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The author recently became aware that Corollary 2.3 in [2] was already
proved by T. Suzuki in [3]. In addition it follows from the proof of Theorem 3
in [3] that for any metric space (X, d) and any asymptotic contraction in the
sense of Kirk f : X → X, any Picard iteration sequence is Cauchy. However,
other results in [2] remain new, namely the explicit and fully uniform rate of
convergence in Proposition 2.6.

Suzuki also approaches the problem of removing the assumption of a
bounded iteration sequence by modifying Kirk’s definition of an asymptotic
contraction, proving that the new definition covers the old, and by then prov-
ing the relevant theorems for the new class of mappings. However, the modi-
fied definition introduced by Suzuki is not very similar to the definitions in [2]
and [1]. In the very interesting paper [4] Suzuki introduces the concept of
an asymptotic contraction of the final type (ACF) and proves a fixed point
theorem for these. Suzuki also shows that the definition of an ACF covers
the new definition appearing in [3], and also that the ACFs on a metric space
(X, d) are exactly the mappings f : X → X s.t. for all x, y ∈ X we have
that limn→∞ d(fn(x), fn(y)) = 0 and that (fn(x)) is Cauchy. The concept of
an ACF is thus strictly more general than that of a generalized asymptotic
contraction in the sense of [2] and [1], since the ACFs on nonempty, complete,
bounded metric spaces (X, d) then are the mappings f : X → X s.t. there
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exists z ∈ X s.t. for all x ∈ X we have that (fn(x)) converges to z. Whereas
Proposition 3.7 in [1] shows that generalized asymptotic contractions (or as-
ymptotic contractions in the sense of Kirk) on nonempty, complete, bounded
metric spaces (X, d) are exactly the mappings f : X → X s.t. there exists
z ∈ X s.t. for all x ∈ X we have that (fn(x)) converges to z with a rate
of convergence which is uniform in x. This then highlights what is still new
in [2], i.e. the quantitative analysis and the uniformity results. As a conse-
quence of Suzuki’s characterization any rate of convergence for ACFs would
in a sense depend essentially on x and not just on e.g. strictly positive upper
and lower bounds on d(x, f(x)). The corresponding situation for the version
of asymptotic contractions introduced in [3] is not clear.
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