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In this note we extend and generalize a famous result by Browder [2], Göhde
[5] and Kirk [7] recently extended by Luc in [13] and a recent result of Penot[20]
by using the notion of asymptotically I-compact subset of a Banach space.
However, it may be remarked that here no compactness assumption is in-
volved. Instead we use asymptotic contractiveness concepts; a comparison of
this concept with other notions of asymptotic conditions (e.g., uniform as-
ymptotic introduced in [18] and asymptotic contractiveness for single map
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introduced in [20]) will be made later on. Note that the meaning of the word
“asymptotic” is subtle. Indeed, the word “asymptotic” is not related to the
iterations of the map, as in [7], [8], [9], [21] but refers to the behaviour of the
map at infinity.

Recall that a subset C of a linear space X is star shaped with respect to q

( or, briefly, star shaped) if there exists a q ∈ C such that

kx + (1− k)q ∈ C

for any k ∈ [0, 1] and x ∈ C. Of course, if C is convex, then it is star shaped
with respect to any q ∈ C. Here q is called the star centre of C.
Definition 1. Let C be a subset of a linear space X and let T, I : C → X.
Then C is said to be (I, T )-star shaped with respect to q ( or, briefly, (I, T )-star
shaped) if there exists a q ∈ C such that

kT (x) + (1− k)q ∈ I(C)

for any k ∈ [0, 1] and x ∈ C.
If I and T both are identity maps on C, then the definition of (I, T )-star
shaped reduces to the ordinary definition of star shaped.
Definition 2. Let X be a Banach space and let C be a subset of X. Let
T, I : C → X. Let C be an (I, T )-star shaped subset of X. We say that T is
asymptotically I-contractive on C if, for some q ∈ C,

lim
n→∞

sup
x∈C, ‖x‖>n, ‖I(x)‖>n

‖T (x)− T (q)‖
‖I(x)− I(q)‖

< 1. (1)

Note that this condition is independent of the choice of q ∈ C. To see this,
let us consider q′ ∈ C such that q′ 6= q, then

lim
n→∞

sup
x∈C, ‖x‖>n, ‖I(x)‖>n

‖T (x)− T (q′)‖
‖I(x)− I(q′)‖

≤ lim
n→∞

sup
x∈C, ‖x‖>n, ‖I(x)‖>n

[‖T (x)− T (q)‖+ ‖T (q′)‖
‖I(x)− I(q)‖

· ‖I(x)− I(q)‖
‖I(x)− I(q′)‖

]

= lim
n→∞

sup
x∈C, ‖x‖>n, ‖I(x)‖>n

[{‖T (x)− T (q)‖
‖I(x)− I(q)‖

+
‖T (q′)‖

‖I(x)− I(q)‖

}
· ‖I(x)− I(q)‖
‖I(x)− I(q′)‖

]
< 1.
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If I is the identity map on C, then T is said to be asymptotically contractive
on C if, for some q ∈ C,

lim sup
x∈ C, ‖x‖→∞

‖T (x)− T (q)‖
‖x− q‖

< 1. (1′)

It may be observed that the notion of asymptotically I-contractive map
enables us to extend to unbounded sets the result of [2], [5], [7] valid for
I-nonexpansive self-mappings on closed star-shaped bounded subsets of uni-
formly convex Banach spaces. Note that every convex subset of a Banach
space is star shaped but the converse need not be true. For example, one may
observe that C = {(x, 0) : x ∈ [0,∞)}

⋃
{(0, y) : y ∈ [0,∞)} is a star-shaped

subset of R2 with respect to (0, 0), but it is neither bounded nor convex. De-
fine T, I : C → X by T (x, 0) = (x

2 , 0), if x ∈ [0, 1], T (x, 0) = (0, 0) if x > 1
and T (0, y) = (0, 0) if y ≥ 0; I(x, 0) = (x

2 , 0), if x ∈ [0, 1], I(x, 0) = (0, 0) if
x > 1 and I(0, y) = (y

2 , 0), if y ∈ [0, 1], I(0, y) = (0, 0) if y > 1. Clearly, C is
(I, T )-star shaped with respect to q = (0, 0). Observe that I(C) is bounded,
closed and convex.

Recall that a mapping T is I-nonexpansive in C, if ‖T (x)− T (y)‖ ≤ ‖Ix−
Iy‖ for any x, y in C.
Definition 3. Let X be a Banach space and let C be a subset of X.
Let T, I : C → X. Let C be an (I, T )-star shaped subset of X with re-
spect to some q ∈ C( or, briefly, (I, T )-star shaped). Then T is said to be
radiallyasymptoticallyI − contractive with respect to some q ∈ C in the sense
that for any unit vector u in the asymptotic cone (or horizon cone)

C∞ := lim sup
t→∞

t−1C := {v ∈ X : ∃(tn) →∞, (vn) → v, tnvn ∈ C∀n ∈ N}

of C one has

lim sup
t→∞, q+tu∈C

‖T (q + tu)− T (q)‖
‖I(q + tu)− I(q)‖

< 1.

If I is the identity map on C, then the above inequality reduces to

lim sup
t→∞, q+tu∈C

1
t
‖T (q + tu)− T (q)‖ < 1.

In such case, T is said to be radiallyasymptoticallycontractive with respect to
some q ∈ C.
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Recall that two mappings T : C → X and I : C → X are said to be weakly
compatible in C if TI(v) = IT (v) whenever T (v) = I(v) for some v in C. We
now prove the following variant of the main result of Jungck [6].
Proposition 4. Let C be a subset of a Banach space (X, ‖ · ‖) and let T, I :
C → X be two non-self maps satisfying the inequality

‖Tx− Ty‖ ≤ λ‖Ix− Iy‖ (2)

for all x, y ∈ C, where 0 < λ < 1. If T (C) ⊂ I(C) and I(C) is closed, then T

and I have a coincidence point v in C. Further, if I2v = Iv, and T and I are
weakly compatible in C, then T and I have a unique common fixed point.
Proof. Let x0 ∈ C be arbitrary. Since Tx0 ∈ I(C), there is some x1 ∈ C such
that Ix1 = Tx0. Then choose x2 ∈ C such that Ix2 = Tx1. In general, after
having chosen xn ∈ C we choose xn+1 ∈ C such that Ixn+1 = Txn. We now
show that {Ixn} is a Cauchy sequence. From (2) we have

‖Ixn − Ixn+1‖ = ‖Txn−1 − Txn‖ ≤ λ‖Ixn−1 − Ixn‖.

Repeating the above argument n-times we get

‖Ixn − Ixn+1‖ ≤ λ‖Ixn−1 − Ixn‖ ≤ . . . ≤ λn‖Ix0 − Ix1‖.

It then follows that, for any m > n,

‖Ixn − Ixm‖ ≤
λn

1− λ
‖Ix0 − Ix1‖ → 0 as m > n →∞.

Thus {Ixn} is a Cauchy sequence. Since I(C) is closed in X and so complete,
there is some u ∈ I(C) such that

lim
n→∞

Ixn = lim
n→∞

Txn−1 = u.

Since u ∈ I(C), there exists a v ∈ C such that Iv = u. From (2) we get

‖Txn − Tv‖ ≤ λ‖Ixn − Iv‖.

Taking the limit as n →∞ we obtain

‖u− Tv‖ ≤ λ‖u− Iv‖.

Hence Tv = u; i.e., v is a coincidence point of T and I. Further, if I2v = Iv

and T and I weakly compatible in C we get

u = Iv = I2v = Iu = ITv = TIv = Tu.
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Hence u is a common fixed point of T and I. The uniqueness of the common
fixed point u follows from (2).
Following essentially the same reasoning as in Propositions 10.1 and 10.2 in
Goebel and Kirk [5], we can easily prove the following Propositions 5 and 6,
respectively.
Proposition 5. Suppose C is a subset of a uniformly convex Banach space
X and suppose T : C → X and I : C → X are two non-self maps such that
mapping T is I-nonexpansive in C and I(C) is bounded and convex. Then for
{un}, {vn}, {zn} in C and Izn = 1

2(Iun + Ivn),

lim
n→∞

‖Iun − Tun‖ = 0, lim
n→∞

‖Ivn − Tvn‖ = 0

implies
lim

n→∞
‖Izn − Tzn‖ = 0.

Proposition 6. Suppose C is a subset of a uniformly convex Banach space
X and suppose T : C → X and I : C → X are two non-self maps such
that T is I-nonexpansive in C, I(C) is bounded, closed and convex and satisfy
inf{‖Ix− Tx‖ : x ∈ C} = 0. Then T and I have a coincidence point in C.
The following proposition is an easy consequence of Propositions 5 and 6.
Proposition 7. Let X be a uniformly convex Banach space, C a subset of
X, T : C → X and I : C → X be two non-self maps such that mapping T is
I-nonexpansive in C, I(C) is bounded, closed and convex subset of X. Then
the mapping f = I − T is demiclosed on X.
In [20], Penot prove the following result.
Proposition 8. Let X be a uniformly convex Banach space and let C be a
closed convex subset of X. Let T : C → X be a nonexpansive map which is
asymptotically contractive on C and such that T (C) ⊂ C. Then T has a fixed
point.
We now extend and generalize the above result of Penot [20] for a pair of maps
in the following.
Theorem 9. Let X be a uniformly convex Banach space, C a subset of X.
Let T, I : C → X and assume that C an (I, T )-star shaped subset of X. Let
T be an I-nonexpansive map which is asymptotically I-contractive in C and
such that kT (C) + (1− k)C ⊂ I(C) for any k ∈ [0, 1], I(C) is bounded, closed
and convex and I is continuous. Then T and I have a coincidence point x̄ in
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C. Further, if I2x̄ = Ix̄, and T and I are weakly compatible in C, then T and
I have a unique common fixed point.
Proof. Let (tn) be a sequence in (0, 1) with limit 0 and let C be an (I, T )-star
shaped subset of X with respect to some q ∈ C. For n ∈ N, define Tn : C → X

by
Tn(x) := (1− tn)T (x) + tn q (3)

so that, by the (I, T )-star shaped property of C, Tn(x) ∈ I(C) for each x ∈ C.
Since T is I-nonexpansive, it follows that

‖Tn(x)− Tn(y)‖ = (1− tn)‖T (x)− T (y)‖

≤ (1− tn)‖I(x)− I(y)‖

i.e., Tn is I-contractive with rate (1− tn). Proposition 4 ensures that Tn and
I have a coincidence point xn ∈ C.

We shall show that the sequence (xn) is bounded. If this is not the case, taking
a subsequence if necessary, we may assume that (||xn||) → ∞. Let α ∈ (0, 1)
and ρ > 0 be such that ||T (x)− T (q)|| ≤ α||I(x)− I(q)|| for x ∈ C satisfying
||x|| ≥ ρ. Then, for sufficiently large n, we have

||xn|| = ||(1− tn)T (xn) + tn q||

≤ (1− tn)(α||I(xn)− I(q)||+ ||T (q)||) + tn||q||.

Noting that I(C) is bounded, dividing both sides by ||xn|| and taking limits,
we get 1 ≤ α, a contradiction, Thus, (xn) and hence (T (xn)) is bounded, and

||I(xn)− T (xn)|| = tn||q − T (xn)|| → 0, as n →∞.

Since X is reflexive, taking a subsequence if necessary, we may assume that
(xn) has a weak limit, say, x̄. Since I − T is demi-closed (i.e. its graph is
sequentially closed in the product of the weak topology with the norm topol-
ogy), we get that I(x̄) − T (x̄) =0; i.e., x̄ is a coincidence point of I and T .
Further, if I2x̄ = Ix̄, and T and I weakly commute in C, we have

Ix = I2x = ITx = TIx

showing, that Ix is a common fixed point of T and I. �

Remarks. a) One can add that the set of common fixed points is closed,
convex and bounded. The first two properties are proved in the usual way;
the boundedness property follows immediately from (1).
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b) The preceding result can also be deduced from the classical result of [2],
[6], [8] by applying it to the restriction of T to a sufficiently large ball in X.
This direct way can be deduced from the preceding proof. It also follows from
the observation that T is asymptotically I-contractive on C iff there exists
some c ∈ (0, 1) and r > 0 such that

||T (x)|| ≤ c||I(x)|| ∀x ∈ C\rBX ,

whenever ‖x‖ → ∞ implies ‖I(x)‖ → ∞, where BX is the closed unit ball of
X, so that T (C ∩ rBX) ⊂ I(C ∩ rBX). �

If I is the identity map on C , then T is asymptotically contractive on C iff
there exists some c ∈ (0, 1) and an r > 0 such that

‖T (x)‖ ≤ c‖x‖ ∀x ∈ C\rBX ,

where BX is the closed unit ball of X, so that T (C ∩ rBX) ⊂ C ∩ rBX . �

Definition 10. A subset C of a uniformly convex Banach space X is said to
be asymptotically I-compact if, for any sequence (xn) of C such that ‖x‖ → ∞
implies ‖I(x)‖ → ∞ and that (rn) := (‖I(xn)‖) →∞, the sequence (r−1

n I(xn))
has a convergent subsequence. Locally compact convex sets and epigraphs of
hyper-coercive functions T : C → X; i.e., epi T = {(y, t) ∈ C × R : T (y) ≤ t}
with respect to I : C → X are asymptotically I-compact in the sense that
T (x)/‖I(x)‖ → ∞ as ‖I(x)‖ → ∞. If I is the identity map on C, then C is
called asymptotically compact (see [21]).

We now compare the preceding result with [13] Theorem 5.1. There, C

is assumed to be asymptotically compact in the sense of [1], [15], [19], [22]
(see also [4], [17], [23]); i.e., for any sequence (xn) of C such that (rn) :=
(‖xn‖) →∞, the sequence (r−1

n xn) has a convergent subsequence . Obviously
this assumption is satisfied in finite dimensions; but it is a rather restrictive
assumption in infinite dimensional spaces. However, locally compact convex
sets and epigraphs of hyper-coercive functions (i.e. functions T such that
T (x)/‖x‖ → ∞ as ‖x‖ → ∞) are asymptotically compact.

On the other hand, the asymptotic condition imposed on T in [14] is milder
than the one considered here. Our asymptotic condition is obviously satisfied
if T is asymptotically I-contractive on C. In fact, if T is I-nonexpansive
, T is radially asymptotically I-contractive if and only if it is directionally
asymptotically I-contractive in the sense that for any unit vector u ∈ C∞ one
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has

lim sup
t→∞, v→u, q+tv∈C

‖T (q + tu)− T (q)‖
‖I(q + tu)− I(q)‖

< 1,

whenever ‖x‖ → ∞ implies ‖I(x)‖ → ∞ and one has the following relation-
ships with our assumption.
Lemma 11. Any asymptotic I-contraction T : C → X is a directional as-
ymptotic I-contraction. If C is asymptotically I-compact the converse holds.
Proof. The first part of the assertion is immediate. To prove the second
part, assume that T is not an asymptotic I-contraction; i.e., for any q ∈ C

there exists a sequence(xn) in C such that (‖xn‖) →∞ and limnt−n 1‖T (xn)−
T (q)‖ ≥ 1 for tn := ‖I(xn) − I(q)‖. Since C is asymptotically I-compact,
the sequence (un) := (t−n 1(I(xn) − I(q))) has a convergent subsequence with
limit u ∈ C∞. Since limnt−n 1‖T (xn) − T (q)‖ ≥ 1, T is not an asymptotic
I-contraction.
For the case when I is the identity map on C, we recover Lemma 3 of Penot
[20] in the following .
Corollary 12 ([20]). Any asymptotic contraction T : C → X is a directional
asymptotic contraction. If C is asymptotically compact the converse holds.
It follows from Lemma 11 above that Theorem 5.1 of [14] is a direct conse-
quence of Theorem 9. We also observe that Corollary 3 of [20] (stated below)
is an immediate consequence of a corollary in [8].
Corollary 13 ([14]). Let X be a uniformly convex Banach space and let C

be a closed convex subset of X. Let T : C → X be a nonexpansive map which
is radially asymptotically contractive on C and such that T (C) ⊂ C. Then T

has a fixed point.
It may be remarked that the assumption of uniform convexity in Corollary
13 above is not needed. It is sufficient to know that bounded closed convex
sets have the fixed point property for nonexpansive maps (see, for instance,
Kirk [8]). We now present a criterion in order that T be asymptotially I-
contractive. It relies on the following notion introduced in [19]. Here X is any
normed linear space and BX denotes its closed unit ball.
Definition 14. A cone K of X is a firm (outer)asymptotic cone of a subset
C of X if for any ε > 0 there exists some r > 0 such that for any x ∈ C \ rBX

one has d(x,K) < ε‖x‖.
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We now introduce, in more general form, a variant of concepts due to Kras-
noselski [12].
Definition 15. Given a firm asymptotic cone K of a subset C of X, a
positively homogeneous mapping T∞ : K → X is said to be a firm (outer)
asymptotic derivative of T : C → X with respect to I : C → X if for any
ε > 0, there exists a ρ > 0 such that, for any x ∈ C \ ρBX , there exists a
v ∈ K satisfying ‖x− v‖ < ε‖I(x)‖,

‖T (x)− T∞(v)‖ < ε‖I(x)‖.

If I is the identity map on C, T∞ : K → X is called a firm (outer) asymptotic
derivative of T : C → X.

Note that this condition is satisfied when T : C → X has a firm ( or strong )
asymptotic derivative ( or F-derivative at infinity ) with respect to I : C → X

in the sense that there exists a continuous linear mapping T∞ : X → X such
that

lim
r→∞

sup
x∈C\rBX

1
‖I(x)‖

‖T (x)− T∞(x)‖ = 0.

The following criterion was established in [12, section 3.2.2].
Lemma 16. Suppose T : X → X is Gâteaux differentiable on X\rBX for
some r > 0 and there exists a continuous linear mapping A : X → X such
that ‖T ′(x)−A‖ → 0 as ‖x‖ → ∞. Then T has a firm (or strong) asymptotic
derivative T∞ = A.

A weaker condition than the above is that of asymptotable. A map T : C →
X is said to be asymptotable if there exists a positively homogeneous map
T∞ : C∞ → X such that, for any u ∈ C∞, one has t−1T (tv) → T∞(u) as
(t, v) → (∞, u) with tv ∈ C (see [20]).
For asymptotable maps, the following criterion was established in [20].
Lemma 17([20]). If T : C → X is asymptotable and if C is asymptotically
compact, then T∞ is a firm asymptotic semi-derivative of T .
We now state and prove the announced criterion for asymptotic I-contractive-
ness of the mapping T .
Proposition 18. Let K be a firm asymptotic cone of a subset C of X.
Suppose T : C → X has a firm asymptotic semi-derivative T∞ : K → X with
respect to I : C → X, which is asymptotically I-contractive on K. Then T is
asymptotic I-contractive on C.
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Proof. From the observation following Definition 2, we can take q = 0 in that
definition applied to T∞ and K, so that there exists some c ∈ (0, 1) such that

‖T∞(v)‖ ≤ c‖I(v)‖

for v ∈ K with sufficiently large norm. Since K is a cone and T∞ is posivetively
homogeneous, this relation is satisfied for any v ∈ K. Let c′ ∈ (c, 1) and
let ε > 0 be such that c + 3ε < c′. Then, taking ρ > 0 associated with
the ε in Definition 14, for any x ∈ C\ρBX we can pick a v ∈ K satisfying
‖x− v‖ < ε‖x‖, ‖T (x)− T∞(v)‖ < ε‖I(x)‖, so that we get

‖T (x)− T (q)‖ = ‖T (x)− T∞(v) + T∞(v)− T (q)‖

≤ ‖T (x)− T∞(v)‖+ ‖T∞(v)‖+ ‖T (q)‖

≤ ε‖I(x)‖+ ‖T∞(v)‖+ ‖T (q)‖

≤ ε‖I(x)‖+ c‖I(v)‖+ ‖T (q)‖

≤ 2ε‖I(x)‖+ c‖I(x)‖+ ‖T (q)‖

≤ (c + 2ε)‖I(x)− I(q)‖+ ‖T (q)‖+ (c + 2ε)‖I(q)‖

≤ (c + 3ε)‖I(x)− I(q)‖

≤ c′‖I(x)− I(q)‖

provided
ε‖I(x)− I(q)‖ ≥ ‖T (q)‖+ (c + 2ε)‖I(q)‖,

which occurs when ‖I(x)‖ ≥ ε−1(‖T (q)‖+ (c + 3ε)‖I(q)‖). �

Finally, combining Propositions 7 and 18 yields.
Theorem 19. Let X be a uniformly convex Banach space, C a nonempty
subset of X and T, I : C → X. Let C be an (I, T )-star shaped subset of X

and let K be a firm asymptotic cone of C. Suppose that I(C) is bounded,
closed and convex and I is continuous. Let T be an I-nonexpansive map which
has a firm asymptotic semi-derivative T∞ : K → X which is asymptotically
I-contractive on K. Then T and I have a coincidence point v in C. Further,
if I2v = Iv, and T and I are weakly compatible in C, then T and I have a
unique common fixed point.
If I is the identity map on C, we obtain the following result.
Corollary 20 ([20]). Let X be a uniformly convex Banach space and let
C be a closed convex subset of X. Let K be a firm asymptotic cone of C.
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Let T : C → X be a nonexpansive map which has a firm asymptotic semi-
derivative T∞ : K → X which is asymptotically contractive on K. Then T

has a fixed point.
Retrospect. The result in Theorem 19 does not involve any compactness
assumptions. However, such compactness assumption can be used as criteria
ensuring its hypothesis, according to Lemmas 11 and 16. These criteria clearly
shows the links with the results by Luc [14].

The result of Theorem 19 can be extended to real worlds nonconvex situa-
tions or to more general spaces as in [3], [8]-[10], [16], [24]. We also refer the
interested reader to [4],[14],[15], [17]-[23] for the use of asymptotic compactness
in various fields.
Open Question. To what extent can one weaken the condition of asymptotic
I-contractive assumption in Theorems 9 and 19?
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