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Abstract. New fixed point results are presented for admissible pairs and maps (admissible

in the sense of Górniewicz) defined on subsets of a Fréchet space E. The proof relies on the

notion of a pseudo open set, degree theory, and on viewing E as the projective limit of a

sequence of Banach spaces.
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1. Introduction

This paper presents applicable fixed point theorems for multivalued admis-
sible maps defined between Fréchet spaces. Our results in particular will apply
to Rδ and more generally acyclic maps. Our theory is based on degree theory
in Banach spaces and on viewing a Fréchet space as a projective limit of a se-
quence of Banach spaces {En}n∈N (here N = {1, 2, . . . }). The usual results
in the literature in the non-normable situation are rarely of interest from an
application viewpoint (this point seems to be overlooked by many authors)
since the set constructed using degree is usually open and bounded and so has
empty interior.

For the remainder of this section we present some definitions and known
results. Let X and Y be metric spaces. A continuous single valued map
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p : Y → X is called a Vietoris map [4] if the following two conditions are
satisfied:
(i). for each x ∈ X, the set p−1(x) is acyclic
(ii). p is a proper map i.e. for every compact A ⊆ X we have that p−1(A)
is compact.

Let D(X, Y ) be the set of all pairs X
p← Z

q→ Y where p is a Vietoris
map, q is continuous and Z is a metric space.

Definition 1.1. A multifunction φ : X → C(Y ) is admissible, and we write
φ ∈ Ad(X, Y ), if φ : X → C(Y ) is upper semicontinuous, and if there exists
a metric space Z and two continuous maps p : Z → X and q : Z → Y such
that
(i). p is a Vietoris map
and
(ii). φ(x) = q(p−1(x)) for any x ∈ X;
here C(Y ) denotes the family of nonempty, compact subsets of Y .

Remark 1.1. (i). It should be noted that φ upper semicontinuous is redundant
in Definition 1.1.
(ii). (p, q) is called a selected pair of φ and we write (p, q) ⊂ φ.

Let (X, d) be a metric space and ΩX the bounded subsets of X. The
Kuratowski measure of noncompactness is the map α : ΩX → [0,∞] defined
by (here A ∈ ΩX)

α(A) = inf{r > 0 : A ⊆ ∪n
i=1 Ai and diam (Ai) ≤ r}.

Let S be a nonempty subset of X. For each x ∈ X, define d(x, S) =
infy∈S d(x, y). We say a set is countably bounded if it is countable and
bounded. Now suppose G : S → 2X ; here 2X denotes the family of nonempty
subsets of X. Then G : S → 2X is

(i). countably condensing if α(G(W )) < α(W ) for all countably bounded
sets W of S with α(W ) 6= 0,

(ii). hemicompact if each sequence {xn}n∈N in S has a convergent subse-
quence whenever d(xn, G (xn))→ 0 as n→∞.

We now recall a result from the literature [1].
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Theorem 1.1. Let (Y, d) be a metric space, D a nonempty, complete subset
of Y , and G : D → 2Y a countably condensing map with either D or G(D)
bounded. Then G is hemicompact.

Let E be a normed space. Let A and C be two subsets of E. A
pair A

p← Z
q→ C is called a countably condensing pair from A to C if

α
(
q

(
p−1 (Ω)

))
< α(Ω) for all countably bounded subsets Ω of A with

α(Ω) 6= 0.

Now let I be a directed set with order ≤ and let {Eα}α∈I be a family of
locally convex spaces. For each α ∈ I, β ∈ I for which α ≤ β let πα,β :
Eβ → Eα be a continuous map. Then the set{

x = (xα) ∈
∏
α∈I

Eα : xα = πα,β(xβ) ∀α, β ∈ I, α ≤ β

}

is a closed subset of
∏

α∈I Eα and is called the projective limit of {Eα}α∈I

and is denoted by lim← Eα (or lim← {Eα, πα,β} or the generalized intersec-
tion [5 pp. 439] ∩α∈I Eα.)

2. Coincidence degree

A pair (p, q) is called compact if q is compact. Let U be an open subset
of a normed space E. By K(U,E) we mean the family of compact pairs
(p, q) from U to E for which Fix (p, q) ∩ ∂ U = ∅ (recall that a pair (p, q)
is from U to E if there exists a metric space Z for which U

p← Z
q→ E);

here Fix (p, q) = {x ∈ U : x ∈ q (p−1(x))}. In 1976 Kucharski [6], using the
coincidence index in Rn and Schauder projections, defined the coincidence
index on K(U,E) and established the following result.

Theorem 2.1. There exists a map I : K(U,E)→ Q (called the coincidence
index (degree)) which satisfies the following properties:

(I). if I(p, q) 6= 0 then Fix (p, q) 6= ∅;
and

(II). if h : Z×[0, 1]→ E is a compact map such that Fix (p, h)∩∂U = ∅, Then
I(p, h0) = I(p, h1); here h0(y) = h(y, 0), h1(y) = h(y, 1) and Fix (p, h) =
{x ∈ U : x ∈ h (p−1(x)× {t}) for some t ∈ [0, 1]}.
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We now define the coincidence index for countably condensing pairs as in
[3]. Let E be a Banach space and U an open subset of E.

Definition 2.1. A pair U
p← Z

q→ E is called a countably condensing pair
from U to E if α

(
q

(
p−1 (Ω)

))
< α(Ω) for all countably bounded subsets

Ω of U with α(Ω) 6= 0.

Definition 2.2. (p, q) ∈M(U,E) if U is bounded and (p, q) is a countably
condensing pair from U to E with no fixed points on ∂U (i.e. Fix (p, q) ∩
∂U = ∅).

Now let (p, q) ∈ M(U,E). We claim that we can associate with each pair
(p, q) a compact pair (p, q?) with

(2.1) Fix (p, q) = Fix (p, q?);

here of course Fix (p, q) = {x ∈ U : x ∈ q (p−1 (x))}. To see this let

K1 = co (q (p−1 (U))) and Kn = co (q (p−1 (U ∩Kn−1))) for n = 2, 3, . . . .

In [2] we showed

(2.2) q (p−1 (U ∩Kn)) ⊆ Kn+1 and Fix (p, q) ⊆ Kn for each n.

Now there are two possibilities that can occur, namely

(2.3) Kn 6= ∅ for each n

or

(2.4) Ki 6= ∅ for i = 1, . . . ,m and Km+j = ∅ for each j ∈ {1, 2, . . . }.

If (2.4) holds, then we can choose x0 ∈ Km and let

(2.5) q? : Z → E be q?(z) = x0.

Clearly (p, q?) is a compact pair and (2.2) guarantees that Fix (p, q) = ∅. Also
if x ∈ U with x ∈ q? (p−1 (x)) then it is immediate that x = x0 so Km+1 6= ∅,
a contradiction. Thus Fix (p, q?) = ∅ and so Fix (p, q) = Fix (p, q?) = ∅. In
this case we define the coincidence index (degree) I(p, q) as

(2.6) I(p, q) = I(p, q?);
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of course one could define I(p, q) = 0 immediately (if (2.4) occurs) since
Fix (p, q) = ∅. Next suppose (2.3) holds. It is well known (see [7, Theorem
2.2] if (p, q) ∈M(U,E)) that

K∞ = ∩∞n=1 Kn

is compact. Also from (2.2) we have that Fix (p, q) ⊆ K∞. Now define a
compact pair (p, q̃) as follows:

U ∩K∞
p← p−1(U ∩K∞)

q̃→ K∞

with q̃ = q(u) for all u. Also in [2] we showed

Fix (p, q̃) =
{
x ∈ U ∩K∞ : x ∈ q̃ (p−1 (x))

}
= Fix (p, q).

Now Dugundji’s extension theorem guarantees that we can extend q̃ to a
compact map q? : Z → K∞. As a result (p, q?) is a compact pair with

(2.7) Fix (p, q) = Fix (p, q?) =
{
x ∈ U : x ∈ q? (p−1 (x))

}
.

To see (2.7), we will show Fix (p, q?) = Fix (p, q̃). Certainly Fix (p, q̃) ⊆
Fix (p, q?) since q?(y) = q̃(y) for y ∈ p−1(U ∩ K∞). Next suppose x ∈
Fix (p, q?), so x ∈ U and x ∈ q? (p−1 (x)). Now since q? (p−1 (x)) ⊆ K∞

we have x ∈ U ∩ K∞. Thus q? (p−1 (x)) = q̃ (p−1 (x)) since q?(y) = q̃(y)
for y ∈ p−1(U ∩ K∞). As a result x ∈ q̃ (p−1 (x)) with x ∈ U ∩ K∞ i.e.
x ∈ Fix (p, q̃). Thus (2.7) holds. In this case we define the coincidence index
(degree) I(p, q) as

(2.8) I(p, q) = I(p, q?).

Of course we now need to check that the definition is independent of the
extension q?. Let the compact map q : Z → K∞ be another extension
of q̃ with Fix(p, q) = Fix (p, q). We must show I(p, q?) = I(p, q). Let
R : E → K∞ be a retraction (guaranteed from Dugundji’s extension theorem)
and consider the compact map h : Z × [0, 1]→ K∞ given by

h(x, t) =

{
(1− 2 t) q?(x) + 2 t R q(x), t ∈

[
0, 1

2

]
and x ∈ Z

(2− 2 t) R q(x) + (2 t− 1) q(x), t ∈
(

1
2 , 1

]
and x ∈ Z.

Notice h0(x) = q?(x) and h1(x) = q(x). If we show

(2.9) Fix (p, h) ∩ ∂U = ∅,
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then Theorem 2.1 guarantees that I(p, h0) = I(p, h1). That is I(p, q?) =
I(p, q), and we are finished. It remains to check (2.9). Suppose there exists
t ∈ [0, 1] (without loss of generality assume t ∈

[
0, 1

2

]
) and x ∈ ∂U with

x ∈ h (p−1(x)×{t}). Then x = h(y, t) for some y with p(y) = x. As a result

(2.10) p(y) = (1− 2 t) q?(y) + 2 t R q(y).

We know q?(y) ∈ K∞ and R q(y) ∈ K∞ so these together with (2.10) yield
p(y) ∈ K∞. Also p(y) = x ∈ ∂U and so y ∈ p−1(U ∩K∞). Thus

(2.11) q?(y) = q̃(y) = q(y) and R q(y) = q(y)

since q(y) ∈ K∞ (note q (p−1(U ∩K∞)) ⊆ K∞ from (2.2)). As a result

p(y) = (1− 2 t) q(y) + 2 t q(y) = q(y),

i.e. x ∈ q (p−1(x)) with x ∈ ∂U . This is a contradiction since Fix (p, q) ∩
∂U = ∅.

Theorem 2.2. If (p, q) ∈M(U,E) and I(p, q) 6= 0 then Fix (p, q) 6= ∅.

Proof. Now from above there exists a compact pair (p, q?) with I(p, q) =
I(p, q?). Theorem 2.1 implies Fix (p, q?) 6= ∅ so (2.1) guarantees that
Fix (p, q) 6= ∅. �

Remark 2.1. If the pair in Definition 2.2 was condensing (see [3]) instead of
countably condensing then U bounded is not needed in the above argument
(see [3]).

Let E be a Banach space, U an open bounded subset of E and let φ ∈
Ad(U,E) be countably condensing with Fix φ ∩ ∂U = ∅; here Fix φ = {x ∈
U : x ∈ φ(x)} and φ is called countably condensing if there exists a selected
pair (p, q) of φ which is countably condensing. We define the coincidence
index (degree) I(φ,U) by putting

I(φ,U) = {I(p, q) : (p, q) ⊂ φ such that (p, q) is P -concentrative} ;

note Fix φ = Fix (p, q).

If I(φ,U) 6= {0} then Fixφ 6= ∅. To see this note if I(φ,U) 6= {0}
then there exists a selected pair (p, q) of φ which is countably condensing
with I(p, q) 6= 0. Then Theorem 2.2 guarantees that Fix (p, q) 6= ∅ and so
Fix φ 6= ∅.
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3. Fixed point theory in Fréchet spaces

Let E = (E, {| · |n}n∈N ) be a Fréchet space with the topology generated
by a family of seminorms {| · |n : n ∈ N}. We assume that the family of
seminorms satisfies

(3.1) |x|1 ≤ |x|2 ≤ |x|3 ≤ . . . for every x ∈ E.

A subset X of E is bounded if for every n ∈ N there exists rn > 0 such
that |x|n ≤ rn for all x ∈ X. To E we associate a sequence of Banach
spaces {(En, | · |n)} described as follows. For every n ∈ N we consider the
equivalence relation ∼n defined by

(3.2) x ∼n y iff |x− y|n = 0.

We denote by En = (E /∼n, | · |n) the quotient space, and by (En, | · |n) the
completion of En with respect to | · |n (the norm on En induced by | · |n
and its extension to En are still denoted by | · |n). This construction defines a
continuous map µn : E → En. Now since (3.1) is satisfied the seminorm | · |n
induces a seminorm on Em for every m ≥ n (again this seminorm is denoted
by | · |n). Also (3.2) defines an equivalence relation on Em from which we
obtain a continuous map µn,m : Em → En since Em /∼n can be regarded as
a subset of En. We now assume the following condition holds:

(3.3)

{
for each n ∈ N, there exists a Banach space (En, | · |n)
and an isomorphism (between normed spaces) jn : En → En.

Remark 3.1. (i). For convenience the norm on En is denoted by | · |n.
(ii). Usually in applications En = En for each n ∈ N .
(iii). Note if x ∈ En (or En) then x ∈ E. However if x ∈ En then x

is not necessaily in E and in fact En is easier to use in applications (even
though En is isomorphic to En). For example if E = C[0,∞), then En

consists of the class of functions in E which coincide on the interval [0, n] and
En = C[0, n].

Finally we assume

(3.4) E1 ⊇ E2 ⊇ . . . and for each n ∈ N, |x|n ≤ |x|n+1 ∀ x ∈ En+1.
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Let lim← En (or ∩∞1 En where ∩∞1 is the generalized intersection [5]) denote
the projective limit of {En}n∈N (note πn,m = jn µn,m j−1

m : Em → En for
m ≥ n) and note lim← En

∼= E, so for convenience we write E = lim← En.
For each X ⊆ E and each n ∈ N we set Xn = jn µn(X), and we let

Xn and ∂Xn denote respectively the closure and the boundary of Xn with
respect to | · |n in En. Also the pseudo-interior of X is defined by

pseudo− int (X) = {x ∈ X : jn µn(x) ∈ Xn \ ∂Xn for every n ∈ N}.

The set X is pseudo-open if X = pseudo− int (X).

If U is a pseudo-open bounded subset of E then for each n ∈ N we have
that Un is open and bounded.

To see that Un is open first notice Un ⊆ Un \ ∂Un since if y ∈ Un then there
exists x ∈ U with y = jnµn(x) and this together with U = pseudo − int U

yields jnµn(x) ∈ Un \ ∂Un i.e. y ∈ Un \ ∂Un. In addition notice

Un \ ∂Un = (int Un ∪ ∂Un) \ ∂Un = int Un \ ∂Un = int Un

since int Un ∩ ∂Un = ∅. Consequently

Un ⊆ Un \ ∂Un = int Un, so Un = int Un.

As a result Un is open. Finally Un is bounded since U is bounded (note if
y ∈ Un then there exists x ∈ U with y = jnµn(x)).

We begin with a result for Volterra type operators.

Theorem 3.1. Let E and En be as described above, F : Ω → 2E where
Ω is a pseudo-open bounded subset of E. Also assume for each n ∈ N that
F : Ωn → C(En). Suppose the following conditions are satisfied:

(3.5) for each n ∈ N, F ∈ Ad(Ωn, En) is countably condensing

(3.6) for each n ∈ N, FixF ∩ ∂Ωn = ∅

(3.7) for each n ∈ N, I(F,Ωn) 6= {0}

and

(3.8)

{
for each n ∈ {2, 3, . . . } if y ∈ Ωn solves y ∈ F y in En

then y ∈ Ωk for k ∈ {1, . . . , n− 1}.

Then F has a fixed point in E.
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Proof. Fix n ∈ N . Now there exists yn ∈ Ωn with yn ∈ F yn. Lets look
at {yn}n∈N . Notice y1 ∈ Ω1 and yk ∈ Ω1 for k ∈ N\{1} from (3.8). As a
result yn ∈ Ω1 for n ∈ N , yn ∈ F yn in En together with (3.5) implies there
is a subsequence N?

1 of N and a z1 ∈ Ω1 with yn → z1 in E1 as n → ∞
in N?

1 . Let N1 = N?
1 \ {1}. Now yn ∈ Ω2 for n ∈ N1 together with (3.5)

guarantees that there exists a subsequence N?
2 of N1 and a z2 ∈ Ω2 with

yn → z2 in E2 as n→∞ in N?
2 . Note from (3.4) that z2 = z1 in E1 since

N?
2 ⊆ N1. Let N2 = N?

2 \ {2}. Proceed inductively to obtain subsequences of
integers

N?
1 ⊇ N?

2 ⊇ . . . , N?
k ⊆ {k, k + 1, . . . }

and zk ∈ Ωk with yn → zk in Ek as n→∞ in N?
k . Note zk+1 = zk in Ek

for k ∈ {1, 2, . . . }. Also let Nk = N?
k \ {k}.

Fix k ∈ N . Let y = zk in Ek. Notice y is well defined and y ∈ lim←En =
E. Now yn ∈ F yn in En for n ∈ Nk and yn → y in Ek as n → ∞ in
Nk (since y = zk in Ek) together with the fact that F : Ωk → 2Ek is upper
semicontinuous (note yn ∈ Ωk for n ∈ Nk) implies y ∈ F y in Ek. We can
do this for each k ∈ N so y ∈ F y in E. �

Our next result was motivated by Urysohn type operators. In this case the
map Fn will be related to F by the closure property (3.14).

Theorem 3.2. Let E and En be as described in the beginning of Section 3,
Ω a pseudo-open bounded subset of E and F : Ω→ 2E. Also assume for each
n ∈ N that Fn : Ωn → C(En). Suppose the following conditions are satisfied:

(3.9) Ω1 ⊇ Ω2 ⊇ . . .

(3.10) for each n ∈ N, Fn ∈ Ad(Ωn, En)

(3.11) for each n ∈ N, FixFn ∩ ∂Ωn = ∅

(3.12) for each n ∈ N, I(Fn,Ωn) 6= {0}

(3.13)


for each n ∈ N, the map Kn : Ωn → 2En , given by
Kn(y) = ∪∞m=n Fm(y) (see Remark 3.2), is
countably condensing
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and

(3.14)



if there exists a w ∈ E and a sequence {yn}n∈N

with yn ∈ Ωn and yn ∈ Fn yn in En such that
for every k ∈ N there exists a subsequence
S ⊆ {k + 1, k + 2, . . . } of N with yn → w in Ek

as n→∞ in S, then w ∈ F w in E.

Then F has a fixed point in E.

Remark 3.2. The definition of Kn in (3.13) is as follows. If y ∈ Ωn and
y /∈ Ωn+1 then Kn(y) = Fn(y), whereas if y ∈ Ωn+1 and y /∈ Ωn+2 then
Kn(y) = Fn(y) ∪ Fn+1(y), and so on.

Proof. Fix n ∈ N . Now there exists yn ∈ Ωn with yn ∈ Fn yn in En. Lets
look at {yn}n∈N . Now Theorem 1.1 (with Y = E1, G = K1, D = Ω1 and
note d1(yn,K1(yn)) = 0 for each n ∈ N since |x|1 ≤ |x|n for all x ∈ En and
yn ∈ Fn yn in En; here d1(x, Z) = infy∈Z |x − y|1 for Z ⊆ Y ) guarantees
that there exists a subsequence N?

1 of N and a z1 ∈ E1 with yn → z1 in
E1 as n→∞ in N?

1 . Let N1 = N?
1 \ {1}. Look at {yn}n∈N1 . Now Theorem

1.1 (with Y = E2, G = K2 and D = Ω2) guarantees that there exists a
subsequence N?

2 of N1 and a z2 ∈ E2 with yn → z2 in E2 as n → ∞
in N?

2 . Note z2 = z1 in E1 since N?
2 ⊆ N?

1 . Let N2 = N?
2 \ {2}. Proceed

inductively to obtain subsequences of integers

N?
1 ⊇ N?

2 ⊇ . . . , N?
k ⊆ {k, k + 1, . . . }

and zk ∈ Ek with yn → zk in Ek as n→∞ in N?
k . Note zk+1 = zk in Ek

for k ∈ N . Also let Nk = N?
k \ {k}.

Fix k ∈ N . Let y = zk in Ek. Notice y is well defined and y ∈ lim← En =
E. Now yn ∈ Fn yn in En for n ∈ Nk and yn → y in Ek as n→∞ in Nk

(since y = zk in Ek) together with (3.14) implies y ∈ F y in E. �
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