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Abstract. We investigate the two-point boundary value problem for second order differential

inclusions of the form D
dt

ṁ(t) ∈ F (t, m(t), ṁ(t)) on a complete Riemannian manifold for

a couple of points, non-conjugate along at least one geodesic of Levi-Civitá connection,

where D
dt

is the covariant derivative of Levi-Civitá connection and F (t, m, X) is convex-

valued and satisfies the upper Carathéodory condition or is almost lower semi-continuous

set-valued vector field such that ‖F (t, m, X)‖ < a(t, m)‖X‖2 with continuous a(t, m) > 0.

Some conditions on certain geometric characteristics, on the distance between points and on

a(t, m) are found, under which the problem is solvable on any time interval. The solution

is constructed from a fixed point of a certain integral-type operator, acting in the space of

continuous curves in the tangent space at initial point. The existence of fixed point is proved

by application of Bohnenblust-Karlin and Schauder theorems.
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1. Introduction

Let M be a finite-dimensional complete Riemannian manifold and TM be
its tangent bundle with the natural projection π : TM → M . Consider a
set-valued map F : R × TM → TM such that for any point (m,X) ∈ TM
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(this means that X ∈ TmM , i.e., X is a tangent vector to M at the point
m ∈ M) the relation πF (t, m,X) = π(m,X) = m holds.

We investigate the differential inclusion of the form

D

dt
ṁ(t) ∈ F (t, m(t), ṁ(t)) (1)

where D
dt is the covariant derivative of Levi-Civita connection. Such inclusions

arise in description of complicated mechanical systems on nonlinear configu-
ration spaces where the set-valued right-hand side F is generated by an es-
sentially discontinuous force field or by a force with control (see, e.g., [4, 5]).
That is why everywhere below we call F a set-valued force field.

In this paper we deal with the two-point boundary value problem for in-
clusion (1). For differential equations and inclusions of this sort with various
kinds of F this problem was investigated in many publications (see, e.g., ref-
erences in [8]). An important feature of this problem on manifolds is that if
two points are conjugate along all geodesics of Levi-Civita connection, joining
them, there may not exist a solution of this problem even for single-valued
smooth uniformly bounded force fields (as well as for force fields with linear
and quadratic growth, see examples in [4, 8]). Recall that for F with quadratic
growth this problem may not be solvable also for non-conjugate points (even
in Euclidean spaces, see an example in [8]).

The set-valued force field F (t, m,X) is said to have quadratic growth in
X if for any compact Θ ⊂ M and any finite interval [0, l] the relation

lim
‖X‖→∞

‖F (t,m,X)‖
‖X‖2 = a(t, m) holds uniformly in t ∈ [0, l] and m ∈ Θ where

a(t, m) ≥ 0 is a continuous real-valued function on [0, l]×Θ that is not iden-
tically equal to zero. As usual, here ‖F (t, m,X)‖ = sup

y∈F (t,m,X)
‖y‖ where the

norms of vectors are generated by the Riemannian metric.
In [8] some conditions on F with quadratic growth, on the two points and

on some geometric characteristics of the manifold were found, under which for
the points, that are not conjugate along at least one geodesic, the problem is
solvable on a small enough time interval.

Obviously, if the estimate ‖F (t, m,X)‖ < a(t, m)(1 + ‖X‖2) holds for F

for a certain continuous real function a(t, m) > 0, it is a particular case of
quadratic growth and so the results of [8] are valid for such F .
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The main result of this paper is that if the following more restrictive estimate

‖F (t, m,X)‖ < a(t, m)‖X‖2

holds and the conditions of [8] are satisfied, a solution of two-point boundary
value problem for (1) exists on arbitrary finite time interval.

It should be pointed out that the effect of existence of the above-mentioned
solution on arbitrary finite time interval was previously known for uniformly
bounded F in Euclidean spaces and for single-valued quadratic fields F on
manifolds that correspond to vector fields of geodesic sprays of connections
on the tangent bundles. In the latter case, applying linear change of time
along the solution on a given time interval, one obtains a solution on another
time interval and by this method a solution on arbitrary finite interval can
be constructed. Notice that this approach is absolutely not applicable for our
general set-valued case.

We construct the above mentioned solution from a fixed point of a special
integral-type operator that acts in the space of continuous curves of the tangent
space at initial point.

Preliminaries from set-valued analysis can be found in [2, 3, 10], and those
from geometry of manifolds in [1, 4, 5, 9, 11].

2. Technical statements

In this section we modify some constructions from [4, 5] for the problem
under consideration.

Let M be a complete Riemannian manifold. Consider m0 ∈ M , [0, 1] ⊂ R

and let v : [0, 1] → Tm0M be a continuous curve. It is shown in [4, 5] that
there exists unique C1-curve m : [0, 1] → M such that m(0) = m0 and the
vector ṁ(t) is parallel along m(·) to the vector v(t) ∈ Tm0M at any t ∈ [0, 1].

Denote the curve m(t), constructed above from the curve v(t), by the symbol
Sv(t). Thus, we have defined a continuous operator S that sends the Banach
space C0([0, 1], Tm0M) of continuous maps (curves) from [0, 1] to Tm0M into
the Banach manifold C1([0, 1],M) of C1-maps from [0, 1] to M .

By Uk ⊂ C0([0, 1], Tm0M) we denote the ball of radius k centered at the
origin in C0([0, 1], Tm0M).
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Let a point m1 ∈ M be non-conjugate to the point m0 ∈ M along a geodesic
g(t) of the Levi-Civitá connection. Without loss of generality we postulate that
the parameter t on g(t) is taken so that g(0) = m0 and g(1) = m1.

Lemma 1. There exists a ball Uε ⊂ C0([0, 1], Tm0M) with a radius ε > 0 and
centered at the origin such that for any curve û(t) ∈ Uε ⊂ C0([0, 1], Tm0M)
there exists a unique vector Cû, belonging to a certain bounded neighborhood
V of the vector ġ(0) in Tm0M , that is continuous in û and such that S(û +
Cû)(1) = m1.

Proof. By the construction of operator S its value Svg(1) on the constant
curve vg(t) = ġ(0) coincides with expm0 ġ(0) = m1. Since m0 are m1 are
not conjugate along g, expm0 is a diffeomorphism of a certain neighborhood of
ġ(0) ∈ Tm0M onto a neighborhood of the point m1 in M . Applying the implicit
function theorem, one can easily show that the perturbation of exponential
map, that sends X ∈ Tm0M to S(X + û)(1), is also a diffeomorphism of a
certain neighborhood V of ġ(0) onto a neighborhood of m1 in M for any curve
û(t) from a small enough ε-neighborhood of the origin in C0([0, 1], Tm0M). �

Introduce the notation sup
C∈V

‖C‖ = C where V is from Lemma 1.

Remark 2. One can easily show that ε < C.

Lemma 3. In conditions and notations of Lemma 1 let R > 0 and t1 > 0 be
such that t−1

1 ε > R. Then for any curve u(t) ∈ UR ⊂ C0([0, t1], Tm0M) there
exists an unique vector Cu in a neighborhood t−1

1 V of the vector t−1
1 ġ(0) in

Tm0M , continuously depending on u and such that S(u + Cu)(t1) = m1.

Proof. For u(t) ∈ UR ⊂ C0([0, t1], Tm0M) introduce û(t) = t1u(t1 · t) ∈
Uε ⊂ C0([0, 1], Tm0M) and Cu = t−1

1 Cû. From Lemma 1 we get S(û+Cû)(1) =
m1 and d

dtS(û + Cû)(t) is parallel to û(t) + Cû. For the curve g(t) = S(û +
Cû)(t · t1) we have d

dtg(t) = t−1
1

d
dtS(û + Cû)(t · t1) and this vector is parallel

along the same curve to the vector t−1
1 (û(t) + Cû) = u(t) + Cu. Thus g(t) =

S(u + Cu)(t) = S(û + Cû)(t · t−1
1 ) for t ∈ [0, t1]. Hence S(u + Cu)(t1) =

S(û + Cû)(1) = m1. �

Lemmas 1 and 3 give a modification of theorem 3.3 from [4].
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Lemma 4. For specified t1 > 0 and R > 0 as above all curves S(v(t)+Cv)(t)
with v ∈ UR ⊂ C0([0, t1], Tm0M) lie in a compact set Ξ ⊂ M where Ξ depends
on ε and C introduced above.

Indeed, since the parallel translation preserves the norm of a vector, for any
v(t) as above the length of S(v(t)+Cv)(t) is not greater than

∫ t1
0 (R+‖Cv‖)dt ≤∫ t1

0 t−1
1 (ε+C)dt =

∫ 1
0 (ε+C)dt = ε+C. Since M is complete, by Hopf-Rinow

theorem any metric ball of finite radius ε + C is compact.

Lemma 5. For 0 < δ < ε
(ε+C)2

and for any t > 0 both roots K1,2 of the
equation

δ(Kt + Ct−1)2 = K

are positive.

Prof. Transform the equation δ(Kt + Ct−1)2 = K into the form (δt2)K +
(2Cδ−1)K+C2t−2δ = 0. Its discriminant is equal to D = 1−4Cδ. This means
that for δ < 1

4C the roots are real and take the form K1,2 = 1−2Cδ±
√

1−4Cδ
2δt2

.
Since (1 − 2Cδ) >

√
1− 4Cδ2δt2, we have K1,2 > 0. But as it is pointed out

in Remark 2, ε < C and so ε
(ε+C)2

< 1
4C . �

Lemma 6. For 0 < δ < ε
(ε+C)2

and for all t > 0 the inequvality t−1ε >

1−2Cδ−
√

1−4Cδ
2δt holds.

Proof. In order to prove this statement, consider the following system{
δ < 1

4C
1−2Cδ−

√
1−4Cδ

2δ < ε.

By means of elementary transformations, taking into account Remark 2, this
system can be transformed into the following form

[
δ < ε

ε2+2Cε+C2

δ ≥ 1
2(ε+C)

δ < 1
4C .

Since by Remark 2 ε < C, from the last system it follows that δ < ε
(ε+C)2

. �
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3. The main results

Everywhere below M is a complete Riemannian manifold. Without loss
of generality we consider t ∈ [0, l] = I where [0, l] = I ⊂ R is an arbitrary
specified finite interval.

Definition 7. By a solution of (1) we mean a C1-curve m(t) with absolutely
continuous derivative ṁ(t) such that inclusion (1) holds for almost all t.

We suppose that the estimate ‖F (t, m,X)‖ < a(t, m)‖X‖2 is satisfied where
a(t, m) > 0 is a continuous real-valued function on I ×M .

Let m0 and m1 be two different points in M that are not conjugate along a
geodesic g(·) of the Levi-Civita connection. So, all constructions of previous
Section are valid. In particular, numbers ε and C from Lemma 1 are well-
posed for m0 and m1. Denote by Ξ the compact set from Lemma 4. Notice
that on the compact set I ×Ξ for the continuous function a(t, m) there exists
a certain constant δ such that 0 < a(t, m) < δ for all (t, m) ∈ I × Ξ.

The main assumption, under which the existence theorems will be proven,
is that δ < ε

(ε+C)2
on I × Ξ where ε and C are from Lemma 1.

We deal with F of the following two types:

Definition 8. We say that F (t, m,X) satisfies upper Carathéodory conditions
if:

1) for every (m,X) ∈ TM the map F (·,m, X) : I → TmM is measurable,
2) for almost all t ∈ I the map F (t, ·, ·) : TM → TM is upper semi-

continuous.

Definition 9. Let I = [0, l] ⊂ R. The set-valued force field F : I×TM → TM

is called almost lower semi-continuous if there exists a countable sequence of
disjoint compact sets {In}, In ⊂ I such that: (i) the measure of I\∪nIn is equal
to zero; (ii) the restriction of F on each In × TM is lower semi-continuous.

Theorem 10. Let F (t, m,X) have convex closed bounded values, satisfy the
upper Carathéodory condition and ‖F (t, m,X)‖ < a(t, m)‖X‖2 with a con-
tinuous function a(t, m) > 0. Let the points m1 and m0 be non-conjugate
along a certain geodesic g(·) of the Levi-Civitá connection and let the estimate
a(t, m) < δ hold on I×Ξ, where the compact set Ξ is from Lemma 4 and δ > 0
satisfies the inequality δ < ε

(ε+C)2
. Then for any t1 > 0, t1 ∈ I there exists a

solution m(t) of inclusion (1), for which m(0) = m0 and m(t1) = m1.
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Proof. For a C1-curve γ(t) = Sv(t), v(·) ∈ C0(I, Tm0M), consider the
set-valued vector field F (t, γ(t), γ̇(t)). Denote by Γ the operator of parallel
translation of vectors along γ(·) at the point γ(0) = m0. Apply operator Γ
to all sets F (t, γ(t), γ̇(t)) along γ(·). As a result for any v ∈ C0(I, Tm0M) we
obtain a set-valued map ΓFSv : [0, l] → Tm0M that has convex values. It is
shown in [7] that the map ΓFS : C0 ([0, l], Tm0M) × [0, l] → Tm0M satisfies
upper Carathéodory conditions. Denote by PΓFSv the set of all measurable
selections of ΓFSv : [0, l] → Tm0M (such selections exist, see e.g., [2]). Define
on C0([0, t1], Tm0M) the set-valued operator

∫
PΓFS by the formula∫

PΓFSv = {
∫ t

0
f(τ)dτ |f(·) ∈ PΓFSv}.

It is shown in [7] that
∫
PΓFS is upper semicontinuous, has convex values

and sends bounded sets from C0([0, t1], Tm0M) into compacts ones.
Specify a time instant t1, 0 < t1 < l. Taking into account the hypothesis of

Theorem, we obtain from Lemma 5 that K = 1−2Cδ−
√

1−4Cδ
2δt2

is positive and
from Lemma 6 that t−1

1 ε > Kt1. Consider the ball UKt1 of radius Kt1 with
center at the origin in Banach space C0([0, t1], Tm0M). Since t−1

1 ε > Kt1,
by Lemma 3 for any v(·) ∈ UKt1 the vector Cv is well-posed. Thus we can
introduce the operator Z : UKt1 → C0([0, t1], Tm0M) by the formula:

Z(v) =
∫
PΓFS(v + Cv).

As well as
∫
PΓFS, this operator is upper semi-continuous, convex-valued and

sends bounded sets from C0([0, t1], Tm0M) into compacts ones (see [8]).
Since parallel translation preserves the norms of vectors, from the construc-

tion of S and from the hypothesis we derive that for any v ∈ UKt1 and t ∈ [0, t1]
the estimate

‖F (t, S(v(t) + Cv),
d

dτ
S(v(t) + Cv))‖ < δ‖v(t) + Cv‖2

holds. By construction δ‖v(t) + Cu‖2 ≤ δ(Kt1 + Ct−1
1 )2 = K. Since parallel

translation preserves the norms of vectors, for any curve u(t) ∈ Zv(t) and
for any t ∈ [0, t1] the inequality ‖u(t)‖ ≤ Kt ≤ Kt1 holds. Thus Z sends
the ball UKt1 into itself and from the Bohnenblust-Karlin fixed point theorem
(see, e.g., [2, 10]) it follows that it has a fixed point u∗ ∈ UKt1 , i.e. u∗ ∈ Zu∗.
Let us show that m(t) = S(u∗(t) + Cu∗) is the desired solution. By the
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construction we have m(0) = m0 and m(t1) = m1, m(t) is a C1-curve and
ṁ(t) is absolutely continuous. Note that u̇∗ is a selection of ΓF (t,S(u∗ +
Cu∗), d

dtS(u∗ + Cu∗)) because u∗ is a fixed point of Z. In other words, the
inclusion u̇∗(t) ∈ ΓF (t,S(u∗ + Cu∗), d

dtS(u∗ + Cu∗)) holds for all points t at
which the derivative exists. Using the properties of the covariant derivative
and the definition of u∗, one can show that u̇∗(t) is parallel to D

dtṁ(t) along m(·)
and ΓF (t,S(u∗ + Cu∗), d

dtS(u∗ + Cu∗)) is parallel to F (t, m(t), ṁ(t)). Hence,
D
dtṁ(t) ∈ F (t, m(t), ṁ(t)). �

Theorem 11. Let F (t, m,X) be almost lower semicontinuous, have closed
bounded values and ‖F (t, m,X)‖ < a(t, m)‖X‖2 with a continuous function
a(t, m) > 0. Let the points m1 and m0 be non-conjugate along a certain
geodesic g(·) of the Levi-Civitá connection and let the estimate a(t, m) < δ

holds on I × Ξ, where the compact set Ξ is from Lemma 4 and δ > 0 satisfies
the inequality δ < ε

(ε+C)2
. Then for any t1 > 0, t1 ∈ I there exists a solution

m(t) of inclusion (1), for which m(0) = m0 and m(t1) = m1.

Proof. Here we use the same notation as in the proof of Theorem 10. No-
tice that from the hypothesis it follows that for all v ∈ C0([0, l], Tm0M) the
curves from PΓFSv are integrable. Hence the set-valued map PΓFS sends
C0([0, l], Tm0M) into L1(([0, l],A, µ), Tm0M), where A is Borel σ-algebra and
µ is the normalized Lebesgue’s measure. Since F is almost lower semicon-
tinuous, in complete analogy with [10] one can easily show that the operator
PΓFS : C0([0, l], Tm0M) → L1(([0, l],A, µ), Tm0M) is lower semicontinuous
and has decomposable images (for the definition see, e.g., [2, 3, 10]). Then by
Fryszkowski-Bressan-Colombo theorem (see, e.g., [2, 3]) it has a continuous
selection that we denote by pΓFS.

Choose the numbers t1 and K as in the proof of Theorem 10. Then on the
ball UKt1 ⊂ C0([0, t1], Tm0M) the operator

Gv =
∫ t

0
pΓFS(v(s) + Cv),

d

dt
S(v(s) + Cv))ds : UKt1 → C0([0, t1], Tm0M)

is well posed. As a corollary to Lemma 19 of [6] we obtain that G is completely
continuous. Since parallel translation preserves the norm of a vector, from the
construction of S, from Lemma 5 and from Lemma 6 for any u ∈ UKt1 with
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given F we get

‖Gv‖ = ‖
∫ t

0
pΓF (s,S(v(s) + Cv),

d

dt
S(v(s) + Cv))ds‖C0([0,t1],Tm0M) ≤

δ(Kt1 + Ct−1
1 )2t1 = Kt1.

Hence the completely continuous operator G sends UKt1 into itself and by
classical Schauder’s principle it has a fixed point u∗ ∈ UKt1 . Using the same
arguments, as in the proof of Theorem 10, one can easily prove that m(t) =
S(u∗ + C∗u)(t) is a solution of (1) such that m(0) = m0 and m(t1) = m1. �

Remark 12. Notice that if a geodesic, along which m0 and m1 are not conju-
gate, is a length minimizing one, the number C characterizes the Riemannian
distance between these points. The numbers C and ε together provide a certain
characteristics of the Riemannian geometry on M in a neighborhood of m0.
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