.$$

H is called the Hausdorff-Pompeiu generalized functional and it is well known that if (X, d) is a complete metric space, then $(P_{cl}(X), H)$ is also a complete metric space.

2. Preliminaries

If X, Y are nonempty sets and $F : X \to P(Y)$ is a multivalued operator, then a selection of F is a single valued operator $f : X \to Y$ such that $f(x) \in F(x)$, for each $x \in X$.

First result concerning the existence of a selection which satisfies the Caristi condition (*) (briefly called Caristi selection) was established by J.R. Jachymski [3] for a multivalued operator with closed valued.

Theorem 2.1 ([3]). Let (X, d) be a metric space and $F : X \to P_{cl}(X)$ be a multivalued contraction.

Then there exists $f: X \to X$ a Caristi selection (with a Lipschitz map g) of F.

Some extensions of Theorem 2.1 are proved in [9], [10], [11].

Theorem 2.2 ([9]). Let (X, d) be a metric space and $F : X \to P_{cl}(X)$ such that

$$H(F(x), F(y)) \le a d(x, y) + b D(x, F(x)) + c D(y, F(y)),$$

for each $x, y \in X$, where $a, b, c \in \mathbb{R}_+$ and a + b + c < 1.

Then there exists $f: X \to X$ a Caristi selection of F.

Theorem 2.3 ([11]). Let (X, d) be a metric space and $F : X \to P_{cl}(X)$ such that

$$H(F(x), F(y)) \le a_1 d(x, y) + a_2 D(x, F(x)) + a_3 D(y, F(y)) +$$

$$+a_4 D(x, F(y)) + a_5 D(y, F(x)),$$

for each $x, y \in X$, where $a_1, \ldots, a_5 \in \mathbb{R}_+$ and $a_1 + a_2 + a_3 + 2a_4 < 1$. Then there exists $f: X \to X$ a Caristi selection of F.

298

Theorem 2.4 ([10]). Let (X, d) be a metric space and $F : X \to P_{cl}(X)$ such that

 $\leq q \max\{d(x, y), D(x, F(x)), D(y, F(y)), D(x, F(y)), D(y, F(x))\},\$

where 0 < q < 1.

Then there exists $f: X \to X$ a Caristi selection of F.

The present author considered in [6], [7] the study of fixed point for mappings satisfying implicit relations.

3. Implicit relation

Let \mathcal{F} be the set of all real functions $F(t_1, \ldots, t_6) : \mathbb{R}^6_+ \to \mathbb{R}$ satisfying the following conditions:

- (F_1) F is non-decreasing in variable t_1 and non-increasing in variables t_5 and t_3 ;
- (F_2) there exists $h \in (0, 1)$ such that for every $u, v \ge 0$ with $F(u, v, v, u, u + v, 0) \le 0$ we have $u \le hv$.

Example 3.1. $F(t_1, \ldots, t_6) = t_1 - a_1t_2 - a_2t_3 - a_3t_4 - a_4t_5 - a_5t_6$, where $a_1, \ldots, a_5 \in \mathbb{R}_+, a_1 + a_2 + a_4 > 0$ and $a_1 + a_2 + a_3 + 2a_4 < 1$.

- (F_1) Obviously.
- (F₂) Let $F(u, v, v, u, u + v, 0) = u a_1v a_2v a_3u a_4(u + v) \le 0$. Then $u \le hv$, where $0 < h = (a_1 + a_2 + a_4)/(1 a_3 a_4) < 1$.

Example 3.2. $F(t_1, \ldots, t_6) = t_1 - k \max\{t_2, t_3, t_4, \frac{1}{2}(t_5 + t_6)\}, \text{ where } 0 < k < 1.$

- (F_1) Obviously.
- (F₂) Let $F(u, v, v, u, u + v, 0) = u k \max\left\{u, v, \frac{1}{2}(u+v)\right\} \le 0$. If u > 0and $u \ge v$, then $u(1-k) \le 0$, a contradiction. Hence u < v which implies $u \le hv$, where 0 < h = k < 1. If u = 0, then $u \le hv$.

Example 3.3. $F(t_1, \ldots, t_6) = t_1^2 + at_1t_2 - bt_3t_4 - ct_5t_6$, where $a, c \ge 0$ and 0 < b < 1.

- (F_1) Obviously.
- (F₂) Let $F(u, v, v, u, u+v, 0) = u^2 + auv buv \le 0$, which implies $u^2 buv \le 0$. If u > 0, then $u \le hv$, where 0 < h = b < 1. If u = 0, then $u \le hv$.

VALERIU POPA

Example 3.4. $F(t_1, \ldots, t_6) = t_1^2 + \frac{t_1}{1+t_5+t_6} - (at_2^2 + bt_3^2 + ct_4^2)$, where $a, b, c \ge 0$, a+b > 0 and a+b+c < 1.

- (F_1) Obviously.
- (F₂) Let $F(u, v, v, u, u + v, 0) = u^2 + \frac{u}{1+u+v} (av^2 + bv^2 + cu^2) \le 0$, which implies $u^2 (av^2 + bv^2 + cu^2) \le 0$. Hence $u \le hv$, where $0 < h = \sqrt{\frac{a+b}{1-c}} < 1$.

Example 3.5. $F(t_1, \ldots, t_6) = \max\{t_1, t_2, t_4\} - \min\{t_5, t_6\} - qt_3$, where 0 < q < 1.

- (F_1) Obviously.
- (F₂) Let $F(u, v, v, u, u + v, 0) = \max\{u, v\} qv \le 0$. If u > 0 and u > v, then $u(1-q) \le 0$, a contradiction. Hence u < v and $u \le hv$, where 0 < h = q < 1. If u = 0, then $u \le hv$.

The purpose of this paper is to prove a general theorem which generalizes the results from Theorems 2.2, 2.3 and 2.4.

4. Main results

Theorem 4.5. Let (X, d) be a metric space and $F : X \to P_{cl}(X)$ a multivalued function such that

$$\Phi(H(F(x), F(y)), d(x, y), D(x, F(x)), D(y, F(y)),$$

$$D(x, F(y)), D(y, F(x))) \le 0,$$
(4.1)

for each $x, y \in X$, where $\Phi \in \mathcal{F}$.

Then there exists $f: X \to X$ a Caristi selection of F.

Proof. Let $\varepsilon = \frac{1-h}{2}$ and $g(x) = \frac{1}{\varepsilon}D(x, F(x))$. Then, obviously $\varepsilon + h = \frac{1+h}{2} < 1$. Since $\frac{1}{\varepsilon+h} > 1$, for each $x \in X$ we can choose $f(x) \in F(x)$ such that

$$d(x, f(x)) \le \frac{1}{\varepsilon + h} D(x, F(x)).$$

By 4.1 and (F_1) we have successively

$$\begin{split} \Phi(H(F(x),F(f(x))),d(x,f(x)),D(x,F(x)),D(f(x),F(f(x))),\\ D(x,F(f(x))),D(f(x),F(x))) &\leq 0,\\ \Phi(D(f(x),F(f(x))),d(x,f(x)),d(x,f(x)),D(f(x),F(f(x))),\\ d(x,f(x))+D(f(x),F(f(x))),0) &\leq 0. \end{split}$$

300

By (F_2) we have

$$D(f(x), F(f(x))) \le h \, d(x, f(x)),$$

for each $x \in X$.

We will prove now that f is a Caristi type operators. Indeed, for each $x \in X$ we have

$$d(x, f(x)) = \frac{1}{\varepsilon} [(\varepsilon + h)d(x, f(x)) - h d(x, f(x))] \le$$
$$\le \frac{1}{\varepsilon} [D(x, F(x)) - D(f(x), F(f(x)))] = g(x) - g(f(x)). \qquad \Box$$

Remark 4.1. Theorems 2.2-2.4 follow from Theorem 4.1 and, respectively Example 3.1, for $a_4 = a_5 = 0$, Example 3.1 and Example 3.2.

Remark 4.2. Other results can be obtained from Theorem 4.1 via Examples 3.3-3.5.

References

- J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215(1976), 243-251.
- [2] L. van Hot, Fixed point theorems for multivalued mappings, C.M.U.C., 23(1982), 137-145.
- J.R. Jachymski, Caristi's fixed points theorem and selection of set-valued contractions, J. Math. Anal. Appl., 227(1998), 55-67.
- [4] M. Maschler, B. Pelag, Stable sets and stable points of set-valued dynamic systems with applications to game theory, SIAM J. Control Optimizations, 14(1976), 985-995.
- [5] N. Mizoguchi, W. Takahashi, Fixed point theorems for multivalued mappings in complete metric spaces, J. Math. Anal. Appl., 141(1989), 177-188.
- [6] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Matem. Univ. Bacău, 7(1997), 127-133.
- [7] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32(1999), 157-163.
- [8] A. Petruşel, Caristi type operators and applications, Studia Univ. Babeş-Bolyai, Mathematica, 48(2003), 115-123.
- [9] A. Petruşel, A. Sîntămărian, Single-valude and multi-valued Caristi type operators, Publ. Math. Debrecen, 60(2002), 167-177.
- [10] A. Petruşel, G. Petruşel, Selection theorems for multivalued generalized contractions, Math. Moravica, 9(2005), 43-52.
- [11] A. Sîntămărian, Selections and common fixed points for some generalized multivalued contractions, Demonstratio Math., 39(2006), 609-617.

Received: January 30, 2007; Accepted: June 30, 2007.