Fixed Point Theory, Volume 8, No. 2, 2007, 201-218 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

REMARKS ON THE STABILITY OF MONOMIAL FUNCTIONAL EQUATIONS

LIVIU CĂDARIU* AND VIOREL RADU**

*"Politehnica" University of Timişoara, Department of Mathematics Piaţa Victoriei No.2, 300006 Timişoara, Romania E-mail: liviu.cadariu@mat.upt.ro, lcadariu@yahoo.com

**West University of Timişoara, Faculty of Mathematics and Computer Science Bv. Pârvan 4, 300223 Timişoara, Romania, E-mail: radu@math.uvt.ro

Abstract. The aim of this paper is to prove the generalized stability in the Ulam-Hyers-Bourgin sense of the monomial equations, for functions from 2-divisible groups into complete β -normed spaces. There is used a fixed point method, previously applied by the authors to some particular functional equations. A special case, the stability of type Aoki-Rassias is emphasized in section 3 and finally we give some (counter)examples in order to clarify the role of each of the control conditions.

Key Words and Phrases: Monomial functional equation, fixed point, stability.2000 Mathematics Subject Classification: 39B52, 39B62, 39B82, 47H10.

1. INTRODUCTION

Different methods are known for demonstrating the stability of functional equations. Nevertheless, almost all proofs use the *direct method*, conceived by Hyers in [22] and revealed by Bourgin in [5] for unbounded differences (see also [23], [30], [14] and [18]). For supplementary details, we refer the reader to the expository papers [15] and [31] or to the books [24], [12], [13] and [25]. A slightly different method, by using the *fixed point alternative*, has been applied in [29], [6]-[11], [26] and [28]. It does essentially insinuate a metrical context and is seen to better clarify the ideas of stability as well as the role of each controlling condition.

For an Abelian group X and a vector space Y consider the difference operators defined, for each $y \in X$ and any mapping $f : X \to Y$, in the following manner:

$$\Delta_y^1 f(x) := f(x+y) - f(x), \text{ for all } x \in X,$$

and, inductively, $\Delta_y^{n+1} = \Delta_y^1 \circ \Delta_y^n$, for all $n \ge 1$.

A mapping $f: X \to Y$ is called a monomial function of degree N if it is a solution of the monomial functional equation

$$\Delta_y^N f(x) - N! f(y) = 0, \ \forall \ x, y \in X.$$

$$(1.1)$$

Notice that the monomial equation of degree 1 is exactly the Cauchy equation, while for N=2 the monomial equation has the form f(x + 2y) - 2f(x + y) + f(x) - 2f(y) = 0, which is equivalent to the well-known quadratic functional equation:

$$f(x+y) + f(x-y) = 2(f(x) + f(y)), \forall x, y \in X.$$
(1.2)

In what follows, the positive integer N will be fixed.

M.H. Albert and A. Baker, in [3], demonstrated the Ulam-Hyers stability of the monomial equation (1.1) (see also [20]). Subsequently, A. Gilanyi proved in [21] that the equation is stable in the sense of Aoki-Rassias (see also [35] for the asymptotic stability):

Proposition 1.1. Let X be a normed linear space, let Y be a Banach space and let $p \neq N$ be a non-negative real number. If, for a function $f: X \to Y$, there exists a real number $\eta \geq 0$ such that

$$\|\Delta_y^N f(x) - N! f(y))\| \le \eta(\|x\|^p + \|y\|^p), \ \forall x, y \in X,$$
(1.3)

then there exist a real number c = c(N, p) and a unique monomial function $g: X \to Y$ of degree N with the property

$$||f(x) - g(x)|| \le c\eta ||x||^p \quad , \ \forall x \in X.$$

On the other hand, by using the fixed point method, we proved in [8] the following generalized stability result for additive Cauchy equations and mappings with values into β -normed spaces:

Proposition 1.2. Let X, Y be two linear spaces over the same (real or complex) field, with Y a complete β -normed space, and set $r_j = \begin{cases} 2, & \text{if } j = 0 \\ \frac{1}{2}, & \text{if } j = 1 \end{cases}$.

Suppose the mapping $f : X \to Y$, with f(0) = 0, verifies the control condition

$$\|f(x+y) - f(x) - f(y)\|_{\beta} \le \varphi(x,y), \text{ for all } x, y \in X,$$

where $\varphi: X \times X \to \mathbb{R}_+$ has the following property:

$$\lim_{n \to \infty} \frac{\varphi\left(r_j^n x, r_j^n y\right)}{r_j^{n\beta}} = 0$$

If there exists a positive constant L < 1 such that the mapping

$$x \to \psi(x) = \varphi\left(\frac{x}{2}, \frac{x}{2}\right)$$

satisfies the relation

$$\psi(x) \le L \cdot r_j^{\beta} \cdot \psi\left(\frac{x}{r_j}\right), \text{ for all } x \in X,$$

then there exists a unique additive mapping $a: X \to Y$ such that

$$\|f(x) - a(x)\|_{\beta} \le \frac{L^{1-j}}{1-L}\psi(x), \text{ for all } x \in X.$$

In the present paper, by developing to some extent the above results, we prove a stability property in the **Ulam-Hyers-Bourgin sense**: For every $f: G \to Y$, from a 2-divisible group G into a complete β -normed space Y, which verifies a *slightly perturbed monomial equation* (i.e. controlled by a mapping $\varphi: G \times G \to [0, \infty)$ with suitable properties), there exists a *unique monomial solution* fittingly approximating f (see Agarwal, Xu & Zhang [1] for a general definition)

2. A STABILITY THEOREM VIA THE FIXED POINT ALTERNATIVE

We intend to show that Proposition 1.1 and Proposition 1.2 can really be generalized by the *fixed point method*, proposed in [29] and already used in [6]-[11] and [28] to different functional equations (see also [4] and [16]). Actually, we shall prove a new stability theorem of the Ulam-Hyers-Bourgin type for the monomial functional equation (1.1). As it will be seen, the fixed point alternative is a meaningful device on the road to a better understanding of the stability property, plainly related to some fixed point of a concrete operator. Specifically, our control conditions are perceived to be responsible for three fundamental facts:

- 1) The contraction property of the operator S (given by $(\mathbf{OP}_{\mathbf{mon}}^{\mathbf{j}})$ below).
- 2) The distance between f and Sf, the first two approximations, is finite.
- 3) The fixed point function of S is forced to be a monomial function.

Let X be a 2-divisible group¹, let Y be a (real or complex) complete β -normed space², and assume we are given a function $\varphi : X \times X \to [0, \infty)$ with the following property:

$$\left(\mathbf{H}_{\mathbf{j}}^{*}\right) \qquad \lim_{m \to \infty} \frac{\varphi\left(r_{j}^{m}x, r_{j}^{m}y\right)}{r_{j}^{mN\beta}} = 0, \forall x, y \in X, \text{ for } r_{j} := 2^{1-2j}, j \in \{0, 1\}.$$

Theorem 2.1. Suppose the mapping $f : X \to Y$, with f(0) = 0, verifies the control condition

$$\|\Delta_y^N f(x) - N! f(y)\|_{\beta} \le \varphi(x, y) , \ \forall x, y \in X.$$
(2.4)

If there exists a positive constant L < 1 such that the mapping

$$x \to \psi(x) = \frac{1}{(N!)^{\beta}} \left(\varphi(0, x) + \sum_{i=0}^{N} \binom{N}{N-i} \cdot \varphi\left(\frac{ix}{2}, \frac{x}{2}\right) \right) , \ \forall x \in X,$$

satisfies the inequality

$$(\mathbf{H}_{\mathbf{j}}) \qquad \qquad \psi(r_{j}x) \leq L \cdot r_{j}^{N\beta} \cdot \psi(x), \forall x \in X,$$

then there exists a **unique monomial mapping** $g: X \to Y$, of degree N, with the following fitting property:

$$(\mathbf{Est}_{\mathbf{j}}) \qquad \qquad \|f(x) - g(x)\| \le \frac{L^{1-j}}{1-L}\psi(x), \forall x \in X.$$

For the proof of our theorem, we need the following two fundamental lemmas. The first one gives a crucial intermediary result and the second one, which is recalled for convenience only, is a celebrated result in fixed point theory.

¹That is to say an Abelian group (X, +) such that for any $x \in X$ there exists a unique $a \in X$ with the property x = 2a; this unique element a is denoted by $\frac{x}{2}$.

²Usually, a mapping $|| \cdot ||_{\beta} : Y \to \mathbb{R}_+$, where $\beta \in (0, 1]$, is called a β -norm iff it has the properties $(n_{\beta}^I) : ||y||_{\beta} = 0 \Leftrightarrow y = 0, (n_{\beta}^{II}) : ||\lambda \cdot y||_{\beta} = |\lambda|^{\beta} \cdot ||y||_{\beta}$, and $(n_{\beta}^{III}) : ||y + z||_{\beta} \leq ||y||_{\beta} + ||z||_{\beta}$, for all $y, z \in Y$, and $\lambda \in \mathbb{K}$.

Lemma 2.2. Let us consider an Abelian group G, a β -normed linear space Y and a mapping $\varphi : G \times G \to [0, \infty)$. If the function $f : G \to Y$ satisfies (2.4) then, for all $x \in G$,

$$\left| \left| \frac{f(2x)}{2^N} - f(x) \right| \right|_{\beta} \le \frac{1}{2^{N\beta} \cdot (N!)^{\beta}} \cdot \left(\varphi(0, 2x) + \sum_{i=0}^N \binom{N}{N-i} \cdot \varphi(ix, x) \right).$$

$$(2.5)$$

Proof. As in [21], we define the functions $F_i: G \to Y$ by

$$F_i(x) := \Delta_x^N f(ix) - (N!)f(x) , \quad \forall x \in G.$$

Using (2.4) we see that

$$||F_i(x)||_{\beta} \le \varphi(ix, x) , \ \forall x \in G$$
(2.6)

and

$$||F_0(2x)||_{\beta} \le \varphi(0, 2x) , \ \forall x \in G.$$
 (2.7)

On the other hand, if we consider (as in [19], Lemma 2.2.) the $(N+1)\times(2N+1)$ matrix

$$A = \begin{pmatrix} \alpha_0^{(0)} & \alpha_0^{(1)} & \dots & \alpha_0^{(2N)} \\ \alpha_1^{(0)} & \alpha_1^{(1)} & \dots & \alpha_1^{(2N)} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_N^{(0)} & \alpha_N^{(1)} & \dots & \alpha_N^{(2N)} \end{pmatrix}$$

where

$$\alpha_i^{(i+k)} = \begin{cases} (-1)^k \binom{N}{N-k}, & \text{if } 0 \le k \le N \\ 0, & \text{otherwise} \end{cases}$$
(2.8)

for i=0,...,N , k=-i,...,2N-i, and the $1\times(2N+1)$ matrix

$$B = \left(\begin{array}{ccc} \beta^{(0)} & \beta^{(1)} & \beta^{(2)} & \cdots & \beta^{(2N)} \end{array}\right),$$

with

$$\beta^{(k)} = \begin{cases} (-1)^{\frac{k}{2}} \binom{N}{N - \frac{k}{2}}, & \text{if } 2 \mid k \\ 0, & \text{if } 2 \nmid k \end{cases}, \quad \text{for } k = 0, ..., 2N, \qquad (2.9)$$

then, for the positive constants $K_i = \begin{pmatrix} N \\ N-i \end{pmatrix}$, one has

$$K_0 A_0 + K_1 A_1 + \dots + K_N A_N = B$$
 and $K_0 + K_1 + \dots + K_N = 2^N$, (2.10)

where A_i , i = 0, ..., N is the i-th row of the matrix A. Recall the following noteworthy formula for the difference operator:

$$\Delta_y^N f(x) = \sum_{j=0}^N (-1)^{N+j} \binom{N}{N-j} f(x+jy).$$
(2.11)

Therefore

$$\Delta_x^N f(ix) = (-1)^N \sum_{k=i}^{N+i} (-1)^{k-i} {\binom{N}{N-(k-i)}} f(kx)$$

so that, with the notation (2.8),

$$\Delta_x^N f(ix) = (-1)^N \sum_{k=0}^{2N} \alpha_i^{(k)} \cdot f(kx) , \forall x \in G,$$

hence

$$F_i(x) = (-1)^N \sum_{k=0}^{2N} \alpha_i^{(k)} \cdot f(kx) - (N!)f(x) , \forall x \in G.$$

On the other hand, with the notation (2.9),

$$\Delta_{2x}^{N} f(0) = (-1)^{N} \sum_{j=0}^{N} (-1)^{j} \binom{N}{N-j} f(2xj) = (-1)^{N} \sum_{k=0}^{2N} \beta^{(k)} \cdot f(kx),$$

so that

$$F_0(2x) = (-1)^N \sum_{k=0}^{2N} \beta^{(k)} \cdot f(kx) - (N!)f(2x) , \forall x \in G.$$

By (2.10), we can write:

$$K_0 \cdot \left(\alpha_0^{(k)}\right)_{k=\overline{0,2N}} + \dots + K_N \cdot \left(\alpha_N^{(k)}\right)_{k=\overline{0,2N}} = \left(\beta^{(k)}\right)_{k=\overline{0,2N}} = B, \quad (2.12)$$

where $K_i = \binom{N}{N-i}$, i = 0, 1, ..., N. If we multiply (2.12) by f(kx) and then add for $k = \overline{0, 2N}$, we obtain

$$K_0 \cdot \Delta_x^N f(0) + K_1 \cdot \Delta_x^N f(x) + \dots + K_N \cdot \Delta_x^N f(Nx) = \Delta_{2x}^N f(0) , \ \forall x \in G,$$

hence

$$K_0F_0(x) + K_1F_1(x) + \dots + K_NF_N(x) + 2^N(N!)f(x) = F_0(2x) + (N!)f(2x)$$

for all $x \in G$. Using (2.6) and (2.7) we get, for all $x \in G$,

$$\left| \left| \frac{f(2x)}{2^N} - f(x) \right| \right|_{\beta} \le \frac{1}{2^{N\beta} \cdot (N!)^{\beta}} \left(\varphi(0, 2x) + \sum_{i=0}^N \binom{N}{N-i} \cdot \varphi(ix, x) \right). \quad \Box$$

Remark 2.3. It easy to see (e.g. by taking $\varphi \equiv 0$ in Lemma 2.2) that

$$g(2x) = 2^N g(x)$$
 and $g(2^m x) = 2^{Nm} g(x)$, $\forall x \in G, \forall m \in \mathbb{N}$,

for any monomial function g of degree N.

Remark 2.4. Let G be a 2 - divisible group and formally replace x with $\frac{x}{2}$ in (2.5). Then one has the following result:

Let Y be a β -normed linear space and $\varphi: G \times G \to [0, \infty)$ a given mapping. If $f: G \to Y$ satisfies

$$\|\Delta_y^N f(x) - N! f(y))\|_{\beta} \le \varphi(x, y) , \ \forall x, y \in G,$$

then

$$\left| \left| f(x) - 2^N f\left(\frac{x}{2}\right) \right| \right|_{\beta} \le \frac{1}{(N!)^{\beta}} \left(\varphi(0, x) + \sum_{i=0}^N \binom{N}{N-i} \varphi\left(\frac{ix}{2}, \frac{x}{2}\right) \right), \, \forall x \in G.$$

Now we recall the fixed point alternative (see, e.g., [27, 32]):

Lemma 2.5. Suppose we are given a complete generalized metric space (E, d)(*i.e.* one for which d may assume infinite values), and a strictly contractive mapping $S : E \to E$, with the Lipschitz constant L < 1. Then, for each of the elements $x \in E$, exactly one of the following assertions is true: $(A_1) \quad d(S^n x, S^{n+1} x) = +\infty$, for all $n \ge 0$,

(A₂) There exists k such that $d(S^nx, S^{n+1}x) < +\infty$, for each $n \ge k$. Actually, if (A₂) holds, then (see [34])

 (A_{21}) The sequence $(S^n x)$ is convergent to a fixed point z^* of S;

 (A_{22}) z^* is the unique fixed point of S in the set

$$Z := \left\{ z \in E, \ d\left(S^k x, z\right) < +\infty \right\};$$

 (A_{23}) The following estimation holds:

$$d(z, z^*) \le \frac{1}{1-L} d(z, Sz), \ \forall z \in Z.$$

The proof of Theorem 2.1.

We consider the set $E := \{g : X \to Y, g(0) = 0\}$ and introduce a generalized metric $d = d_{\psi}$ on E, where

$$(\mathbf{GM}_{\psi}) \qquad d_{\psi}\left(g,h\right) = \inf\left\{K \in \mathbb{R}_{+}, \left\|g\left(x\right) - h\left(x\right)\right\|_{\beta} \leq K\psi(x), \forall x \in X\right\}.$$

It is easy to see that (E, d) is complete. Now, consider the mapping

$$(\mathbf{OP^{j}_{mon}}) \qquad \qquad S: E \to E, Sg\left(x\right) := \frac{g\left(r_{j}x\right)}{r_{j}^{N}}.$$

and notice that $r_j = 2^{1-2j}$, for j fixed in $\{0, 1\}$.

Step I. Using the hypothesis (\mathbf{H}_j) , one can see that S is strictly contractive on E. Namely, we can write, for any $g, h \in E$:

$$\begin{split} d(g,h) < K \Longrightarrow \|g(x) - h(x)\|_{\beta} &\leq K\psi(x), \forall x \in X \Longrightarrow \\ \left\| \frac{1}{r_{j}^{N}}g(r_{j}x) - \frac{1}{r_{j}^{N}}h(r_{j}x) \right\|_{\beta} &\leq \frac{1}{r_{j}^{N\beta}}K\psi(r_{j}x), \forall x \in X \Longrightarrow \\ \left\| \frac{1}{r_{j}^{N}}g(r_{j}x) - \frac{1}{r_{j}^{N\beta}}h(r_{j}x) \right\|_{\beta} &\leq LK\psi(x), \forall x \in X \Longrightarrow \\ d\left(Sg, Sh\right) &\leq LK. \end{split}$$

Therefore

$$(\mathbf{CC}_{\mathbf{L}}) \qquad \qquad d\left(Sg,Sh\right) \leq Ld\left(g,h\right), \forall g,h \in E,$$

that is S is a *strictly contractive* self-mapping of E relative to d, with the Lipschitz constant L < 1.

Step II. We show that $d(f, Sf) < \infty$. For j=0, by Lemma 2.2, we have

$$\left| \left| \frac{f(2x)}{2^N} - f(x) \right| \right|_{\beta} \le \frac{1}{2^{N\beta} \cdot (N!)^{\beta}} \left(\varphi(0, 2x) + \sum_{i=0}^N \binom{N}{N-i} \varphi(ix, x) \right), \, \forall x \in X.$$

Therefore, using (\mathbf{H}_0) ,

$$\left\|\frac{f(2x)}{2^N} - f(x)\right\|_{\beta} \le \frac{\psi(2x)}{2^{N\beta}} \le L\psi(x), \forall x \in X,$$

that is $d(f, Sf) \leq L < \infty$.

For j=1, by Remark 2.4, we see that

$$\begin{split} \left| \left| f(x) - 2^N f\left(\frac{x}{2}\right) \right| \right|_{\beta} &\leq \frac{1}{(N!)^{\beta}} \left(\varphi(0, x) + \sum_{i=0}^N \binom{N}{N-i} \cdot \varphi\left(\frac{ix}{2}, \frac{x}{2}\right) \right) \\ &= \psi(x) \ , \ \forall x \in X. \end{split}$$

Therefore $d(f, Sf) \leq 1 = L^0 < \infty$.

Step III. In both cases we can apply the fixed point alternative (see Lemma 2.5), which tells us that there is a mapping $g: X \to Y$ such that:

• g is a fixed point of S, that is

$$g(2x) = 2^N g(x), \forall x \in X.$$
(2.13)

The mapping g is the unique fixed point of S in the set

$$F = \{h \in E, \ d(f,h) < \infty\}$$

This says that g is the unique mapping with *both* the properties (2.13) and (2.14), where

$$\exists K < \infty \text{ such that } \|f(x) - g(x)\| \le K\psi(x), \forall x \in X.$$
(2.14)

• $d(S^m f, g) \longrightarrow 0$, for $m \to \infty$, which implies the equality

$$\lim_{n \to \infty} \frac{f\left(r_j^m x\right)}{r_j^{mN}} = \lim_{m \to \infty} g_m(x) = g(x), \forall x \in X.$$

• $d(f,g) \leq \frac{1}{1-L} d(f,Sf)$, which implies the inequality

$$d(f,g) \le \frac{L^{1-j}}{1-L} ,$$

from which $(\mathbf{Est}_{\mathbf{j}})$ is seen to be true.

r

Step IV. We show that g is a monomial function of degree N. To this end, we replace x by $r_j^m x$ and y by $r_j^m y$ in relation (2.4), then divide the obtained relation by r_j^{mN} and we obtain

$$\left\|\frac{\Delta_{r_j^m y}^N f(r_j^m x)}{r_j^{mN}} - N! \frac{f(r_j^m y))}{r_j^{mN}}\right\|_{\beta} \le \frac{\varphi(r_j^m x, r_j^m y)}{r_j^{mN\beta}} \ , \ \forall x, y \in X$$

On the other hand, by (2.11),

$$\frac{\Delta_{r_j^m y}^N f(r_j^m x)}{r_j^m N} = \sum_{k=0}^N (-1)^{N-k} \binom{N}{k} \frac{f(r_j^m x + kr_j^m y)}{r_j^m N} =$$
$$= \sum_{k=0}^N (-1)^{N-k} \binom{N}{k} g_m(x+ky) =$$
$$= \Delta_y^N g_m(x), \forall x, y \in X.$$

And we get

$$\left|\left|\Delta_y^N g_m(x) - N! \cdot g_m(y)\right|\right|_{\beta} \le \frac{\varphi(r_j^m x, r_j^m y)}{r_j^{mN\beta}} , \ \forall x, y \in X.$$

By letting $m \to \infty$ in the above relation and using $(\mathbf{H}_{\mathbf{j}}^*)$, we obtain

$$\Delta_y^N g(x) - N! \cdot g(y) = 0, \ \forall x, y \in G. \qquad \Box$$

Remark 2.6. For N = 1 in the above theorem, we obtain a generalized stability result for the additive Cauchy equation for functions with values in complete β -normed spaces, with

$$\psi(x) = \varphi(0, x) + \varphi\left(0, \frac{x}{2}\right) + \varphi\left(\frac{x}{2}, \frac{x}{2}\right), \forall x \in X.$$

(compare with Proposition 1.2).

If N = 2 in Theorem 2.1 it results (as in [7] for $\beta = 1$) that the quadratic functional equation (again for functions with values in complete β -normed spaces) is stable in the Ulam-Hyers-Bourgin sense, with

$$\psi(x) = \frac{1}{2^{\beta}} \left(\varphi(0, x) + \varphi\left(0, \frac{x}{2}\right) + 2\varphi\left(\frac{x}{2}, \frac{x}{2}\right) + \varphi\left(x, \frac{x}{2}\right) \right), \forall x \in X.$$

It is worth noting that the estimations obtained directly for particular values of N (as in [6], [7], [8] or [11]) are generally better than those resulting from (**Est**_j), which in its turn is applicable for all N.

3. Stability of the Aoki-Rassias type

Let $\alpha \in \mathbb{R}_+$. A mapping $||.||_{\alpha} : X \times X \to \mathbb{R}_+$ is called an *sh-functional of* order α iff it is α -sub-homogeneous:

$$(h_{\alpha}): ||\lambda \cdot z||_{\alpha} \le |\lambda|^{\alpha} \cdot ||z||_{\alpha}, \ \forall \lambda \in \mathbb{K}, \ \forall z \in X \times X.$$

As usual, X is identified with $X \times \{0\}$ in $X \times X$, so that $||x||_{\alpha} = ||(x,0)||_{\alpha}$ defines an sh-functional of order α on X.

As a consequence of Theorem 2.1, we have the following result, which directly extends many stability theorems of the Aoki-Rassias type:

Proposition 3.1. Let X, Y be two linear spaces over the same (real or complex) field. Suppose we are given a complete β -norm on Y and an shfunctional of order α on $X \times X$, with $\alpha \neq N\beta$. Under these conditions we have the following stability property:

For each $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$ such that, for every mapping $f : X \to Y$ which satisfies

$$(\mathbf{C}_{\alpha\beta}) \qquad \|\Delta_y^N f(x) - N! f(y)\|_{\beta} \le \delta(\varepsilon) \cdot ||(x, y)||_{\alpha}, \ \forall x, y \in X,$$

there exists a unique monomial mapping $g: X \to Y$, of degree N, such that, $\forall x \in X$,

$$(\mathbf{Est}_{\alpha\beta}) \quad ||f(x) - g(x)||_{\beta} \le \frac{\varepsilon}{(N!)^{\beta}} \left(||(0,x)||_{\alpha} + \sum_{i=0}^{N} \binom{N}{N-i} \cdot \left\| \frac{ix}{2}, \frac{x}{2} \right\|_{\alpha} \right).$$

Proof. Having in mind Theorem 2.1, we take the following control function, appearing in the hypothesis $(\mathbf{C}_{\alpha\beta})$:

$$\varphi(x,y) := \delta(\varepsilon) \cdot \|(x,y)\|_{\alpha}, \text{ for all } x, y \in X.$$

We shall consider two cases.

Case 1. For $\alpha - N\beta < 0$, we work with j = 0, that is $r_0 = 2$. We then have:

$$\frac{\varphi\left(2^{m}x,2^{m}y\right)}{2^{mN\beta}} \le \delta(\varepsilon) \cdot 2^{m(\alpha-N\beta)} \cdot \|(x,y)\|_{\alpha} \to 0, \ \forall x,y \in X$$

and

$$\begin{split} \psi(2x) &= \quad \frac{\delta(\varepsilon)}{(N!)^{\beta}} \left(\|(0,2x)\|_{\alpha} + \sum_{i=0}^{N} \left(\begin{array}{c} N\\ N-i \end{array} \right) \cdot \|(ix,x)\|_{\alpha} \right) \leq \\ &\leq \quad 2^{\alpha} \cdot \psi\left(x\right) = L \cdot 2^{N\beta} \cdot \psi\left(x\right), \; \forall x \in X, \end{split}$$

with $L = 2^{\alpha - N\beta} < 1$ and so (\mathbf{H}_0^*) and (\mathbf{H}_0) hold.

Case 2. For $\alpha - N\beta > 0$, we take j = 1, that is $r_1 = \frac{1}{2}$. We then have:

$$2^{N\beta m}\varphi\left(\frac{x}{2^m},\frac{y}{2^m}\right) \le \delta(\varepsilon) \cdot 2^{m(N\beta-\alpha)} \cdot \|(x,y)\|_{\alpha} \to 0, \forall x, y \in X$$

and

$$\psi(x) \le \frac{1}{2^{\alpha}} \cdot \psi(2x) = L \cdot \left(\frac{1}{2}\right)^{N\beta} \psi(2x), \ \forall x \in X,$$

with $L = 2^{N\beta - \alpha} < 1$, so that (\mathbf{H}_1^*) and (\mathbf{H}_1) are verified in this case.

Theorem 2.1 tells us that there is a unique monomial mapping $g: X \to Y$ such that either

$$\|f(x) - g(x)\|_{\beta} \le \frac{L}{1 - L}\psi(x), \text{ for all } x \in X,$$

holds, with $L = 2^{\alpha - N\beta}$, or

$$||f(x) - g(x)||_{\beta} \le \frac{1}{1 - L}\psi(x)$$
, for all $x \in X$,

holds, with $L = 2^{N\beta - \alpha}$.

Thus, the inequality $(\mathbf{Est}_{\alpha\beta})$ holds true for $\delta(\varepsilon) = \varepsilon \cdot \frac{|2^{N\beta} - 2^{\alpha}|}{2^{\alpha}}$. \Box

Remark 3.2. As a direct consequence of our proposition, we obtain the result of (Gilanyi, [21]) formulated in Proposition 1.1 above. Indeed, we apply Proposition 3.1 for the complete 1-normed space Y and for the sh-functional of order p on $X \times X$, given by $||x, y\rangle||_p = ||x||^p + ||y||^p$, with $p \ge 0, p \ne N$. In this case the generalized metric is of the form

$$d_p(g,h) = \inf\left\{K \in \mathbb{R}_+, \|g(x) - h(x)\|_\beta \le K \cdot \gamma(N,p) \cdot \|x\|^p, \forall x \in X\right\},\$$

and we obtain

$$c = c(N, p) = \frac{2^p + \sum_{i=0}^{N} \binom{N}{N-i} \cdot (i^p + 1)}{|2^N - 2^p| \cdot N!}.$$

Remark 3.3. Obviously, Proposition 3.1 can be proved by using directly the alternative of fixed point.

4. Comments, examples and counterexamples

As we shall see by examples, our hypotheses in Theorem 2.1 are essential for the stability result. Notice that in the proof we used the hypothesis (\mathbf{H}_{j}) to show that the operator S is contractive and, subsequently, to obtain the estimation (\mathbf{Est}_{j}) , while the hypothesis (\mathbf{H}_{j}^{*}) was fundamentally used to show that the fixed point function g does satisfy the monomial equation (1.1). In what follows we shall use the notations in Theorem 2.1. Assertion 4.1. There exist $f : \mathbb{R} \to \mathbb{R}$ and $\varphi : \mathbb{R} \to [0, \infty)$ such that (a) the relation (2.4) holds, (b) **none** of the conditions $(\mathbf{H_j})$ and $(\mathbf{H_j^*})$ is satisfied and (c) there exist infinitely many monomial functions g which satisfy the relation $(\mathbf{Est_j})$.

Proof. Indeed, if we take $X = Y = \mathbb{R}, ||\cdot||_{\beta} = |\cdot|, f(x) := x^N$ and $\varphi(x, y) = |x|^N + |y|^N$, then the inequality (2.4) clearly holds. Obviously,

$$\psi(x) = \frac{|x|^N}{N!} \left(1 + \frac{1}{2^N} \cdot \sum_{i=0}^N \binom{N}{N-i} \cdot (i^N + 1) \right) = \gamma(N) \cdot |x|^N,$$

and we easily see that none of the conditions $(\mathbf{H}_{\mathbf{j}})$ and $(\mathbf{H}_{\mathbf{j}}^*)$ is satisfied. However, there exist infinitely many fixed points of S, $g(x) = \lambda x^N$, which satisfy

$$|f(x) - g(x)| = |x^N - \lambda x^N| \le (1 + |\lambda|) \cdot |x|^N = \frac{1 + |\lambda|}{\gamma(N)} \cdot \psi(x)$$

Actually, every mapping g with $g(2x) = 2^N g(x)$ and $|g(x)| \le k \cdot |x|^N$ is seen to satisfy $|f(x) - g(x)| \le (1+k) \cdot |x|^N$. \Box

Assertion 4.2. Generally, the monomial functional equation (1.1) is not stable for $\alpha = N\beta$. More exactly, there exists $f : \mathbb{R} \to \mathbb{R}$ for which (1.3) holds for p = N and there exists **no** monomial mapping g of degree N which could verify the relation (Est_i).

Proof. In [21] (see also [17], [25]-pp. 23-24, [24]-pp. 59-60) the following example is given: Let N be a positive integer, ε be a positive real number and let

$$\varepsilon^* = \frac{\varepsilon}{2^N (2^N + N!) N^N}.$$

We consider the mapping $\varphi : \mathbb{R} \to \mathbb{R}$

$$\varphi(x) = \begin{cases} N^N \varepsilon^* , & \text{if } x \ge N \\ \varepsilon^* x^N , & \text{if } -N < x < N \\ (-1)^N N^N \varepsilon^* , & \text{if } x \le N \end{cases}$$

and we define a function $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \sum_{m=0}^{\infty} \frac{\varphi(2^m x)}{2^{mN}}$$
, for all $x \in \mathbb{R}$.

As it is proven in [21],

(i) f verifies the following inequality:

$$|\Delta_y^N f(x) - N! f(y)| \le \varepsilon (|x|^N + |y|^N), \ \forall x, y \in \mathbb{R};$$
(4.15)

(ii) There is no real number c for which there could exist a monomial function $g: \mathbb{R} \to \mathbb{R}$ of degree N such that $|f(x) - g(x)| \leq c\varepsilon |x|^N$, for all $x \in \mathbb{R}$.

From (4.15) it is clear that, for $\beta = 1$, $\varphi(x, y) = \varepsilon(|x|^N + |y|^N)$, hence

$$\psi(x) = \frac{\varepsilon |x|^N}{N!} \left(1 + \frac{1}{2^N} \cdot \sum_{i=0}^N \binom{N}{N-i} \cdot (i^N + 1) \right) = \varepsilon \cdot \gamma(N) \cdot |x|^N,$$

and **none** of the conditions $(\mathbf{H}_{\mathbf{j}})$ and $(\mathbf{H}_{\mathbf{j}}^*)$ is satisfied.

Indeed, it is easy to see that

$$\frac{\psi(2x)}{2^N} = \psi(x) \text{ and } \lim_{m \to \infty} \frac{\varphi\left(r_j{}^m x, r_j{}^m y\right)}{r_j{}^m N} = \varphi\left(x, y\right) \neq 0.$$

On the other hand, by (ii), there exists no monomial mapping g satisfying a relation of the form $|f(x) - g(x)| \le k \cdot \psi(x), \ \forall x \in \mathbb{R}$, of type (Est_j). \Box

Assertion 4.3. There exist $f : \mathbb{R} \to \mathbb{R}$ and $\varphi : \mathbb{R} \to [0, \infty)$ such that: (a) the relation (2.4) holds, (b) the conditions (\mathbf{H}_0) and (\mathbf{H}_1) are verified, (c) the mapping φ does not satisfy the condition (\mathbf{H}_j^*) and (d) no monomial mapping can satisfy the relation (\mathbf{Est}_j).

Proof. Indeed, if we take $X = Y = \mathbb{R}, || \cdot ||_{\beta} = | \cdot |$,

$$f(x) = \begin{cases} 0, & \text{if } x \in \mathbb{Q} \\ x^N, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

and $\varphi(x, y) := |\Delta_y^N f(x) - N! f(y)|$, then the inequality (2.4) is verified. Moreover, $\psi(x) = 0$. Both conditions (\mathbf{H}_0) and (\mathbf{H}_1) hold for every $L \in (0, 1)$, while the mapping φ does not satisfy the condition ($\mathbf{H}_{\mathbf{j}}^*$). Since $\frac{f(r_j^m x)}{r_j^m N} = f(x)$, it is clear that the unique fixed point of the operator S in the set $F = \{g \in E, \ d(f,g) < +\infty\}$ is g = f, which clearly is not monomial. \Box

Assertion 4.4. There exist $f : \mathbb{R} \to \mathbb{R}$ and $\varphi : \mathbb{R} \to [0, \infty)$ such that (a) the relation (2.4) holds, (b) **none** of the conditions (**H**₀) and (**H**₁) is satisfied, (c) the relation (**H**^{*}_i) holds

and (d) no monomial mapping g can satisfy the relation $(\mathbf{Est}_{\mathbf{i}})$.

Proof. Let us take $X = Y = \mathbb{R}, ||\cdot||_{\beta} = |\cdot|, f(x) := \sin^{N} x$ and

$$\varphi(x,y) := |\Delta_y^N f(x) - N! f(y)|.$$

Then the inequality (2.4) is trivially verified. Obviously

_

$$\psi(x) = \frac{1}{N!} \left(\left| \sum_{j=0}^{N} (-1)^{N-j} \binom{N}{N-j} \sin^N (jx) - N! \sin^N x \right| + \sum_{i=0}^{N} \binom{N}{N-i} \cdot \left| \sum_{j=0}^{N} (-1)^{N-j} \binom{N}{N-j} \sin^N \left(\frac{(i+j)x}{2} \right) - N! \sin^N \frac{x}{2} \right| \right),$$

for all $x \in \mathbb{R}$. For $x \to 0$ we obtain $\frac{\psi(2x)}{2^N \cdot \psi(x)} \to 4$, and for $x \to \pi$ we have that $\frac{\psi(2x)}{2^N \cdot \psi(x)} \to 0$. Therefore neither (**H**₀) nor (**H**₁) is satisfied. Clearly the mapping φ satisfies the condition (**H**^{*}_j). Let us suppose, for a contradiction, that a monomial mapping g satisfies

$$(\mathbf{Est}_{\mathbf{j}}) \qquad |f(x) - g(x)| \le k\psi(x), \text{ for all } x \in \mathbb{R}, k \text{ a real constant}$$

Then g is a bounded mapping on \mathbb{R} . Therefore (see [33]), $g(x) = \eta \cdot x^N$, for $x \in \mathbb{R}$, where η is a constant, hence g(x) = 0 for $x \in \mathbb{R}$. Now, the inequality (Est_i) implies

$$\left|\sin^{N} x\right| \leq \frac{k}{N!} \left(\left| \sum_{j=0}^{N} (-1)^{N-j} \binom{N}{N-j} \sin^{N} (jx) - N! \sin^{N} x \right| + \sum_{i=0}^{N} \binom{N}{N-i} \cdot \left| \sum_{j=0}^{N} (-1)^{N-j} \binom{N}{N-j} \sin^{N} \left(\frac{(i+j)x}{2} \right) - N! \sin^{N} \frac{x}{2} \right| \right),$$

for all $x \in \mathbb{R}$, which is impossible. Therefore, there exists no monomial mapping g which satisfies the estimation relation (**Est**_j). \Box

Remark 4.1. In (Forti, [16]) a stability result for equations of the form SF = F is presented, with S a functional operator of the Schröder type: SF(x) =

 $(H \circ F \circ G)(x)$. The hypotheses (as well as the proofs) insinuate a Banach-Caccioppoli type condition:

$$\sum_{n=0}^{\infty} dist(S^nf,S^{n+1}f) < \infty.$$

We only remark that such a condition and the continuity of S together ensure the existence of a fixed point function for S, which is the limit of $S^n f$. It is worth noting that in (Baker, [4]) the Banach contraction principle is applied to obtain the Hyers-Ulam stability for nonlinear functional equations of a similar form: $\varphi(x) = F(x, \varphi(f(x)))$ (see also [1] for other details and examples).

Remark 4.2. In [10] we used the direct method to prove, among others, the following Ulam-Hyers-Bourgin stability property for monomial equations: Let there be given a complete β -normed space Y, an Abelian group G and a controlling mapping $\varphi: G \times G \to [0, \infty)$ such that

$$\Phi_i(x) := \sum_{k=0}^{\infty} \frac{\varphi(2^k i x, 2^k x)}{(2^{N\beta})^k} < \infty, \forall x \in G, \text{ for } i = 0, 1, ..., N_i$$

and

$$\lim_{m \to \infty} \frac{\varphi(2^m x, 2^m y)}{(2^{N\beta})^m} = 0 , \ \forall x, y \in G.$$

Then, for every mapping $f: G \to Y$ which verifies

$$\|\Delta_y^N f(x) - N! f(y))\|_{\beta} \le \varphi(x, y) \ , \ \forall x, y \in G,$$

there exists a unique monomial function $g: G \to Y$ of degree N such that, for all $x \in G$,

$$\|f(x) - g(x)\|_{\beta} \le \frac{1}{2^{N\beta} \cdot (N!)^{\beta}} \left(\Phi_0(2x) + \sum_{i=0}^N \binom{N}{N-i} \cdot \Phi_i(x) \right).$$

References

- R.P. Agarwal, B. Xu, B. and W. Zhang, Stability of functional equations in single variable, J. Math. Anal. Appl., 288 (2003), 852-869.
- [2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
- [3] M.H. Albert and J. A. Baker, Functions with bounded n-th differences, Ann. Polonici Math., 43(1983), 93-103.
- [4] J.A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 3(1991), 729-732.

- [5] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57(1951), 223-237.
- [6] L. Cădariu, and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure and Appl. Math., 4(1)(2003), Art.4 (http://jipam.vu.edu.au)
- [7] L. Cădariu and V. Radu, Fixed points and the stability of quadratic functional equations, Analele Universității de Vest din Timișoara, 41(1)(2003), 25-48.
- [8] L. Cădariu and V. Radu, On the stability of Cauchy functional equation: a fixed points approach, Iteration Theory (ECIT '02), Proceedings of European Conference of Iteration Theory, Evora, Portugal, September 1-7, 2002, J. Sousa Ramos, D. Gronau, C. Mira, L. Reich, A. Sharkovsky (Eds.), Grazer Math. Ber. **346** (2004), 43-52.
- [9] L. Cădariu and V. Radu, A Hyers-Ulam-Rassias stability theorem for a quartic functional equation, Automation Computers and Applied Mathematics, 13(2004), No. 1, 31-39.
- [10] L. Cădariu and V. Radu, Stability properties for monomial functional equations, Analele Universității de Vest din Timișoara, 43(2005), 23-38.
- [11] L. Cădariu and V. Radu, Fixed points in generalized metric spaces and the stability of a cubic functional equation, Yeol Je Cho, Jong Kyu Kim & Shin Min Kang (Eds.), Fixed Point Theory and Applications 7, Nova Science Publ., 2007, 53-68.
- [12] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, 2002.
- [13] Z. Daroczy and Zs. Pales (Eds.), Functional Equations Results and Advances, Kluwer Acad. Publ., 2002.
- [14] G.L. Forti, An existence and stability theorem for a class of functional equations, Stochastica, 4(1980), 23-30.
- [15] G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50(1995), 143-190.
- [16] G.L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl., 295(2004), 127-133.
- [17] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14(1991), 431-434.
- [18] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
- [19] A. Gilanyi, A characterization of monomial functions, Aequationes Math., 54(1997), 289-307.
- [20] A. Gilanyi, Hyers-Ulam stability of monomial functional equations on a general domain, Proc. Nat. Acad. Sci. USA, 96(1999), 10588-10590.
- [21] A. Gilanyi, On the stability of monomial functional equations, Publ. Math., 56(2000), 201-212.
- [22] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27(1941), 222-224.

- [23] D.H. Hyers, Transformations with bounded n-th differences, Pacific J. Math., 11(1961), 591-602.
- [24] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
- [25] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Florida, 2002.
- [26] Y.-S. Jung and I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306(2005), 752-760.
- [27] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74(1968), 305-309.
- [28] M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bulletin of the Brazilian Mathematical Society, to appear.
- [29] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4(2003), 91-96.
- [30] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
- [31] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62(2000), 23-130.
- [32] I.A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979, (in Romanian).
- [33] L. Szekelyhidi, Convolution Type Functional Equations on Toplogical Abelian Groups, World Sci. Publ. Co., Singapore, 1991.
- [34] E. Zeidler, Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems, Springer-Verlag, New York, 1986.
- [35] D. Wolna, Asymptotic stability of monomial functional equations, Publ. Math. Debrecen, 63(2003), 145-156.

Received: November 20, 2006; Accepted: May 11, 2007.