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Abstract. In this paper, we deal with the problem of finding a common fixed point of

a family of relatively nonexpansive mappings. We, first of all, discuss the properties of

strongly relatively nonexpansive mappings and show a strong convergence theorem for a

sequence of relatively nonexpansive mappings under some conditions. Using this result, we

obtain a strong convergence theorem for a finite family of relatively nonexpansive mappings.

Furthermore, we apply our result to the problem of finding a zero of a maximal monotone

operator.
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