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Abstract. The aim of this paper is to prove the generalized stability in the Ulam-Hyers-

Bourgin sense of the monomial equations, for functions from 2-divisible groups into complete

β-normed spaces. There is used a fixed point method, previously applied by the authors to

some particular functional equations. A special case, the stability of type Aoki-Rassias is

emphasized in section 3 and finally we give some (counter)examples in order to clarify the

role of each of the control conditions.
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1. Introduction

Different methods are known for demonstrating the stability of functional
equations. Nevertheless, almost all proofs use the direct method, conceived by
Hyers in [22] and revealed by Bourgin in [5] for unbounded differences (see
also [23], [30], [14] and [18]). For supplementary details, we refer the reader to
the expository papers [15] and [31] or to the books [24], [12], [13] and [25]. A
slightly different method, by using the fixed point alternative, has been applied
in [29], [6]-[11], [26] and [28]. It does essentially insinuate a metrical context
and is seen to better clarify the ideas of stability as well as the role of each
controlling condition.
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For an Abelian group X and a vector space Y consider the difference oper-
ators defined, for each y ∈ X and any mapping f : X → Y , in the following
manner:

∆1
yf(x) := f(x+ y)− f(x), for all x ∈ X,

and, inductively, ∆n+1
y = ∆1

y ◦∆n
y , for all n ≥ 1.

A mapping f : X → Y is called a monomial function of degree N if it is a
solution of the monomial functional equation

∆N
y f(x)−N !f(y) = 0, ∀ x, y ∈ X. (1.1)

Notice that the monomial equation of degree 1 is exactly the Cauchy equation,
while for N=2 the monomial equation has the form f(x + 2y) − 2f(x + y) +
f(x)− 2f(y) = 0, which is equivalent to the well-known quadratic functional
equation:

f(x+ y) + f(x− y) = 2(f(x) + f(y)),∀x, y ∈ X. (1.2)

In what follows, the positive integer N will be fixed.
M.H. Albert and A. Baker, in [3], demonstrated the Ulam-Hyers stability of

the monomial equation (1.1) (see also [20]). Subsequently, A. Gilanyi proved
in [21] that the equation is stable in the sense of Aoki-Rassias (see also [35]
for the asymptotic stability):

Proposition 1.1. Let X be a normed linear space, let Y be a Banach space
and let p 6= N be a non-negative real number. If, for a function f : X → Y ,
there exists a real number η ≥ 0 such that

‖∆N
y f(x)−N !f(y))‖ ≤ η(‖x‖p + ‖y‖p), ∀x, y ∈ X, (1.3)

then there exist a real number c = c(N, p) and a unique monomial function
g : X → Y of degree N with the property

‖f(x)− g(x)‖ ≤ cη‖x‖p , ∀x ∈ X.

On the other hand, by using the fixed point method, we proved in [8] the fol-
lowing generalized stability result for additive Cauchy equations and mappings
with values into β-normed spaces:

Proposition 1.2. Let X,Y be two linear spaces over the same (real or com-

plex) field, with Y a complete β-normed space, and set rj =

{
2, if j = 0
1
2 , if j = 1

.
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Suppose the mapping f : X → Y , with f (0) = 0, verifies the control condi-

tion

‖f(x+ y)− f (x)− f (y)‖β ≤ ϕ(x, y), for all x, y ∈ X,

where ϕ : X ×X → R+ has the following property:

lim
n→∞

ϕ
(
rnj x, r

n
j y
)

rnβj
= 0.

If there exists a positive constant L < 1 such that the mapping

x→ ψ(x) = ϕ
(x

2
,
x

2

)
satisfies the relation

ψ(x) ≤ L · rβj · ψ
(
x

rj

)
, for all x ∈ X,

then there exists a unique additive mapping a : X → Y such that

‖f(x)− a(x)‖β ≤
L1−j

1− L
ψ(x), for all x ∈ X.

In the present paper, by developing to some extent the above results, we
prove a stability property in the Ulam-Hyers-Bourgin sense: For every
f : G → Y , from a 2-divisible group G into a complete β-normed space Y ,
which verifies a slightly perturbed monomial equation ( i.e. controlled by a
mapping ϕ : G × G → [0,∞) with suitable properties), there exists a unique
monomial solution fittingly approximating f (see Agarwal, Xu & Zhang [1]
for a general definition)

2. A stability theorem via the fixed point alternative

We intend to show that Proposition 1.1 and Proposition 1.2 can really be
generalized by the fixed point method, proposed in [29] and already used in [6]-
[11] and [28] to different functional equations (see also [4] and [16]). Actually,
we shall prove a new stability theorem of the Ulam-Hyers-Bourgin type for
the monomial functional equation (1.1). As it will be seen, the fixed point
alternative is a meaningful device on the road to a better understanding of the
stability property, plainly related to some fixed point of a concrete operator.
Specifically, our control conditions are perceived to be responsible for three
fundamental facts:
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1) The contraction property of the operator S (given by (OPj
mon) below).

2) The distance between f and Sf , the first two approximations, is finite.
3) The fixed point function of S is forced to be a monomial function.

Let X be a 2-divisible group1, let Y be a (real or complex) complete β-
normed space2, and assume we are given a function ϕ : X ×X → [0,∞) with
the following property:

(
H∗

j

)
lim
m→∞

ϕ
(
rmj x, r

m
j y
)

rmNβj

= 0,∀x, y ∈ X, for rj := 21−2j , j ∈ {0, 1}.

Theorem 2.1. Suppose the mapping f : X → Y , with f (0) = 0, verifies the

control condition

‖∆N
y f(x)−N !f(y)‖β ≤ ϕ(x, y) , ∀x, y ∈ X. (2.4)

If there exists a positive constant L < 1 such that the mapping

x→ ψ(x) =
1

(N !)β

(
ϕ(0, x) +

N∑
i=0

(
N

N − i

)
· ϕ
(
ix

2
,
x

2

))
, ∀x ∈ X,

satisfies the inequality

(Hj) ψ(rjx) ≤ L · rNβj · ψ (x) ,∀x ∈ X,

then there exists a unique monomial mapping g : X → Y , of degree N ,
with the following fitting property:

(Estj) ‖f(x)− g(x)‖ ≤ L1−j

1− L
ψ(x),∀x ∈ X.

For the proof of our theorem, we need the following two fundamental lem-
mas. The first one gives a crucial intermediary result and the second one,
which is recalled for convenience only, is a celebrated result in fixed point
theory.

1That is to say an Abelian group (X, +) such that for any x ∈ X there exists a unique

a ∈ X with the property x = 2a; this unique element a is denoted by x
2
.

2Usually, a mapping || · ||β : Y → R+, where β ∈ (0, 1], is called a β−norm iff

it has the properties (nI
β) : ||y||β = 0 ⇔ y = 0, (nII

β ) : ||λ · y||β = |λ|β · ||y||β , and

(nIII
β ) : ||y + z||β ≤ ||y||β + ||z||β , for all y, z ∈ Y, and λ ∈ K.
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Lemma 2.2. Let us consider an Abelian group G, a β−normed linear space
Y and a mapping ϕ : G × G → [0,∞). If the function f : G → Y satisfies
(2.4) then, for all x ∈ G,∣∣∣∣∣∣∣∣f(2x)

2N
− f(x)

∣∣∣∣∣∣∣∣
β

≤ 1
2Nβ · (N !)β

·

(
ϕ(0, 2x) +

N∑
i=0

(
N

N − i

)
· ϕ(ix, x)

)
.

(2.5)

Proof. As in [21], we define the functions Fi : G→ Y by

Fi(x) := ∆N
x f(ix)− (N !)f(x) , ∀x ∈ G.

Using (2.4) we see that

‖Fi(x)‖β ≤ ϕ(ix, x) , ∀x ∈ G (2.6)

and
||F0(2x)||β ≤ ϕ(0, 2x) , ∀x ∈ G. (2.7)

On the other hand, if we consider (as in [19], Lemma 2.2.) the (N+1)×(2N+1)
matrix

A =


α

(0)
0 α

(1)
0 . . . α

(2N)
0

α
(0)
1 α

(1)
1 . . . α

(2N)
1

...
...

. . .
...

α
(0)
N α

(1)
N . . . α

(2N)
N


where

α
(i+k)
i =

 (−1)k
(

N

N − k

)
, if 0 ≤ k ≤ N

0 , otherwise

(2.8)

for i = 0, ..., N , k = −i, ..., 2N − i, and the 1× (2N + 1) matrix

B =
(
β(0) β(1) β(2) · · · β(2N)

)
,

with

β(k) =

 (−1)
k
2

(
N

N − k
2

)
, if 2 | k

0 , if 2 - k
, for k = 0, ..., 2N, (2.9)

then, for the positive constants Ki =

(
N

N − i

)
, one has

K0A0 +K1A1 + ...+KNAN = B and K0 +K1 + ...+KN = 2N , (2.10)
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where Ai, i = 0, ..., N is the i-th row of the matrix A.
Recall the following noteworthy formula for the difference operator:

∆N
y f(x) =

N∑
j=0

(−1)N+j

(
N

N − j

)
f(x+ jy). (2.11)

Therefore

∆N
x f(ix) = (−1)N

N+i∑
k=i

(−1)k−i
(

N

N − (k − i)

)
f(kx)

so that, with the notation (2.8),

∆N
x f(ix) = (−1)N

2N∑
k=0

α
(k)
i · f(kx) ,∀x ∈ G,

hence

Fi(x) = (−1)N
2N∑
k=0

α
(k)
i · f(kx)− (N !)f(x) ,∀x ∈ G.

On the other hand, with the notation (2.9),

∆N
2xf(0) = (−1)N

N∑
j=0

(−1)j
(

N

N − j

)
f(2xj) = (−1)N

2N∑
k=0

β(k) · f(kx),

so that

F0(2x) = (−1)N
2N∑
k=0

β(k) · f(kx)− (N !)f(2x) ,∀x ∈ G.

By (2.10), we can write:

K0 ·
(
α

(k)
0

)
k=0,2N

+ ...+KN ·
(
α

(k)
N

)
k=0,2N

=
(
β(k)

)
k=0,2N

= B, (2.12)

where Ki =

(
N

N − i

)
, i = 0, 1, ..., N .

If we multiply (2.12) by f(kx) and then add for k = 0, 2N , we obtain

K0 ·∆N
x f(0) +K1 ·∆N

x f(x) + ...+KN ·∆N
x f(Nx) = ∆N

2xf(0) , ∀x ∈ G,

hence

K0F0(x) +K1F1(x) + ...+KNFN (x) + 2N (N !)f(x) = F0(2x) + (N !)f(2x)
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for all x ∈ G. Using (2.6) and (2.7) we get, for all x ∈ G,∣∣∣∣∣∣∣∣f(2x)
2N

− f(x)
∣∣∣∣∣∣∣∣
β

≤ 1
2Nβ · (N !)β

(
ϕ(0, 2x) +

N∑
i=0

(
N

N − i

)
· ϕ(ix, x)

)
. �

Remark 2.3. It easy to see ( e.g. by taking ϕ ≡ 0 in Lemma 2.2) that

g(2x) = 2Ng(x) and g(2mx) = 2Nmg(x) ,∀x ∈ G,∀m ∈ N,

for any monomial function g of degree N .

Remark 2.4. Let G be a 2 - divisible group and formally replace x with x
2 in

(2.5). Then one has the following result:
Let Y be a β−normed linear space and ϕ : G×G→ [0,∞) a given mapping.

If f : G→ Y satisfies

‖∆N
y f(x)−N !f(y))‖β ≤ ϕ(x, y) , ∀x, y ∈ G,

then∣∣∣∣∣∣f(x)− 2Nf
(x

2

)∣∣∣∣∣∣
β
≤ 1

(N !)β

(
ϕ(0, x) +

N∑
i=0

(
N

N − i

)
ϕ

(
ix

2
,
x

2

))
, ∀x ∈ G.

Now we recall the fixed point alternative (see, e.g., [27, 32]):

Lemma 2.5. Suppose we are given a complete generalized metric space (E, d)
(i.e. one for which d may assume infinite values), and a strictly contractive
mapping S : E → E, with the Lipschitz constant L < 1. Then, for each of
the elements x ∈ E, exactly one of the following assertions is true:
(A1) d(Snx, Sn+1x) = +∞, for all n ≥ 0,
(A2) There exists k such that d(Snx, Sn+1x) < +∞, for each n ≥ k.

Actually, if (A2) holds, then (see [34])
(A21) The sequence (Snx) is convergent to a fixed point z∗ of S;
(A22) z∗ is the unique fixed point of S in the set

Z :=
{
z ∈ E, d

(
Skx, z

)
< +∞

}
;

(A23) The following estimation holds:

d (z, z∗) ≤ 1
1− L

d (z, Sz) , ∀z ∈ Z.
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The proof of Theorem 2.1.
We consider the set E := {g : X → Y, g(0) = 0} and introduce a generalized
metric d = dψ on E, where

(GMψ) dψ (g, h) = inf
{
K ∈ R+, ‖g (x)− h (x)‖β ≤ Kψ(x),∀x ∈ X

}
.

It is easy to see that (E, d) is complete. Now, consider the mapping

(OPj
mon) S : E → E,Sg (x) :=

g (rjx)
rNj

.

and notice that rj = 21−2j , for j fixed in {0, 1}.
Step I. Using the hypothesis (Hj), one can see that S is strictly contractive
on E. Namely, we can write, for any g, h ∈ E :

d(g, h) < K =⇒ ‖g (x)− h (x)‖β ≤ Kψ(x),∀x ∈ X =⇒∥∥∥∥∥ 1
rNj

g (rjx)−
1
rNj

h (rjx)

∥∥∥∥∥
β

≤ 1

rNβj
Kψ(rjx),∀x ∈ X =⇒

∥∥∥∥∥ 1
rNj

g (rjx)−
1

rNβj
h (rjx)

∥∥∥∥∥
β

≤ LKψ(x),∀x ∈ X =⇒

d (Sg, Sh) ≤ LK.

Therefore

(CCL) d (Sg, Sh) ≤ Ld (g, h) ,∀g, h ∈ E,

that is S is a strictly contractive self-mapping of E relative to d, with the
Lipschitz constant L < 1.
Step II. We show that d (f, Sf) <∞.

For j=0, by Lemma 2.2, we have∣∣∣∣∣∣∣∣f(2x)
2N

− f(x)
∣∣∣∣∣∣∣∣
β

≤ 1
2Nβ · (N !)β

(
ϕ(0, 2x) +

N∑
i=0

(
N

N − i

)
ϕ(ix, x)

)
, ∀x ∈ X.

Therefore, using (H0),∥∥∥∥f (2x)
2N

− f(x)
∥∥∥∥
β

≤ ψ(2x)
2Nβ

≤ Lψ(x),∀x ∈ X,

that is d (f, Sf) ≤ L <∞.
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For j=1, by Remark 2.4, we see that∣∣∣∣∣∣f(x)− 2Nf
(x

2

)∣∣∣∣∣∣
β
≤ 1

(N !)β

(
ϕ(0, x) +

N∑
i=0

(
N

N − i

)
· ϕ
(
ix

2
,
x

2

))

= ψ(x) , ∀x ∈ X.

Therefore d (f, Sf) ≤ 1 = L0 <∞.
Step III. In both cases we can apply the fixed point alternative (see Lemma
2.5), which tells us that there is a mapping g : X → Y such that:
• g is a fixed point of S, that is

g (2x) = 2Ng (x) ,∀x ∈ X. (2.13)

The mapping g is the unique fixed point of S in the set

F = {h ∈ E, d (f, h) <∞} .

This says that g is the unique mapping with both the properties (2.13) and
(2.14), where

∃K <∞ such that ‖f (x)− g (x)‖ ≤ Kψ(x),∀x ∈ X. (2.14)

• d(Smf, g) −→ 0, for m→∞, which implies the equality

lim
m→∞

f
(
rmj x

)
rmNj

= lim
m→∞

gm(x) = g(x),∀x ∈ X.

• d(f, g) ≤ 1
1− L

d (f, Sf) , which implies the inequality

d(f, g) ≤ L1−j

1− L
,

from which (Estj) is seen to be true.
Step IV. We show that g is a monomial function of degree N . To this end,
we replace x by rmj x and y by rmj y in relation (2.4), then divide the obtained
relation by rmNj and we obtain∣∣∣∣∣

∣∣∣∣∣∆
N
rm
j y
f(rmj x)

rmNj
−N !

f(rmj y))

rmNj

∣∣∣∣∣
∣∣∣∣∣
β

≤
ϕ(rmj x, r

m
j y)

rmNβj

, ∀x, y ∈ X.
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On the other hand, by (2.11),

∆N
rm
j y
f(rmj x)

rmNj
=

N∑
k=0

(−1)N−k
(
N

k

)
f(rmj x+ krmj y)

rmNj
=

=
N∑
k=0

(−1)N−k
(
N

k

)
gm(x+ ky) =

= ∆N
y gm(x),∀x, y ∈ X.

And we get∣∣∣∣∆N
y gm(x)−N ! · gm(y)

∣∣∣∣
β
≤
ϕ(rmj x, r

m
j y)

rmNβj

, ∀x, y ∈ X.

By letting m→∞ in the above relation and using
(
H∗

j

)
, we obtain

∆N
y g(x)−N ! · g(y) = 0, ∀x, y ∈ G. �

Remark 2.6. For N = 1 in the above theorem, we obtain a generalized
stability result for the additive Cauchy equation for functions with values in
complete β-normed spaces, with

ψ(x) = ϕ (0, x) + ϕ
(
0,
x

2

)
+ ϕ

(x
2
,
x

2

)
,∀x ∈ X.

(compare with Proposition 1.2).
If N = 2 in Theorem 2.1 it results (as in [7] for β = 1) that the quadratic

functional equation (again for functions with values in complete β-normed
spaces) is stable in the Ulam-Hyers-Bourgin sense, with

ψ(x) =
1
2β
(
ϕ (0, x) + ϕ

(
0,
x

2

)
+ 2ϕ

(x
2
,
x

2

)
+ ϕ

(
x,
x

2

))
,∀x ∈ X.

It is worth noting that the estimations obtained directly for particular values
of N (as in [6], [7], [8] or [11]) are generally better than those resulting from
(Estj), which in its turn is applicable for all N .

3. Stability of the Aoki-Rassias type

Let α ∈ R+. A mapping ||.||α : X ×X → R+ is called an sh-functional of
order α iff it is α−sub-homogeneous:

(hα) : ||λ · z||α ≤ |λ|α · ||z||α, ∀λ ∈ K, ∀z ∈ X ×X.
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As usual, X is identified with X × {0} in X × X, so that ||x||α = ||(x, 0)||α
defines an sh-functional of order α on X.

As a consequence of Theorem 2.1, we have the following result, which di-
rectly extends many stability theorems of the Aoki-Rassias type:

Proposition 3.1. Let X,Y be two linear spaces over the same (real or com-
plex) field. Suppose we are given a complete β−norm on Y and an sh-
functional of order α on X × X, with α 6= Nβ. Under these conditions we
have the following stability property:
For each ε > 0, there exists δ(ε) > 0 such that, for every mapping f : X → Y

which satisfies

(Cαβ) ‖∆N
y f(x)−N !f(y))‖β ≤ δ(ε) · ||(x, y)||α, ∀x, y ∈ X,

there exists a unique monomial mapping g : X → Y , of degree N , such that,
∀x ∈ X,

(Estαβ) ||f(x)− g(x)||β ≤
ε

(N !)β

(
‖(0, x)‖α +

N∑
i=0

(
N

N − i

)
·
∥∥∥∥ ix2 , x2

∥∥∥∥
α

)
.

Proof. Having in mind Theorem 2.1, we take the following control function,
appearing in the hypothesis (Cαβ):

ϕ (x, y) := δ(ε) · ‖(x, y)‖α , for all x, y ∈ X.

We shall consider two cases.
Case 1. For α − Nβ < 0, we work with j = 0, that is r0 = 2. We then

have:
ϕ (2mx, 2my)

2mNβ
≤ δ(ε) · 2m(α−Nβ) · ‖(x, y)‖α → 0, ∀x, y ∈ X

and

ψ(2x) =
δ(ε)

(N !)β

(
‖(0, 2x)‖α +

N∑
i=0

(
N

N − i

)
· ‖(ix, x)‖α

)
≤

≤ 2α · ψ (x) = L · 2Nβ · ψ (x) , ∀x ∈ X,

with L = 2α−Nβ < 1 and so (H∗
0) and (H0) hold.

Case 2. For α−Nβ > 0, we take j = 1, that is r1 = 1
2 . We then have:

2Nβmϕ
( x

2m
,
y

2m
)
≤ δ(ε) · 2m(Nβ−α) · ‖(x, y)‖α → 0,∀x, y ∈ X



212 LIVIU CĂDARIU AND VIOREL RADU

and

ψ(x) ≤ 1
2α

· ψ(2x) = L ·
(

1
2

)Nβ
ψ(2x), ∀x ∈ X,

with L = 2Nβ−α < 1, so that (H∗
1) and (H1) are verified in this case.

Theorem 2.1 tells us that there is a unique monomial mapping g : X → Y

such that either

‖f(x)− g(x)‖β ≤
L

1− L
ψ(x), for all x ∈ X,

holds, with L = 2α−Nβ, or

‖f(x)− g(x)‖β ≤
1

1− L
ψ(x), for all x ∈ X,

holds, with L = 2Nβ−α.

Thus, the inequality (Estαβ) holds true for δ(ε) = ε · |2
Nβ−2α|

2α . �

Remark 3.2. As a direct consequence of our proposition, we obtain the re-
sult of (Gilanyi, [21]) formulated in Proposition 1.1 above. Indeed, we apply
Proposition 3.1 for the complete 1−normed space Y and for the sh-functional
of order p on X ×X, given by ||x, y)||p = ||x||p + ||y||p, with p ≥ 0, p 6= N . In
this case the generalized metric is of the form

dp (g, h) = inf
{
K ∈ R+, ‖g (x)− h (x)‖β ≤ K · γ(N, p) · ||x||p,∀x ∈ X

}
,

and we obtain

c = c(N, p) =

2p +
N∑
i=0

(
N

N − i

)
· (ip + 1)

|2N − 2p| ·N !
.

Remark 3.3. Obviously, Proposition 3.1 can be proved by using directly the
alternative of fixed point.

4. Comments, examples and counterexamples

As we shall see by examples, our hypotheses in Theorem 2.1 are essential
for the stability result. Notice that in the proof we used the hypothesis (Hj)
to show that the operator S is contractive and, subsequently, to obtain the
estimation (Estj) , while the hypothesis

(
H∗

j

)
was fundamentally used to show

that the fixed point function g does satisfy the monomial equation (1.1). In
what follows we shall use the notations in Theorem 2.1.
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Assertion 4.1. There exist f : R → R and ϕ : R → [0,∞)
such that (a) the relation (2.4) holds, (b) none of the con-
ditions (Hj) and (H∗

j ) is satisfied and (c) there exist infin-

itely many monomial functions g which satisfy the relation
(Estj).

Proof. Indeed, if we take X = Y = R, || · ||β = | · |, f (x) := xN and
ϕ(x, y) = |x|N + |y|N , then the inequality (2.4) clearly holds. Obviously,

ψ(x) =
|x|N

N !

(
1 +

1
2N

·
N∑
i=0

(
N

N − i

)
· (iN + 1)

)
= γ(N) · |x|N ,

and we easily see that none of the conditions (Hj) and (H∗
j ) is satisfied. How-

ever, there exist infinitely many fixed points of S, g(x) = λxN , which satisfy

|f(x)− g(x)| = |xN − λxN | ≤ (1 + |λ|) · |x|N =
1 + |λ|
γ(N)

· ψ(x)

Actually, every mapping g with g(2x) = 2Ng(x) and |g(x)| ≤ k · |x|N is seen
to satisfy |f(x)− g(x)| ≤ (1 + k) · |x|N . �

Assertion 4.2. Generally, the monomial functional equation
(1.1) is not stable for α = Nβ. More exactly, there exists
f : R → R for which (1.3) holds for p = N and there exists
no monomial mapping g of degree N which could verify the
relation (Estj) .

Proof. In [21] (see also [17], [25]-pp. 23-24, [24]-pp. 59-60) the following
example is given: Let N be a positive integer, ε be a positive real number and
let

ε∗ =
ε

2N (2N +N !)NN
.

We consider the mapping ϕ : R → R

ϕ(x) =


NNε∗ , if x ≥ N

ε∗xN , if −N < x < N

(−1)NNNε∗, if x ≤ N

and we define a function f: R → R by

f(x) =
∞∑
m=0

ϕ(2mx)
2mN

, for all x ∈ R.
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As it is proven in [21],
(i) f verifies the following inequality :

|∆N
y f(x)−N !f(y)| ≤ ε(|x|N + |y|N ), ∀x, y ∈ R; (4.15)

(ii) There is no real number c for which there could exist a monomial function
g : R → R of degree N such that |f(x)− g(x)| ≤ cε|x|N , for all x ∈ R.

From (4.15) it is clear that, for β = 1, ϕ(x, y) = ε(|x|N + |y|N ), hence

ψ(x) =
ε|x|N

N !

(
1 +

1
2N

·
N∑
i=0

(
N

N − i

)
· (iN + 1)

)
= ε · γ(N) · |x|N ,

and none of the conditions (Hj) and (H∗
j ) is satisfied.

Indeed, it is easy to see that

ψ(2x)
2N

= ψ(x) and lim
m→∞

ϕ (rjmx, rjmy)
rjmN

= ϕ (x, y) 6= 0.

On the other hand, by (ii), there exists no monomial mapping g satisfying
a relation of the form |f(x)− g(x)| ≤ k · ψ(x), ∀x ∈ R, of type (Estj). �

Assertion 4.3. There exist f : R → R and ϕ : R → [0,∞)
such that: (a) the relation (2.4) holds, (b) the conditions (H0)
and (H1) are verified, (c) the mapping ϕ does not satisfy

the condition (H∗
j ) and (d) no monomial mapping can sat-

isfy the relation (Estj).

Proof. Indeed, if we take X = Y = R, || · ||β = | · |,

f(x) =

{
0 , if x ∈ Q
xN , if x ∈ R \Q

and ϕ(x, y) := |∆N
y f(x)−N !f(y)|, then the inequality (2.4) is verified. More-

over, ψ(x) = 0. Both conditions (H0) and (H1) hold for every L ∈ (0, 1),

while the mapping ϕ does not satisfy the condition (H∗
j ). Since

f (rjmx)
rjmN

=

f(x), it is clear that the unique fixed point of the operator S in the set
F = {g ∈ E, d (f, g) < +∞} is g = f, which clearly is not monomial. �

Assertion 4.4. There exist f : R → R and ϕ : R → [0,∞)
such that (a) the relation (2.4) holds, (b) none of the condi-
tions (H0) and (H1) is satisfied, (c) the relation (H∗

j ) holds
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and (d) no monomial mapping g can satisfy the relation
(Estj).

Proof. Let us take X = Y = R, || · ||β = | · |, f (x) := sinN x and

ϕ(x, y) := |∆N
y f(x)−N !f(y)|.

Then the inequality (2.4) is trivially verified. Obviously

ψ(x) =
1
N !

∣∣∣∣∣∣
N∑
j=0

(−1)N−j
(

N

N − j

)
sinN (jx)−N ! sinN x

∣∣∣∣∣∣+

+
N∑
i=0

(
N

N − i

)
·

∣∣∣∣∣∣
N∑
j=0

(−1)N−j
(

N

N − j

)
sinN

(
(i+ j)x

2

)
−N ! sinN

x

2

∣∣∣∣∣∣
 ,

for all x ∈ R. For x → 0 we obtain ψ(2x)
2N ·ψ(x)

→ 4, and for x → π we have

that ψ(2x)
2N ·ψ(x)

→ 0. Therefore neither (H0) nor (H1) is satisfied. Clearly the

mapping ϕ satisfies the condition
(
H∗

j

)
. Let us suppose, for a contradiction,

that a monomial mapping g satisfies

(Estj) |f(x)− g(x)| ≤ kψ(x), for all x ∈ R, k a real constant.

Then g is a bounded mapping on R. Therefore (see [33]), g(x) = η · xN , for
x ∈ R, where η is a constant, hence g(x) = 0 for x ∈ R. Now, the inequality
(Estj) implies

∣∣sinN x∣∣ ≤ k

N !

∣∣∣∣∣∣
N∑
j=0

(−1)N−j
(

N

N − j

)
sinN (jx)−N ! sinN x

∣∣∣∣∣∣+

+
N∑
i=0

(
N

N − i

)
·

∣∣∣∣∣∣
N∑
j=0

(−1)N−j
(

N

N − j

)
sinN

(
(i+ j)x

2

)
−N ! sinN

x

2

∣∣∣∣∣∣
 ,

for all x ∈ R, which is impossible. Therefore, there exists no monomial map-
ping g which satisfies the estimation relation (Estj). �

Remark 4.1. In (Forti, [16]) a stability result for equations of the form SF =
F is presented, with S a functional operator of the Schröder type: SF (x) =
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(H ◦ F ◦ G)(x). The hypotheses (as well as the proofs) insinuate a Banach-
Caccioppoli type condition:

∞∑
n=0

dist(Snf, Sn+1f) <∞.

We only remark that such a condition and the continuity of S together ensure
the existence of a fixed point function for S, which is the limit of Snf . It is
worth noting that in (Baker, [4]) the Banach contraction principle is applied to
obtain the Hyers-Ulam stability for nonlinear functional equations of a similar
form: ϕ(x) = F (x, ϕ(f(x)) (see also [1] for other details and examples).

Remark 4.2. In [10] we used the direct method to prove, among others, the
following Ulam-Hyers-Bourgin stability property for monomial equations:
Let there be given a complete β−normed space Y , an Abelian group G and a

controlling mapping ϕ : G×G→ [0,∞) such that

Φi(x) :=
∞∑
k=0

ϕ(2kix, 2kx)
(2Nβ)k

<∞,∀x ∈ G, for i = 0, 1, ..., N,

and

lim
m→∞

ϕ(2mx, 2my)
(2Nβ)m

= 0 , ∀x, y ∈ G.

Then, for every mapping f : G→ Y which verifies

‖∆N
y f(x)−N !f(y))‖β ≤ ϕ(x, y) , ∀x, y ∈ G,

there exists a unique monomial function g : G→ Y of degree N such that,
for all x ∈ G,

‖f(x)− g(x)‖β ≤
1

2Nβ · (N !)β

(
Φ0(2x) +

N∑
i=0

(
N

N − i

)
· Φi(x)

)
.
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