STRONG CONVERGENCE THEOREMS OF AVERAGING ITERATIONS OF NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

LU-CHUAN CENG*, ADRIAN PETRUŞEL** AND JEN-CHIH YAO***
*Department of Mathematics, Shanghai Normal University
Shanghai 200234, China
E-mail: zenglc@hotmail.com
${ }^{* *}$ Department of Applied Mathematics, Babes-Bolyai University Cluj-Napoca
1 Kogălniceanu street, 400084 Cluj-Napoca, Romania
E-mail: petrusel@math.ubbcluj.ro
${ }^{* * *}$ Department of Applied Mathematics, National Sun Yat-sen University 804 Kaohsiung, Taiwan
E-mail: yaojc@math.nsysu.edu.tw

Abstract

Let E be a uniformly convex Banach space whose norm is Gâteaux differentiable and which has a weakly continuous duality mapping; for example, every $l^{p}(1<p<\infty)$ space has a weakly continuous duality map with gauge function $\varphi(t)=t^{p-1}$. Let C be a nonempty closed convex subset of $E, T: C \rightarrow E$ be a nonexpansive nonself-mapping, and x_{0}, x, y_{0}, y be elements of C. In this paper, we study the strong convergence of two sequences generated by

$$
\begin{aligned}
& x_{n+1}=\frac{1}{n+1} \sum_{j=0}^{n}\left(\alpha_{n} x+\left(1-\alpha_{n}\right)(P T)^{j} x_{n}\right) \text { for } n=0,1,2, \ldots \\
& y_{n+1}=\frac{1}{n+1} \sum_{j=0}^{n} P\left(\alpha_{n} y+\left(1-\alpha_{n}\right)(T P)^{j} y_{n}\right) \text { for } n=0,1,2, \ldots,
\end{aligned}
$$

[^0]where $\left\{\alpha_{n}\right\}$ is a real sequence such that $0 \leq \alpha_{n} \leq 1$, and P is a sunny and nonexpansive retraction of E onto C.
Key Words and Phrases: Fixed point, nonexpansive nonself-mapping, strong convergence, sunny and nonexpansive retraction, Banach space.
2000 Mathematics Subject Classification: $47 \mathrm{H} 09,49 \mathrm{M} 05,47 \mathrm{H} 10$.

1. Introduction

Let C be a nonempty closed convex subset of a Hilbert space H and S : $C \rightarrow C$ be a nonexpansive mapping such that the set $F(S)$ of all fixed points of S is nonempty. Recently, Shimizu and Takahashi [15] proved the strong convergence of an iteration process to a common fixed point of a family of nonexpansive mappings in a Hilbert space H. Using Shimizu and Takahashi's idea in [15], Shioji and Takahashi [16] proved the strong convergence of an iterative sequence $\left\{x_{n}\right\}$ to an element of $F(S)$ which is nearest to x in the setting of a Banach space E where for a given sequence $\left\{\alpha_{n}\right\}$ with $0 \leq \alpha_{n} \leq 1$, the sequence $\left\{x_{n}\right\}$ is generated from any elements $x_{0}, x \in C$ by

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} S^{j} x_{n} \quad \text { for } n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

But unfortunately this approximation method is not suitable for some nonexpansive nonself-mappings. On the other hand Matsushita and Kuroiwa [9] studied the convergence of two sequences generated by

$$
\begin{array}{ll}
x_{1}=x \in C, & x_{n+1}=\alpha_{n} x+\left(1-\alpha_{n}\right) P T x_{n} \quad \text { for } n=1,2, \ldots \\
y_{1}=y \in C, \quad y_{n+1}=P\left(\alpha_{n} y+\left(1-\alpha_{n}\right) T y_{n}\right) \quad \text { for } n=1,2, \ldots \tag{3}
\end{array}
$$

where P is the metric projection from H onto C and T is a nonexpansive nonself-mapping from C into H. They proved that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge strongly to fixed points of T when $F(T)$ is nonempty. Furthermore Matsushita and Kuroiwa [10] studied the new iteration processes which are mixed iteration processes of (1)-(3) as follows:

$$
\begin{align*}
& x_{n+1}=\frac{1}{n+1} \sum_{j=0}^{n}\left(\alpha_{n} x+\left(1-\alpha_{n}\right)(P T)^{j} x_{n}\right) \quad \text { for } n=0,1,2, \ldots \tag{4}\\
& y_{n+1}=\frac{1}{n+1} \sum_{j=0}^{n} P\left(\alpha_{n} y+\left(1-\alpha_{n}\right)(T P)^{j} y_{n}\right) \quad \text { for } n=0,1,2, \ldots \tag{5}
\end{align*}
$$

where x_{0}, x, y_{0}, y are elements of C, P is the metric projection from H onto C and T is a nonexpansive nonself-mapping from C into H. By using the nowhere normal outward condition given earliest in [7], under the assumption that $F(T)$ is nonempty, they proved not only that the sequence $\left\{x_{n}\right\}$ generated by (4) converges strongly to an element of $F(T)$ but also that the sequence $\left\{y_{n}\right\}$ generated by (5) converges strongly to an element of $F(T)$.

The purpose of this paper is to study the strong convergence of the iteration processes (4) and (5) in the framework of a Banach space. Let E be a uniformly convex Banach space whose norm is Gâteaux differentiable and which has a weakly continuous duality mapping; for example, every $l^{p}(1<p<\infty)$ space has a weakly continuous duality map with gauge function $\varphi(t)=t^{p-1}$. Let C be a nonempty closed convex subset of E, P be a sunny and nonexpansive retraction of E onto $C, T: C \rightarrow E$ be a nonexpansive nonself-mapping such that $F(T)$ is nonempty, and $\left\{\alpha_{n}\right\}$ be a real sequence such that $0 \leq \alpha_{n} \leq 1$. Firstly by using the property of the sunny and nonexpansive retraction, we consider the sequence $\left\{x_{n}\right\}$ generated by (4) and prove that $\left\{x_{n}\right\}$ converges strongly to an element of $F(T)$. Secondly by using the same property, we consider the sequence $\left\{y_{n}\right\}$ generated by (5) and prove that $\left\{y_{n}\right\}$ converges strongly to an element of $F(T)$.

2. Preliminaries and Notations

Throughout this paper, all vector spaces are real and we denote by \mathbb{N} and \mathbb{N}_{+}, the set of all nonnegative integers and the set of all positive integers, respectively. Let E be a real Banach space and E^{*} be the topological dual of E. By $2^{E^{*}}$ we will denote the power set of E^{*}. The value of $x^{*} \in E^{*}$ at $x \in E$ will be denoted by $\left\langle x, x^{*}\right\rangle$. Let C be a nonempty closed convex subset of E, and $T: C \rightarrow E$ be a nonself-mapping. We denote the set of all fixed points of T by $F(T)$. T is said to be nonexpansive if

$$
\|T x-T y\| \leq\|x-y\| \quad \text { for all } x, y \in C
$$

We denote by B_{r}, the closed ball in E with center 0 and radius r. E is said to be uniformly convex if for each $\varepsilon>0$, there exists $\delta>0$ such that $\|(x+y) / 2\| \leq 1-\delta$ for each $x, y \in B_{1}$ with $\|x-y\| \geq \varepsilon$.

For simplicity, the notation \rightharpoonup denotes weak convergence and the notation \rightarrow denotes strong convergence. By a gauge function we mean a continuous
strictly increasing function φ defined on $\mathbb{R}_{+}:=[0, \infty)$ such that $\varphi(0)=0$ and $\lim _{r \rightarrow \infty} \varphi(r)=\infty$. The mapping $J_{\varphi}: E \rightarrow 2^{E^{*}}$ defined by

$$
J_{\varphi}(x)=\left\{x^{*} \in E^{*}:\left\langle x, x^{*}\right\rangle=\|x\|\left\|x^{*}\right\|,\left\|x^{*}\right\|=\varphi(\|x\|)\right\} \quad \text { for all } x \in E
$$

is called the duality mapping with gauge function φ. In particular, the duality mapping with gauge function $\varphi(t)=t$, denoted by J, is referred to as the normalized duality mapping. Browder [3] initiated the study of certain classes of nonlinear operators by means of the duality mapping J_{φ}. Set for every $t \geq 0$,

$$
\Phi(t)=\int_{0}^{t} \varphi(r) \mathrm{d} r
$$

Then it is known [8, p. 1350] that $J_{\varphi}(x)$ is the subdifferential of the convex functional $\Phi(\|\cdot\|)$ at x. Thus it is easy to see that the normalized duality mapping $J(x)$ can also be defined as the subdifferential of the convex functional $\Phi(\|x\|)=\|x\|^{2} / 2$, that is,

$$
\begin{aligned}
J(x) & =\partial \Phi(\|x\|)=\left\{f \in E^{*}: \Phi(\|y\|)-\Phi(\|x\|)\right. \\
& \geq\langle y-x, f\rangle, \forall y \in E\} \quad \text { for all } x \in E
\end{aligned}
$$

We will use the following properties of duality mappings, respectively.

Proposition 1 [23, p. 193-194].
(i) $J=I$ (i.e., the identity mapping of E) if and only if E is a Hilbert space.
(ii) J is surjective if and only if E is reflexive.
(iii) $J_{\varphi}(\lambda x)=\operatorname{sign}(\lambda)(\varphi(|\lambda| \cdot\|x\|) /\|x\|) J(x)$ for each $x \in E \backslash\{0\}$ and each real number λ. In particular, $J(-x)=-J(x)$ for all $x \in E$.

Recall that a Banach space E is said to satisfy Opial's condition [12] if for any sequence $\left\{x_{n}\right\}$ in E the condition that $\left\{x_{n}\right\}$ converges weakly to $x \in E$ implies that

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

for all $y \in E, y \neq x$. It is known [5] that any separable Banach space can be equivalently renormed so that it satisfies Opial's condition. Recall also that E is said to have a weakly continuous duality mapping if there exists a gauge function φ such that the duality mapping J_{φ} is single-valued and continuous from the weak topology to the weak* topology. A space with a
weakly continuous duality mapping is easily seen to satisfy Opial's condition; see [3] for more details. Every $l^{p}(1<p<\infty)$ space has a weakly continuous duality mapping with gauge function $\varphi(t)=t^{p-1}$.

The following proposition plays an important role in our proofs; see [18] for more details.

Proposition 2 [17, Proposition 1]. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Then for each $r>0, R \geq r$ and $\varepsilon>0$, there exist $\eta>0$ and $M \in N_{+}$such that for each $j \in N$ and for each mapping T from C into itself satisfying $\sup \left\{\left\|T^{m} x\right\|: m \in N, x \in C \cap B_{r}\right\} \leq R$ and $\left\|T^{j} x-T^{j} y\right\| \leq(1+\eta)\|x-y\|$ for each $x, y \in C$, there holds

$$
\left\|\frac{1}{n+1} \sum_{i=0}^{n} T^{i} x-T^{j}\left(\frac{1}{n+1} \sum_{i=0}^{n} T^{i} x\right)\right\| \leq \varepsilon
$$

for all $n \geq j M$ and $x \in C \cap B_{r}$.
Let μ be a continuous linear functional on l^{∞} and let $\left(a_{0}, a_{1}, \cdots\right) \in l^{\infty}$. We write $\mu_{n}\left(a_{n}\right)$ instead of $\mu\left(\left(a_{0}, a_{1}, \cdots\right)\right)$. We call μ a Banach limit [1] when μ satisfies $\|\mu\|=\mu_{n}(1)=1$ and $\mu_{n}\left(a_{n+1}\right)=\mu_{n}\left(a_{n}\right)$ for each $\left(a_{0}, a_{1}, \cdots\right) \in l^{\infty}$. For a Banach limit μ, we know that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} a_{n} \leq \mu_{n}\left(a_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n} \quad \text { for all }\left(a_{0}, a_{1}, \cdots\right) \in l^{\infty} . \tag{6}
\end{equation*}
$$

Proposition 3 [17, Proposition 2]. Let C be a nonempty closed convex subset of a uniformly convex Banach space E. Let $\left\{x_{n}\right\}$ be a bounded sequence of E and μ be a Banach limit. Let g be a real valued function on C defined by

$$
g(y)=\mu_{n}\left(\left\|x_{n}-y\right\|^{2}\right) \quad \text { for each } y \in C .
$$

Then g is continuous, convex and g satisfies $\lim _{\|y\| \rightarrow \infty} g(y)=\infty$. Moreover, for each $R>0$ and $\epsilon>0$, there exists $\delta>0$ such that

$$
g\left(\frac{y+z}{2}\right) \leq \frac{g(y)+g(z)}{2}-\delta
$$

for all $y, z \in C \cap B_{R}$ with $\|y-z\| \geq \varepsilon$.

The following lemma is similar to a result in Hilbert spaces which was proved by Matsushita and Kuroiwa; see [10, Lemma 1]. The method of their proof can be found in Shimizu and Takahashi [14].

Lemma 1. Let E be a uniformly convex Banach space which satisfies Opial's condition, C be a nonempty closed convex subset of E and $S: C \rightarrow C$ be a nonexpansive mapping with $F(S) \neq \emptyset$. Let $\left\{x_{n}\right\}$ be a sequence in C such that $\left\{x_{n+1}-\frac{1}{n+1} \sum_{j=0}^{n} S^{j} x_{n}\right\}$ converges strongly to 0 , and let $\left\{x_{n_{i}}\right\}$ be a subsequence of $\left\{x_{n}\right\}$ such that $\left\{x_{n_{i}}\right\}$ converges weakly to $x \in C$. Then x is a fixed point of S.

Proof. We claim that $\left\{S^{l} x\right\}$ converges strongly to x. Indeed if this is not true, then there exist a real number $\varepsilon>0$ and a subsequence $\left\{S^{l_{k}} x\right\}$ of $\left\{S^{l} x\right\}$ such that $\left\|S^{l_{k}} x-x\right\| \geq \varepsilon$ for each k. Since $\left\{x_{n_{i}}\right\}$ converges weakly to x, for each $y \in C$ with $y \neq x$ we have

$$
\liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-x\right\|<\liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-y\right\|
$$

Let $r=\liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-x\right\|$. Then there exists a subsequence $\left\{x_{m_{i}}\right\}$ of $\left\{x_{n_{i}}\right\}$ such that $r=\lim _{i \rightarrow \infty}\left\|x_{m_{i}}-x\right\|$. Now let μ be a Banach limit and set $R=\sup \left\{\left\|S^{l} x\right\|: l \in N\right\}$. By Proposition 3 , there exists $\hat{\delta}>0$ such that

$$
\begin{equation*}
\mu_{i}\left(\left\|x_{m_{i}}-\frac{u+v}{2}\right\|^{2}\right) \leq \frac{1}{2}\left[\mu_{i}\left(\left\|x_{m_{i}}-u\right\|^{2}\right)+\mu_{i}\left(\left\|x_{m_{i}}-v\right\|^{2}\right)\right]-\hat{\delta} \tag{7}
\end{equation*}
$$

for all $u, v \in C \cap B_{R}$ with $\|u-v\| \geq \varepsilon$. Choose $\delta>0$ such that $\delta<\sqrt{r^{2}+\hat{\delta}}-r$. Without loss of generality, we may assume that $\left\|x_{m_{i}}-x\right\|<r+\delta / 6$ for every
i. On the other hand we have

$$
\begin{aligned}
\left\|x_{m_{i}}-S^{l} x\right\| \leq & \leq x_{m_{i}}-\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1} \| \\
& +\left\|\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1}-S^{l}\left(\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1}\right)\right\| \\
& +\left\|S^{l}\left(\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1}\right)-S^{l} x\right\| \\
& \leq 2\left\|x_{m_{i}}-\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1}\right\|+\left\|x_{m_{i}}-x\right\| \\
& +\left\|\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1}-S^{l}\left(\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1}\right)\right\|
\end{aligned}
$$

In particular,

$$
\begin{aligned}
& \left\|\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1}-S^{l}\left(\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1}\right)\right\| \\
& \leq\left\|\frac{1}{m_{i}} \sum_{j=1}^{m_{i}} S^{j} x_{m_{i}-1}-S^{l}\left(\frac{1}{m_{i}} \sum_{j=1}^{m_{i}} S^{j} x_{m_{i}-1}\right)\right\|+\frac{1}{m_{i}}\left\|x_{m_{i}-1}-S^{m_{i}} x_{m_{i}-1}\right\| \\
& +\left\|S^{l}\left(\frac{1}{m_{i}} \sum_{j=1}^{m_{i}} S^{j} x_{m_{i}-1}\right)-S^{l}\left(\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1}\right)\right\| \\
& \leq\left\|\frac{1}{m_{i}} \sum_{j=1}^{m_{i}} S^{j} x_{m_{i}-1}-S^{l}\left(\frac{1}{m_{i}} \sum_{j=1}^{m_{i}} S^{j} x_{m_{i}-1}\right)\right\|+\frac{2}{m_{i}}\left\|x_{m_{i}-1}-S^{m_{i}} x_{m_{i}-1}\right\| .
\end{aligned}
$$

Since $\left\{x_{m_{i}-1}\right\}$ and $\left\{S^{m_{i}} x_{m_{i}-1}\right\}$ are bounded, there exists a positive integer i_{1} such that

$$
\frac{1}{m_{i}}\left\|x_{m_{i}-1}-S^{m_{i}} x_{m_{i}-1}\right\|<\frac{\delta}{6}
$$

for each $i \geq i_{1}$. Since $\left\{x_{m_{i}-1}\right\}$ is bounded, by Proposition 2 there exists a positive integer L_{0} such that for every $l \geq L_{0}$, there exists a positive integer i_{l} such that for each $i \geq i_{l}$

$$
\left\|\frac{1}{m_{i}} \sum_{j=1}^{m_{i}} S^{j} x_{m_{i}-1}-S^{l}\left(\frac{1}{m_{i}} \sum_{j=1}^{m_{i}} S^{j} x_{m_{i}-1}\right)\right\|<\frac{\delta}{6}
$$

Actually let us notice that one may assume that $\left\{m_{i}\right\}$ is strictly increasing to $+\infty$ and that $m_{i}>i$. In Proposition 2 , put $r=: \sup \left\{\left\|x_{m_{i}-1}\right\|: i \in N\right\}, R=$: $\sup \left\{\left\|S^{m} x\right\|: m \in N, x \in C \cap B_{r}\right\}$ and $L_{0}=M$. For each $l \geq L_{0}$, take $i_{l}=l L_{0}$.

Since $\lim _{n \rightarrow \infty}\left\|x_{n+1}-\frac{1}{n+1} \sum_{j=0}^{n} S^{j} x_{n}\right\|=0$, there exists a positive integer i_{0} such that for all $i \geq i_{0}$

$$
\left\|x_{m_{i}}-\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1}\right\|<\frac{\delta}{6}
$$

Hence for any $l \geq L_{0}$ and $i \geq \max \left\{i_{l}, i_{0}, i_{1}\right\}$, we have

$$
\left\|x_{m_{i}}-S^{l} x\right\|<2 \times \frac{\delta}{6}+r+\frac{\delta}{6}+\frac{\delta}{6}+2 \times \frac{\delta}{6}=r+\delta
$$

Choose $l_{k} \geq L_{0}$. Then for $i \geq \max \left\{i_{l_{k}}, i_{0}, i_{1}\right\}$, we have
$\frac{1}{2}\left(\left\|x_{m_{i}}-S^{l_{k}} x\right\|^{2}+\left\|x_{m_{i}}-x\right\|^{2}\right)-\hat{\delta}<\frac{1}{2}\left((r+\delta)^{2}+(r+\delta / 6)^{2}\right)-\hat{\delta}<(r+\delta)^{2}-\hat{\delta}<r^{2}$
which implies that

$$
\limsup _{i \rightarrow \infty}\left[\frac{1}{2}\left(\left\|x_{m_{i}}-S^{l_{k}} x\right\|^{2}+\left\|x_{m_{i}}-x\right\|^{2}\right)-\hat{\delta}\right] \leq r^{2}
$$

Since $S^{l_{k}} x$ and x lie in $C \cap B_{R}$ such that $\left\|S^{l_{k}} x-x\right\| \geq \varepsilon$, from (6) and (7) we obtain

$$
\begin{aligned}
\liminf _{i \rightarrow \infty}\left\|x_{m_{i}}-\frac{S^{l_{k} x+x}}{2}\right\|^{2} & \leq \mu_{i}\left(\left\|x_{m_{i}}-\frac{S^{l_{k} x+x}}{2}\right\|^{2}\right) \\
& \left.\leq \frac{1}{2}\left[\mu_{i}\left(\left\|x_{m_{i}}-S^{l_{k}} x\right\|^{2}\right)+\mu_{i}\left(\left\|x_{m_{i}}-x\right\|^{2}\right)\right)\right]-\hat{\delta} \\
& =\mu_{i}\left[\frac{1}{2}\left(\left\|x_{m_{i}}-S^{l_{k}} x\right\|^{2}+\left\|x_{m_{i}}-x\right\|^{2}\right)-\hat{\delta}\right] \\
& \leq \limsup _{i \rightarrow \infty}\left[\frac{1}{2}\left(\left\|x_{m_{i}}-S^{l_{k}} x\right\|^{2}+\left\|x_{m_{i}}-x\right\|^{2}\right)-\hat{\delta}\right] \leq r^{2}
\end{aligned}
$$

This shows that

$$
\liminf _{i \rightarrow \infty}\left\|x_{m_{i}}-\frac{S^{l_{k}} x+x}{2}\right\| \leq r=\liminf _{i \rightarrow \infty}\left\|x_{m_{i}}-x\right\|
$$

However we see that $\frac{S^{l_{k} x+x}}{2} \neq x$ from $\left\|S^{l_{k}} x-x\right\| \geq \varepsilon$. Thus we obtain

$$
\liminf _{i \rightarrow \infty}\left\|x_{m_{i}}-x\right\|<\liminf _{i \rightarrow \infty}\left\|x_{m_{i}}-\frac{S^{l_{k}} x+x}{2}\right\|
$$

which yields a contradiction. Thus $\left\{S^{l} x\right\}$ converges strongly to x. Consequently for each $\varepsilon>0$, there exists a positive integer l_{0} such that

$$
\left\|S^{l} x-x\right\| \leq \frac{\varepsilon}{2} \quad \text { for all } l \geq l_{0}
$$

Therefore for all $l \geq l_{0}+1$ we have

$$
\|S x-x\| \leq\left\|S^{l-1} x-x\right\|+\left\|S^{l} x-x\right\| \leq \varepsilon
$$

Since ε is arbitrary, we derive $S x=x$ and the proof is complete.
Let $U=\{x \in E:\|x\|=1\}$ be the unit sphere of E. The norm of E is said to be Gâteaux differentiable if the limit

$$
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t}
$$

exists for each $x, y \in U$. In this case E is said to be smooth. It is known [4] that if E is smooth then the normalized duality mapping J is single-valued and continuous from the strong topology to the weak* topology.

Lemma 2. Let E be a smooth Banach space. Then there holds

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, J(x+y)\rangle \quad \text { for all } x, y \in E
$$

Proof. Since E is smooth, J is single-valued. Note that J can be equivalently defined as the subdifferential of the functional $\Phi(\|x\|)=\|x\|^{2} / 2$. Therefore the conclusion follows immediately from the definition of the subdifferential of $\Phi(\|x\|)$.

Let C be a convex subset of E, K be a nonempty subset of C and let P be a retraction from C onto K, i.e., $P x=x$ for each $x \in K$. We say that P is sunny if $P(P x+t(x-P x))=P x$ for each $x \in C$ and $t \geq 0$ with $P x+t(x-P x) \in C$. If there is a sunny and nonexpansive retraction from C onto K, K is said to be a sunny and nonexpansive retract of C. For a sunny and nonexpansive retraction, there exists the following useful characterization:

Lemma 3 [17, p. 59, Proposition 4]. Let C be a convex subset of a smooth Banach space E, K be a nonempty subset of C and let P be a retraction from C onto K. Then P is sunny and nonexpansive if and only if for all $x \in C$ and $y \in K$,

$$
\langle x-P x, J(y-P x)\rangle \leq 0 .
$$

Hence there is at most one sunny and nonexpansive retraction from C onto K.

More properties regarding sunny and nonexpansive retractions can be found in $[6,13]$.

Remark 1. If E is a real Hilbert space H and C is a nonempty closed convex subset of H, then every nearest point projection of H onto C is a sunny and nonexpansive retraction of H onto C where mapping $P_{C}: H \rightarrow C$ is defined as follows: for each $x \in H, P_{C} x$ is the unique element of C that satisfies $\left\|x-P_{C} x\right\|=d(x, C):=\inf _{y \in C}\|x-y\|$. Indeed it is easy to see that P_{C} is a retraction of H onto C. Moreover for all $x \in H$ and $y \in C$, we have

$$
\left\langle x-P_{C} x, P_{C} x-y\right\rangle \geq 0
$$

According to Lemma 3, we know that P_{C} is a sunny and nonexpansive retraction of H onto C.

Lemma 4 (see [2]). Let $\left\{\lambda_{n}\right\}$ be a sequence in $[0,1)$ such that $\lim _{n \rightarrow \infty} \lambda_{n}=0$. Then

$$
\sum_{n=1}^{\infty} \lambda_{n}=\infty \Leftrightarrow \prod_{n=1}^{\infty}\left(1-\lambda_{n}\right)=0
$$

Lemma 5 [11, Lemma 2.2]. Let $\left\{\lambda_{n}\right\}$ be a sequence in $[0,1)$ that satisfies $\lim _{n \rightarrow \infty} \lambda_{n}=0$ and $\sum_{n=1}^{\infty} \lambda_{n}=\infty$. Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers that satisfies any one of the following conditions:
(a) For all $\varepsilon>0$, there exists an integer $M \geq 1$ such that for all $n \geq M$,

$$
a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+\lambda_{n} \varepsilon
$$

(b) $a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+\sigma_{n}, n \geq 0$ where $\sigma_{n} \geq 0$ satisfies $\lim _{n \rightarrow \infty} \sigma_{n} / \lambda_{n}=0$.
(c) $a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+\lambda_{n} c_{n}$ where $\lim \sup _{n \rightarrow \infty} c_{n} \leq 0$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Remark 2. The proof of Lemma 5 can be found in [22].

Lemma 6. Let $\left\{\alpha_{n}\right\}$ be a sequence of nonnegative real numbers with

$$
\limsup _{n \rightarrow \infty} \alpha_{n}<\infty
$$

and $\left\{\beta_{n}\right\}$ be a sequence of real numbers with $\limsup _{n \rightarrow \infty} \beta_{n} \leq 0$. Then

$$
\limsup _{n \rightarrow \infty} \alpha_{n} \beta_{n} \leq 0
$$

Proof. We prove the conclusion in two cases.
Case 1: $\sup _{j \geq n} \beta_{j} \geq 0$ for all $n \geq 0$. For any fixed $n \geq 0$, observe that

$$
\sup _{i \geq n} \alpha_{i} \beta_{i} \leq \sup _{i \geq n}\left(\alpha_{i} \cdot \sup _{j \geq n} \beta_{j}\right)=\left(\sup _{i \geq n} \alpha_{i}\right)\left(\sup _{j \geq n} \beta_{j}\right) .
$$

Thus taking the limit as $n \rightarrow \infty$, we obtain the conclusion.
Case 2: $\beta=\sup _{n \geq m_{0}} \beta_{n}<0$ for some $m_{0} \geq 0$. It is easy to see that $\alpha_{n} \beta_{n} \leq \alpha_{n} \beta \leq 0$ for all $n \geq m_{0}$. This implies the conclusion.

Throughout the rest of the paper, we shall use the notation: for any sequence $\left\{x_{n}\right\}$ in E, we denote by $\omega_{w}\left(x_{n}\right)$ the weak ω-limit set of $\left\{x_{n}\right\}$; that is,

$$
\omega_{w}\left(x_{n}\right):=\left\{x \in E: x_{n_{j}} \rightharpoonup x \text { for some subsequence }\left\{x_{n_{j}}\right\} \text { of }\left\{x_{n}\right\}\right\}
$$

3. Strong Convergence Theorems

Now we can state and prove the main results in this paper. The method employed in $[10,19,21]$ is extended to develop the new technique for proving our results.

Theorem 1. Let E be a uniformly convex Banach space whose norm is Gateaux differentiable and which has a weakly continuous duality mapping J_{φ} with gauge function φ. Let C be a nonempty closed convex subset of E, P_{1} be a sunny and nonexpansive retraction of E onto $C, T: C \rightarrow E$ be a nonexpansive nonself-mapping with $F(T) \neq \emptyset$, and $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$. Let $\left\{x_{n}\right\}$ be the sequence generated by

$$
\left\{\begin{array}{l}
x_{0}, x \in C \\
x_{n+1}=\frac{1}{n+1} \sum_{j=0}^{n}\left(\alpha_{n} x+\left(1-\alpha_{n}\right)\left(P_{1} T\right)^{j} x_{n}\right) \text { for } n=0,1,2, \ldots
\end{array}\right.
$$

Assume that there hold the following conditions:
(i) $T \omega_{w}\left(x_{n}\right) \subseteq C$;
(ii) there exists a sunny and nonexpansive retraction P_{2} of C onto $F(T)$ such that

$$
\sup \left\{\left\|x_{n}-P_{2} x\right\| / \varphi\left(\left\|x_{n}-P_{2} x\right\|\right): x_{n} \neq P_{2} x\right\}<\infty
$$

Then $\left\{x_{n}\right\}$ converges strongly to $P_{2} x \in F(T)$.
Proof. We divide the proof into four steps.
Step 1. We claim that the sequence $\left\{x_{n}\right\}$ is bounded. Indeed let $z \in F(T)$ and $D=\max \left\{\|x-z\|,\left\|x_{0}-z\right\|\right\}$. Then we have

$$
\left\|x_{1}-z\right\|=\left\|\alpha_{0} x+\left(1-\alpha_{0}\right) x_{0}-z\right\| \leq \alpha_{0}\|x-z\|+\left(1-\alpha_{0}\right) \mid x_{0}-z \| \leq D
$$

If $\left\|x_{n}-z\right\| \leq D$ for some $n \in N$, then we can show that $\left\|x_{n+1}-z\right\| \leq D$ similarly. Therefore, by induction we obtain $\left\|x_{n}-z\right\| \leq D$ for all $n \in N$ and hence $\left\{x_{n}\right\}$ is bounded.

Step 2. We claim that $\left\|x_{n+1}-\frac{1}{n+1} \sum_{j=0}^{n}\left(P_{1} T\right)^{j} x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Indeed observe that

$$
\begin{aligned}
& \left\|x_{n+1}-\frac{1}{n+1} \sum_{j=0}^{n}\left(P_{1} T\right)^{j} x_{n}\right\| \\
& =\left\|\frac{1}{n+1} \sum_{j=0}^{n}\left(\alpha_{n} x+\left(1-\alpha_{n}\right)\left(P_{1} T\right)^{j} x_{n}\right)-\frac{1}{n+1} \sum_{j=0}^{n}\left(P_{1} T\right)^{j} x_{n}\right\| \\
& \leq \alpha_{n}\left\|x-\frac{1}{n+1} \sum_{j=0}^{n}\left(P_{1} T\right)^{j} x_{n}\right\| .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \alpha_{n}=0$, the sequence $\left\{x_{n+1}-\frac{1}{n+1} \sum_{j=0}^{n}\left(P_{1} T\right)^{j} x_{n}\right\}$ converges strongly to 0 as claimed.

Step 3. We claim that $\lim \sup _{n \rightarrow \infty}\left\langle x-P_{2} x, J\left(x_{n+1}-P_{2} x\right)\right\rangle \leq 0$. Indeed let $\left\{x_{n_{j}+1}\right\}$ be a subsequence of $\left\{x_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle x-P_{2} x, J\left(x_{n+1}-P_{2} x\right)\right\rangle=\lim _{j \rightarrow \infty}\left\langle x-P_{2} x, J\left(x_{n_{j}+1}-P_{2} x\right)\right\rangle .
$$

Since E is uniformly convex, E is reflexive. Hence without loss of generality, we may further assume that $\left\{x_{n_{j}+1}\right\}$ converges weakly to some $u \in C$ due to the weak closedness of C. From Lemma 1 and Step 2, we obtain $u \in F\left(P_{1} T\right)$. Note that $T \omega_{w}\left(x_{n}\right) \subseteq C$. This implies that $T u=P_{1} T u=u$ and hence
$u \in F(T)$. On the other hand by using gauge function φ, we define for every $n \geq 0$

$$
\eta_{n}:=\left\{\begin{array}{l}
\frac{\left\|x_{n}-P_{2} x\right\|}{\varphi\left(\left\|x_{n}-P_{2} x\right\|\right)}, \text { if } x_{n} \neq P_{2} x \\
0, \quad \text { if } x_{n}=P_{2} x
\end{array}\right.
$$

From $\sup \left\{\left\|x_{n}-P_{2} x\right\| / \varphi\left(\left\|x_{n}-P_{2} x\right\|\right): x_{n} \neq P_{2} x\right\}<\infty$, we obtain $\lim \sup _{n \rightarrow \infty} \eta_{n}<\infty$. Also from Proposition 1 (iii), we obtain

$$
J\left(x_{n}-P_{2} x\right)=\eta_{n} J_{\varphi}\left(x_{n}-P_{2} x\right) \quad \text { for all } n \geq 0
$$

Since J_{φ} is continuous from the weak topology to the weak* topology, we conclude that

$$
\lim _{j \rightarrow \infty}\left\langle x-P_{2} x, J_{\varphi}\left(x_{n_{j}+1}-P_{2} x\right)\right\rangle=\left\langle x-P_{2} x, J_{\varphi}\left(u-P_{2} x\right)\right\rangle
$$

It is clear that Proposition 1 (iii) yields

$$
J_{\varphi}\left(u-P_{2} x\right)= \begin{cases}\frac{\varphi\left(\left\|u-P_{2} x\right\|\right)}{\left\|u-P_{2} x\right\|} J\left(u-P_{2} x\right), & \text { if } u \neq P_{2} x \\ 0 & \text { if } u=P_{2} x\end{cases}
$$

which implies that

$$
\left\langle x-P_{2} x, J_{\varphi}\left(u-P_{2} x\right)\right\rangle=\left\{\begin{array}{lc}
\frac{\varphi\left(\left\|u-P_{2} x\right\|\right)}{\left\|u-P_{2} x\right\|}\left\langle x-P_{2} x, J\left(u-P_{2} x\right)\right\rangle, & \text { if } u \neq P_{2} x \\
0, & \text { if } u=P_{2} x
\end{array}\right.
$$

Since P_{2} is the sunny and nonexpansive retraction of C onto $F(T)$, from Lemma 3 we obtain

$$
\lim _{j \rightarrow \infty}\left\langle x-P_{2} x, J_{\varphi}\left(x_{n_{j}+1}-P_{2} x\right)\right\rangle=\left\langle x-P_{2} x, J_{\varphi}\left(u-P_{2} x\right)\right\rangle \leq 0
$$

and hence we infer by Lemma 6 that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\langle x- & \left.P_{2} x, J\left(x_{n+1}-P_{2} x\right)\right\rangle=\lim _{j \rightarrow \infty}\left\langle x-P_{2} x, J\left(x_{n_{j}+1}-P_{2} x\right)\right\rangle \\
& =\lim _{j \rightarrow \infty} \eta_{n_{j}+1}\left\langle x-P_{2} x, J_{\varphi}\left(x_{n_{j}+1}-P_{2} x\right)\right\rangle \leq 0 .
\end{aligned}
$$

Step 4. We claim that $x_{n} \rightarrow P_{2} x$. Indeed by Step 3, we have that for any $\varepsilon>0$, there exists $m \in N$ such that for all $n \geq m$

$$
\left\langle x-P_{2} x, J\left(x_{n+1}-P_{2} x\right)\right\rangle<\frac{\varepsilon}{2}
$$

Also observe that

$$
\begin{aligned}
x_{n+1}-P_{2} x+\alpha_{n}\left(P_{2} x-x\right)= & \frac{1}{n+1} \sum_{j=0}^{n}\left(\alpha_{n} x+\left(1-\alpha_{n}\right)\left(P_{1} T\right)^{j} x_{n}\right) \\
& -\left(\alpha_{n} x+\left(1-\alpha_{n}\right) P_{2} x\right)
\end{aligned}
$$

This together with Lemma 2, implies that for all $n \geq m$,

$$
\begin{aligned}
\left\|x_{n+1}-P_{2} x\right\|^{2} & \leq \| \frac{1}{n+1} \sum_{j=0}^{n}\left(\alpha_{n} x+\left(1-\alpha_{n}\right)\left(P_{1} T\right)^{j} x_{n}\right) \\
& -\left(\alpha_{n} x+\left(1-\alpha_{n}\right) P_{2} x\right) \|^{2} \\
& +2 \alpha_{n}\left\langle x-P_{2} x, J\left(x_{n+1}-P_{2} x\right)\right\rangle \\
& \leq\left\{\left.\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n} \|\left(P_{1} T\right)^{j} x_{n}-P_{2} x \right\rvert\,\right\}^{2} \\
& +2 \alpha_{n}\left\langle x-P_{2} x, J\left(x_{n+1}-P_{2} x\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n}-P_{2} x\right\|^{2}+2 \alpha_{n}\left\langle x-P_{2} x, J\left(x_{n+1}-P_{2} x\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-P_{2} x\right\|^{2}+\alpha_{n} \varepsilon .
\end{aligned}
$$

Therefore by Lemma 5, we conclude that $x_{n} \rightarrow P_{2} x$. The proof is now complete.

Theorem 2. Let E be a uniformly convex Banach space whose norm is Gâteaux differentiable and which has a weakly continuous duality mapping J_{φ} with gauge function φ. Let C be a nonempty closed convex subset of E, P_{1} be a sunny and nonexpansive retraction of E onto $C, T: C \rightarrow E$ be a nonexpansive nonself-mapping with $F(T) \neq \emptyset$, and $\left\{\alpha_{n}\right\}$ be a sequence in $[0,1]$ such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=0}^{\infty} \alpha_{n}=\infty$. Let $\left\{y_{n}\right\}$ be the sequence generated by

$$
\left\{\begin{array}{l}
y_{0}, y \in C \\
y_{n+1}=\frac{1}{n+1} \sum_{j=0}^{n} P_{1}\left(\alpha_{n} y+\left(1-\alpha_{n}\right)\left(T P_{1}\right)^{j} y_{n}\right) \text { for } n=0,1,2, \ldots
\end{array}\right.
$$

Assume that there hold the following conditions:
(i) $T \omega_{w}\left(y_{n}\right) \subseteq C$;
(ii) there exists a sunny and nonexpansive retraction P_{2} of C onto $F(T)$ such that

$$
\sup \left\{\left\|y_{n}-P_{2} y\right\| / \varphi\left(\left\|y_{n}-P_{2} y\right\|\right): y_{n} \neq P_{2} y\right\}<\infty
$$

Then $\left\{y_{n}\right\}$ converges strongly to $P_{2} y \in F(T)$.
Proof. We divide the proof into four steps.

Step 1. We claim that the sequence $\left\{y_{n}\right\}$ is bounded. Indeed let $z \in F(T)$ and $D=\max \left\{\|y-z\|,\left\|y_{0}-z\right\|\right\}$. Then we have

$$
\begin{aligned}
\left\|y_{1}-z\right\| & =\left\|P_{1}\left(\alpha_{0} y+\left(1-\alpha_{0}\right) y_{0}\right)-z\right\| \leq\left\|\alpha_{0} y+\left(1-\alpha_{0}\right) y_{0}-z\right\| \\
& \leq \alpha_{0}\|y-z\|+\left(1-\alpha_{0}\right)\left\|y_{0}-z\right\| \leq D .
\end{aligned}
$$

If $\left\|y_{n}-z\right\| \leq D$ for some $n \in N$, then we can show that $\left\|y_{n+1}-z\right\| \leq D$ similarly. Therefore by induction we obtain $\left\|y_{n}-z\right\| \leq D$ for all $n \in N$ and hence $\left\{y_{n}\right\}$ is bounded.
Step 2. We claim that $\left\|y_{n+1}-\frac{1}{n+1} \sum_{j=0}^{n}\left(P_{1} T\right)^{j} y_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Indeed observe that

$$
\begin{aligned}
& \left\|y_{n+1}-\frac{1}{n+1} \sum_{j=0}^{n}\left(P_{1} T\right)^{j} y_{n}\right\| \\
& =\left\|\frac{1}{n+1} \sum_{j=0}^{n} P_{1}\left(\alpha_{n} y+\left(1-\alpha_{n}\right)\left(T P_{1}\right)^{j} y_{n}\right)-\frac{1}{n+1} \sum_{j=0}^{n}\left(P_{1} T\right)^{j} y_{n}\right\| \\
& \leq \frac{1}{n+1} \sum_{j=0}^{n}\left\|P_{1}\left(\alpha_{n} y+\left(1-\alpha_{n}\right)\left(T P_{1}\right)^{j} y_{n}\right)-\left(P_{1} T\right)^{j} y_{n}\right\| \\
& =\frac{1}{n+1} \sum_{j=0}^{n}\left\|P_{1}\left(\alpha_{n} y+\left(1-\alpha_{n}\right)\left(T P_{1}\right)^{j} y_{n}\right)-P_{1}\left(T P_{1}\right)^{j} y_{n}\right\| \\
& \leq \frac{1}{n+1} \sum_{j=0}^{n}\left\|\alpha_{n} y+\left(1-\alpha_{n}\right)\left(T P_{1}\right)^{j} y_{n}-\left(T P_{1}\right)^{j} y_{n}\right\| \\
& \leq \alpha_{n} \frac{1}{n+1} \sum_{j=0}^{n}\left\|y-\left(T P_{1}\right)^{j} y_{n}\right\| .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \alpha_{n}=0$, it follows that $\left\{y_{n+1}-\frac{1}{n+1} \sum_{j=0}^{n}\left(P_{1} T\right)^{j} y_{n}\right\}$ converges strongly to 0 .

Step 3. We claim that $\lim \sup _{n \rightarrow \infty}\left\langle y-P_{2} y, J\left(y_{n+1}-P_{2} y\right)\right\rangle \leq 0$. Indeed let $\left\{y_{n_{j}+1}\right\}$ be a subsequence of $\left\{y_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle y-P_{2} y, J\left(y_{n+1}-P_{2} y\right)\right\rangle=\lim _{j \rightarrow \infty}\left\langle y-P_{2} y, J\left(y_{n_{j}+1}-P_{2} y\right)\right\rangle .
$$

Since E is uniformly convex, E is reflexive. Hence without loss of generality, we may further assume that $\left\{y_{n_{j}+1}\right\}$ converges weakly to some $u \in C$. From Lemma 1 and Step 2, we obtain $u \in F\left(P_{1} T\right)$. Note that $T \omega_{w}\left(y_{n}\right) \subseteq C$. This implies that $T u=P_{1} T u=u$ and hence $u \in F(T)$. On the other hand by using gauge function φ, we define for every $n \geq 0$

$$
\eta_{n}:=\left\{\begin{array}{l}
\frac{\left\|y_{n}-P_{2} y\right\|}{\varphi\left(\left\|y_{n}-P_{2} y\right\|\right)}, \text { if } y_{n} \neq P_{2} y, \\
0, \quad \text { if } y_{n}=P_{2} y .
\end{array}\right.
$$

From $\sup \left\{\left\|y_{n}-P_{2} y\right\| / \varphi\left(\left\|y_{n}-P_{2} y\right\|\right): y_{n} \neq P_{2} y\right\}<\infty$, we obtain $\lim \sup _{n \rightarrow \infty} \eta_{n}<\infty$. Also from Proposition 1 (iii), we obtain

$$
J\left(y_{n}-P_{2} y\right)=\eta_{n} J_{\varphi}\left(y_{n}-P_{2} y\right) \quad \text { for all } n \geq 0
$$

Since J_{φ} is continuous from the weak topology to the weak* topology, we conclude that

$$
\lim _{j \rightarrow \infty}\left\langle y-P_{2} y, J_{\varphi}\left(y_{n_{j}+1}-P_{2} y\right)\right\rangle=\left\langle y-P_{2} y, J_{\varphi}\left(u-P_{2} y\right)\right\rangle
$$

It is clear that Proposition 1 (iii) yields

$$
J_{\varphi}\left(u-P_{2} y\right)= \begin{cases}\frac{\varphi\left(\left\|u-P_{2} y\right\|\right)}{\left\|u-P_{2} y\right\|} J\left(u-P_{2} y\right), & \text { if } u \neq P_{2} y \\ 0, & \text { if } u=P_{2} y\end{cases}
$$

which implies that

$$
\left\langle y-P_{2} y, J_{\varphi}\left(u-P_{2} y\right)\right\rangle=\left\{\begin{array}{l}
\frac{\varphi\left(\left\|u-P_{2} y\right\|\right)}{\left\|u-P_{2} y\right\|}\left\langle y-P_{2} y, J\left(u-P_{2} y\right)\right\rangle, \text { if } u \neq P_{2} y \\
0, \\
\text { if } u=P_{2} y
\end{array}\right.
$$

Since P_{2} is the sunny and nonexpansive retraction of C onto $F(T)$, from Lemma 3, we obtain

$$
\lim _{j \rightarrow \infty}\left\langle y-P_{2} y, J_{\varphi}\left(y_{n_{j}+1}-P_{2} y\right)\right\rangle=\left\langle y-P_{2} y, J_{\varphi}\left(u-P_{2} y\right)\right\rangle \leq 0
$$

and hence we infer by Lemma 6 that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\langle y- & \left.P_{2} y, J\left(y_{n+1}-P_{2} y\right)\right\rangle=\lim _{j \rightarrow \infty}\left\langle y-P_{2} y, J\left(y_{n_{j}+1}-P_{2} y\right)\right\rangle \\
& =\lim _{j \rightarrow \infty} \eta_{n_{j}+1}\left\langle y-P_{2} y, J_{\varphi}\left(y_{n_{j}+1}-P_{2} y\right)\right\rangle \leq 0
\end{aligned}
$$

Step 4. We claim that $y_{n} \rightarrow P_{2} y$. Indeed by Step 3 we have that for any $\varepsilon>0$, there exists $m \in N$ such that for all $n \geq m$

$$
\left\langle y-P_{2} y, J\left(y_{n+1}-P_{2} y\right)\right\rangle<\frac{\varepsilon}{2} .
$$

Also observe that

$$
\begin{aligned}
y_{n+1}-P_{2} y+\alpha_{n}\left(P_{2} y-y\right)= & \frac{1}{n+1} \sum_{j=0}^{n} P_{1}\left(\alpha_{n} y+\left(1-\alpha_{n}\right)\left(T P_{1}\right)^{j} y_{n}\right) \\
& -P_{1}\left(\alpha_{n} y+\left(1-\alpha_{n}\right) P_{2} y\right) .
\end{aligned}
$$

This together with Lemma 2 implies that for all $n \geq m$,

$$
\begin{aligned}
\left\|y_{n+1}-P_{2} y\right\|^{2} & \leq \| \frac{1}{n+1} \sum_{j=0}^{n} P_{1}\left(\alpha_{n} y+\left(1-\alpha_{n}\right)\left(T P_{1}\right)^{j} y_{n}\right) \\
& -P_{1}\left(\alpha_{n} y+\left(1-\alpha_{n}\right) P_{2} y\right) \|^{2}+2 \alpha_{n}\left\langle y-P_{2} y, J\left(y_{n+1}-P_{2} y\right)\right\rangle \\
& \leq\left\{\frac{1}{n+1} \sum_{j=0}^{n} \| P_{1}\left(\alpha_{n} y+\left(1-\alpha_{n}\right)\left(T P_{1}\right)^{j} y_{n}\right)\right. \\
& \left.-P_{1}\left(\alpha_{n} y+\left(1-\alpha_{n}\right) P_{2} y\right) \|\right\}^{2}+2 \alpha_{n}\left\langle y-P_{2} y, J\left(y_{n+1}-P_{2} y\right)\right\rangle \\
& \leq\left\{\left(1-\alpha_{n}\right) \frac{1}{n+1} \sum_{j=0}^{n}\left\|\left(T P_{1}\right)^{j} y_{n}-P_{2} y\right\|\right\}^{2} \\
& +2 \alpha_{n}\left\langle y-P_{2} y, J\left(y_{n+1}-P_{2} y\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left\|y_{n}-P_{2} y\right\|^{2}+2 \alpha_{n}\left\langle y-P_{2} y, J\left(y_{n+1}-P_{2} y\right)\right\rangle \\
& \leq\left(1-\alpha_{n}\right)\left\|y_{n}-P_{2} y\right\|^{2}+\alpha_{n} \varepsilon .
\end{aligned}
$$

Therefore by Lemma 5 , we obtain $y_{n} \rightarrow P_{2} y$ and the proof is complete.

References

[1] S. Banach, Theorie des operations lineaires, Monografie Mat., PWN, Warszawa, 1932.
[2] H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl., 202(1996), 150-159.
[3] F.E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z., 100(1967), 201-225.
[4] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York/Berlin, 1985.
[5] D. van Dulst, Equivalent norms and the fixed point property for nonexpansive mappings, London Math. Soc., 25(2)(1982), 139-144.
[6] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, New York, 1984.
[7] B.R. Halpern and G.M. Bergman, A fixed-point theorem for inward and outward maps, Trans. Amer. Math. Soc., 130(1968), 353-358.
[8] T.C. Lim and H.K. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal., 22(11) (1994), 1345-1355.
[9] S. Matsushita and D. Kuroiwa, Approximation of fixed points of nonexpansive nonselfmappings, Sci. Math. Jpn., 57(2003), 171-176.
[10] S. Matsushita and D. Kuroiwa, Strong convergence of averaging iterations of nonexpansive nonself-mappings, J. Math. Anal. Appl., 294(2004), 206-214.
[11] J.G. O'Hara, P. Pillay and H.K. Xu, Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Anal., 54(2003), 1417-1426.
[12] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 595-597.
[13] S. Reich, Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal., 36(2)(1980), 147-168.

14] T. Shimizu and W. Takahashi, Strong convergence theorem for asymptotically nonexpansive mappings, Nonlinear Anal., 26(1996), 265-272.
[15] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., 211(1997), 71-83.
[16] N. Shioji and W. Takahashi, A strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, Arch. Math., 72 (1999), 354-359.

17] N. Shioji and W. Takahashi, Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japonica, 50(1) (1999), 57-66
[18] N. Shioji and W. Takahashi, Strong convergence of averaged approximants for asymptotically nonexpansive mappings in Banach spaces, J. Approximation Theory, 97(1999), 53-64.
[19] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (in Japanese).
[20] W. Takahashi and D.H. Jeong, Fixed point theorem for nonexpansive semigroups on Banach space, Proc. Amer. Math. Soc., 122(1994), 1175-1179.
[21] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58(1992), 486-491.
[22] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116(3) (2003), 659-678.
[23] Z.B. Xu and G.F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces, J. Math. Anal. Appl., 157(1)(1991), 189-210.

Received: March 8, 2007; Accepted: June 11, 2007.

[^0]: *This research was partially supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE, China and the Dawn Program Foundation in Shanghai.
 ${ }^{* *}$ This research was partially supported by the grant no. 187 from the National Science Council of Romania.
 ${ }^{* * *}$ This research was partially supported by a grant from the National Science Council of Taiwan.

