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Abstract. In this paper, we present new existence results of nontrivial positive solutions

for φ-Laplacian Dirichlet boundary value problems on bounded intervals of the real line.

The nonlinear terms encompasses the sub-linear and super-linear cases. The Krasnosel’skii’s

fixed point theorem on cone expansion and compression is used. Applications to p−Laplacian

problems and to the case of the sum of p−Laplacian and q−Laplacian (p 6= q) operators are

given.

Key Words and Phrases: φ-Laplacian, BVP, positive solution, cone, fixed point theorem.

2000 Mathematics Subject Classification: 34B15, 34B18, 47H10.

1. Introduction

In this paper, we are concerned with the existence of positive solutions to
the boundary value problem:{

−(φ(u′))′(x) = f(x, u), 0 < x < 1
u(0) = u(1) = 0

(1.1)

where f : [0, 1] × R+ −→ R+ is a continuous function, φ : R −→ R is an odd
and increasing homeomorphism, extending the usual p−Laplacian nonlinear
operator. Throughout this paper, we set ψ : = φ−1, Our aim is to prove
some existence results of nontrivial positive solutions for Problem (1.1) un-
der suitable conditions on the functions f and φ. The existence of solutions
with arbitrary sign is well studied in the literature (see [1], [6], [12] and the
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references therein). In this work, our approach is based on the application
of Krasnosel’skii’s fixed point theorem of cone compression and expansion in
Banach spaces in order to get existence of positive solutions. By a solution to
Problem (1.1), we mean a function u ∈ C1 ([0, 1] ,R) such that φ(u′) is also
of C1−class. In the sequel, R+ refers to the set of nonnegative real numbers.
The notation : = means throughout to be defined equal to.

Under various assumptions, the boundary value problem (1.1) is widely
investigated in the literature. For variable-separated nonlinearity f(x, u) =
a(x)g(u), the existence of positive solutions either in the sub-linear case g0 =
+∞ and g∞ = 0 or in the super-linear case g0 = 0 and g∞ = ∞ is proved
in [13] in case of the one-dimensional p−Laplacian operator φ(u) = |u|p−2u

where p > 1 is a real number. Here,

g0 : = lim
s↓0

g(s)
sp−1

and g∞ : = lim
s↑+∞

g(s)
sp−1

·

The results generalize previous ones obtained in [5].
The eigenvalue problem{

(φ(u′))′ + λa(x)g(u) = 0, 0 < x < 1
u(0) = u(1) = 0,

(1.2)

where a : [0, 1] → [0,∞) and g : [0,∞) → [0,∞) are continuous and positive,
has attracted a particular attention in the last couple of years. The existence of
positive solutions is often discussed in terms of the eigenvalue λ. For second-
order boundary value problems corresponding to p = 2, that is φ(s) = s,

existence of positive solutions is proved in [9] for any eigenvalue λ satisfying
the bounds

4

g∞

(∫ 3
4
1
4

G(τ, s)a(s) ds
) < λ <

1

g0

(∫ 1
0 s(1− s)a(s) ds

) ·
Here G is the Green function for the problem −u′′ = u(0) = u(1) = 0 and
τ ∈ [0, 1] is defined by∫ 3

4

1
4

G(τ, s)a(s) ds = max
0≤x≤1

∫ 3
4

1
4

G(x, s)a(s) ds.

A slight generalization regarding the nonlinear term λf(t, u) is provided in
[3] for the φ−Laplacian problem with an odd and increasing homeomorphism
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φ satisfying the so-called lower σ−condition (see also [6])

∀σ > 0, lim sup
s→+∞

φ(σs)
φ(s)

<∞

while the nonlinearity f is assumed to satisfy

∀ t ∈ [c, d] ⊂ (a, b), lim
s→∞

f(t, s)
φ(s)

= +∞.

All of these works use the Krasnosel’skii’s fixed point theorem apart from
De Coster’s [2] where the upper and lower-solutions method is used to get
existence of positive solutions. More recently, the topological degree of Leray
and Schauder has been employed in [7] to study Problem (1.1) in the particular
case φ(u) = ωu, f(x, u) = a(x)h(x, u) and general Sturm-Liouville boundary
conditions on the interval [0, 1]. Existence of positive solution is obtained for
any eigenvalue such that

λ <
r

A max
0≤x≤1, 0≤u≤r

h(x, u)

for some positive r and A = max
0≤x≤1

∫ 1
0 G(x, s)a(s) ds where G is the Green

function associated with the problem −(ωu′)′ = 0 with general boundary
conditions.

The purpose of this paper is to complement and extend some of these re-
sults to the φ−Laplacian case. The organization is as follows. After giving
some preliminaries in Section 2, we prove three existence results of positive
solutions in Section 3, with the use of fixed point theory. Distinct growth
assumptions are considered: nonlinearity with local growth, sum of mono-
tonic nonlinearities, sub-linear and super-linear nonlinearities. We illustrate
the applicability of the obtained existence theorems in Section 4 where three
examples of application to p−Laplacian problems and to the case where φ is
the sum of p−Laplacian and q−Laplacian operators (p 6= q) are given. We
end the paper with some comments in Section 5.

2. Auxiliary lemmas

Denote by E : = C([0, 1],R+) the Banach space of all continuous functions
from [0, 1] into R+ with the norm ‖u‖ = sup {|u(x)|, 0 ≤ x ≤ 1} and recall
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that L1([0, 1]) is the Lebesgue space of integrable functions on [0, 1]. The
norm in this space is denoted by

|u|1 =
∫ 1

0
|u(t)| dt.

In order to transform Problem (1.1) into a fixed point problem, we need some
background material and preliminary results which are collected in this section:

Lemma 2.1. For any function u ∈ L1 (0, 1) positive almost everywhere, the
problem of seeking 0 < x < 1 such that∫ x

0
ψ

(∫ x

s
u(τ) dτ

)
ds =

∫ 1

x
ψ

(∫ s

x
u(τ) dτ

)
ds (2.1)

has uniquely one solution θ such that 0 < θ < 1.

Proof. Consider the continuous functions

α(x) =
∫ x

0
ψ

(∫ x

s
u(τ) dτ

)
ds and β(x) =

∫ 1

x
ψ

(∫ s

x
u(τ) dτ

)
ds.

Then α(0) = β(1) = 0 and the function α (respectively the function β) is
increasing (respectively decreasing); whence comes the result.

Lemma 2.2. Consider the following boundary value problem{
−(φ(v′))′ = u(x), 0 < x < 1

v(0) = v(1) = 0
(2.2)

where u ∈ L1 (0, 1) is positive almost everywhere. Then, Problem (2.2) has a
unique solution given by

v(x) =

{ ∫ x
0 ψ

(∫ θ
s u(τ) dτ

)
ds if 0 ≤ x ≤ θ∫ 1

x ψ
(∫ s

θ u(τ) dτ
)
ds if θ ≤ x ≤ 1

(2.3)

where θ is as given in Lemma 2.1.

Proof. Let θ ∈]0, 1[ be such that v′(θ) = 0. Integrating the equation in
(2.2) between x and θ, we get, since φ(0) = 0:

φ(v′(x)) =
∫ θ

x
u(t) dt,

whence

v′(x) = ψ

(∫ θ

x
u(t) dt

)
.
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Integrating (2.2) from θ to x, we find, since ψ is odd

v′(x) = ψ

(
−
∫ x

θ
u(t) dt

)
= −ψ

(∫ x

θ
u(t) dt

)
.

Integrating again v′(x) over (0, x) and (x, 1) respectively yield the expression
of the function v. Conversely, it is clear that v defined by (2.3) is solution of
Problem (2.2). Moreover, u is positive implies that φ(v′) is nonincreasing and
so φ(v′) ≥ 0 for x ≤ θ and φ(v′) ≤ 0 for x ≥ θ. From the properties of the
homeomorphism φ, we deduce that v changes monotonicity at the point θ, and
that θ satisfies (2.1).

Lemma 2.3. Let θ be as defined in Lemma 2.1. Then, the mapping

A : L1((0, 1),R+) −→ C([0, 1],R+)

defined by:

Av(x) =

{ ∫ x
0 ψ

(∫ θ
s v(τ)dτ

)
ds if 0 ≤ x ≤ θ∫ 1

x ψ
(∫ s

θ v(τ)dτ
)
ds if θ ≤ x ≤ 1

(2.4)

is completely continuous.

Proof. (a) A is continuous. Let (vn)n∈N be a sequence converging to some
limit v in L1(0, 1). Then, for any s ∈ (0, 1), it holds that

0 ≤ lim
n→∞

∫ θ

s
|vn(τ)− v(τ)| dτ ≤ lim

n→∞

∫ 1

0
|vn(τ)− v(τ)| dτ = 0.

Therefore for any x ∈ (0, 1), the integral
∫ x
0 ψ

(∫ θ
s vn(τ) dτ

)
ds converges to

the integral
∫ x
0 ψ

(∫ θ
s v(τ) dτ

)
ds because φ is an homeomorphism. The same

holds for the second term in (2.4), proving the continuity of A.
(b) A is totally bounded. Let B be a bounded subset of L1(0, 1) and M > 0
a constant such that |v|1 ≤ M for any v ∈ B. We have ‖Av‖ ≤ ψ(M),
which implies the boundedness of A(B). In addition, the set {Av, v ∈ B} is
equicontinuous. Indeed, if x1, x2 ∈ (0, 1), then we may distinguish between
four cases according to the relative position of x1, x2 with respect to θ. For
brevity, we only assume 0 ≤ x1, x2 ≤ θ, in which case, we have

|(Av)(x1)− (Av)(x2)| = |
∫ x2

x1
ψ
(∫ θ

s v(τ)dτ
)
ds

≤ ψ(M)|x1 − x2|,
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and our claim follows. The Arzéla-Ascoli theorem then implies that A is
completely continuous.

Lemma 2.4. (see also [3]) Let u ∈ L1([0, 1]), u ≥ 0 a.e. and let v satisfy{
− (φ(v′))′ (x) = u(x), 0 < x < 1
v(0) = v(1) = 0.

(2.5)

Then

v(x) ≥ p(x)‖v‖0, ∀x ∈ [0, 1]

where

p(x) = min(x, 1− x), x ∈ [0, 1].

Proof. Since φ is nondecreasing and φ(v′) is nonincreasing, the function
v′ is also nonincreasing. Further, there exists some 0 < x0 < 1 such that
v′(x0) = 0. Therefore, v is positive, concave and admits a unique maximum at
x0. Its graph is then above the lines joining v(x0) to the endpoints. It follows
that:

v(x) ≥ xv(x0)
x0

≥ x v(x0) = x‖v‖0, ∀x ∈ [0, x0],
v(x) ≥ (1− x)v(x0)

1−x0
≥ (1− x)v(x0) = (1− x)‖v‖0, ∀x ∈ [x0, 1].

The lemma is proved.
Next, consider the operator T : C([0, 1],R+) −→ C([0, 1],R+) defined by

Tu(x) =

{ ∫ x
0 ψ

(∫ θ
s f(τ, u(τ)) dτ

)
ds if 0 ≤ x ≤ θ∫ 1

x ψ
(∫ s

θ f(τ, u(τ)) dτ
)
ds if θ ≤ x ≤ 1,

(2.6)

where θ is as defined in Lemma 2.1 with u replaced by f(., u(.)). We have

Lemma 2.5. The operator T is completely continuous.

Proof. The Nemytskii operator N : C([0, 1],R+) −→ L1 (0, 1) defined by
Nv(x) = f(x, v(x)) is continuous by Lebesgue dominated convergence theo-
rem. The operator T = AN : C([0, 1],R+) −→ C([0, 1],R+) is the composition
of the completely continuous mapping A introduced in Lemma 2.3 with N ;
whence it is completely continuous.
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Lemma 2.6. Let T and θ be as defined in (2.6) and 0 < σ < 1
2 a real number.

Then the operator T verifies

‖Tu‖ ≥


σψ
(∫ 1−σ

θ f(τ, u(τ)) dτ
)
, if σ ≥ θ

σψ
(∫ θ

σ f(τ, u(τ)) dτ
)
, if σ ≥ 1− θ

σ
2ψ
(∫ θ

σ f(τ, u(τ)) dτ
)

+ σ
2ψ
(∫ 1−σ

θ f(τ, u(τ)) dτ
)
,

if σ ≤ θ ≤ 1− σ.

Proof. (a) If σ > θ, then

‖Tu‖ ≥ Tu(1− σ) =
∫ 1

1−σ
ψ

(∫ s

θ
f(τ, u(τ)) dτ

)
ds

≥
∫ 1

1−σ
ψ

(∫ 1−σ

θ
f(τ, u(τ)) dτ

)
ds

= σψ

(∫ 1−σ

θ
f(τ, u(τ)) dτ

)
.

(b) If σ > 1− θ, then

‖Tu‖ ≥ Tu(σ) =
∫ σ

0
ψ

(∫ θ

s
f(τ, u(τ)) dτ

)
ds

≥
∫ σ

0
ψ

(∫ θ

σ
f(τ, u(τ)) dτ

)
ds

= σψ

(∫ θ

σ
f(τ, u(τ)) dτ

)
.

(c) If θ ∈ [σ, 1− σ], then write 2‖Tu‖ ≥ Tu(σ) + Tu(1− σ) and the proof
follows identically, ending the claim of the lemma.

3. Existence results

3.1. Introduction. In this section, we seek for positive fixed points for the
mapping T introduced in (2.6) and prove three existence theorems. For this,
the continuous nonlinear function f is assumed nonnegative. First, recall

Definition 3.1. A nonempty subset K of a Banach space E is called a cone
if K is convex, closed, and satisfies
(a) αu ∈ K for all u ∈ K and any real positive number α,
(b) u,−u ∈ K imply u = 0.
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The following celebrated theorem, known as Krasnosel’skii’s Fixed Point
Theorem in cones will be the main tool used throughout. Many works are
based on this result to prove existence of positive nontrivial solutions to bound-
ary value problems (see [5, 9, 13]).

Theorem A. ([8, 10, 11]) Let E be a Banach space, K ⊂ E a cone and
Ω1,Ω2 two bounded open subsets satisfying 0 ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2. Let T : K ∩
(Ω̄2 \ Ω1) → K be a completely continuous operator such that:
• either ‖Tv‖ ≤ ‖v‖ for v ∈ K ∩ ∂Ω1 and ‖Tv‖ ≥ ‖v‖ for v ∈ K ∩ ∂Ω2,
• or ‖Tv‖ ≥ ‖v‖ for v ∈ K ∩ ∂Ω1 and ‖Tv‖ ≤ ‖v‖ for v ∈ K ∩ ∂Ω2.
Then T has at least a fixed point in K ∩ (Ω̄2 \ Ω1).

Finally, introduce the positive cone

K =
{
u ∈ C([0, 1],R+); u(x) ≥ p(x)‖u‖, x ∈ [0, 1]

}
(3.1)

with p(x) : = min(x, 1− x). We remark that, by Lemma 2.4, the mapping T
maps K into itself. Indeed, Tu verifies{

−(φ((Tu)′))′(x) = f(x, u(x)) ≥ 0, 0 < x < 1
Tu(0) = Tu(1) = 0.

It is clear that fixed points of T are solutions for the boundary value problem
(1.1) and conversely.

In the sequel, 0 < σ < 1
2 will be any real number. All of the existence

results in the paper will involve this parameter.

3.2. Local growth restrictions. The main result in this subsection is:

Theorem 3.1. Suppose that f : [0, 1]×R+ −→ R+ is continuous and satisfies:
(a) ∃M1 > 0 such that f(x, u) ≤M1 for x ∈ [0, 1] and 0 ≤ u ≤ ψ(M1) = η.

(b) ∃M2 > 0 such that f(x, u) ≥ M2 for x ∈ [σ, 1− σ] and σµ ≤ u ≤ µ with
µ 6= η, µ = 1

2σD
∗
1, D

∗
1 : = min

σ≤x≤1−σ
D1(x) and the function D1 is defined by

D1(x) : = ψ [M2(x− σ)] + ψ [M2(1− σ − x)] .

Then Problem (1.1) has a positive solution satisfying

min(µ, η) ≤ ‖u‖ ≤ max(µ, η).
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Remark 3.1. In case of the p−Laplacian mapping φ(s) = |s|p−2s (p > 1), a
straightforward computation yields

D∗
1 = min (D1(σ), D1(1/2)) =

{
M q−1

2 (1− 2σ)q−1, if 1 < q ≤ 2
22−qM q−1

2 (1− 2σ)q−1, if q ≥ 2,

in short

D∗
1 = M q−1

2 (1− 2σ)q−12min(2−q,0).

Here q = p
p−1 is the conjugate of the real number p. Also notice that D1(σ) =

D1(1− σ).

Proof. Without restriction in the proof, assume η < µ; otherwise invert
the roles played by the parameters µ and η. Consider the open sets:

Ω1 : =
{
u ∈ C([0, 1],R+); ‖u‖ < η

}
and

Ω2 : =
{
u ∈ C([0, 1],R+); ‖u‖ < µ

}
.

(a) Let u ∈ K ∩ ∂Ω1, that is u ∈ K and ‖u‖ = η. For any x ∈ [0, 1], we
have

|Tu(x)| = Tu(x) ≤ ψ

(∫ 1

0
f(s, u(s)) ds

)
≤ ψ(M1)

= η = ‖u‖.

Passing to the supremum, we get ‖Tu‖ ≤ ‖u‖ for any u ∈ K ∩ ∂Ω1.

(b) Let u ∈ K ∩ ∂Ω2, that is u ∈ K and ‖u‖ = µ. We have that u(x) ≥
p(x)‖u‖ ≥ σ‖u‖ for x ∈ [σ, 1− σ] and then u verifies

σµ = σ‖u‖ ≤ u(x) ≤ ‖u‖ = µ, ∀x ∈ [σ, 1− σ]. (3.2)

In addition, the following discussion holds true:
• If θ < σ or θ > 1− σ, then, from Assumption (b) and Lemma 2.6

‖Tu‖ ≥ σψ

(∫ 1−σ

σ
f(τ, u(τ)) dτ

)
≥ σψ[(1− 2σ)M2] = σD1(σ)

≥ σD∗
1 ≥ µ = ‖u‖.
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• If θ ∈ [σ, 1− σ], then we get similarly the estimates

2‖Tu‖ ≥ σψ

(∫ θ

σ
f(τ, u(τ))dτ

)
+ σψ

(∫ 1−σ

θ
f(τ, u(τ))dτ

)
≥ σψ (M2(θ − σ)) + σψ (M2(1− σ − θ)) = σD1(θ)

≥ σD∗
1 ≥ 2µ = 2‖u‖.

It follows that ‖Tu‖ ≥ ‖u‖ for any u ∈ K ∩ ∂Ω2.

By Theorem A, Problem (1.1) has a positive solution such that η ≤ ‖u‖ ≤ µ.

Remark 3.2. We can see from the proof of Theorem 3.1 that the constant µ
may be any constant satisfying 0 < µ ≤ σD∗

1
2 ·

3.3. The sum of two nonlinearities.

Theorem 3.2. Suppose that
(a) There exist F1, F2 ∈ C(R+,R+) : F1 is nonincreasing, strictly positive,

F2
F1

is nondecreasing and

∃ r0 > 0 :
(

1 +
F2(r0)
F1(r0)

)∫ 1

0
F1(r0p(s)) ds ≤ φ(r0) (3.3)

such that 0 ≤ f(x, u) ≤ F1(u) + F2(u), for any x ∈ [0, 1] and 0 ≤ u ≤ r0.

(b) There exist G1, G2 ∈ C(R+,R+) : G1 is nonincreasing, strictly positive,
G2
G1

is nondecreasing and satisfy

∃R0 > 0, R0 6= r0 such that σD∗
2 ≥ 2R0 (3.4)

such that f(x, u) ≥ G1(u) +G2(u), for any x ∈ [0, 1] and 0 ≤ u ≤ R0. Here

D2(x) = ψ
(
G1(R0)

(
1 + G2(σR0)

G1(σR0)

)
(x− σ)

)
+ ψ

(
G1(R0)

(
1 + G2(σR0)

G1(σR0)

)
(1− σ − x)

)
and D∗

2 = min
σ≤x≤1−σ

D2(x).

Then Problem (1.1) has a positive solution satisfying

min(r0, R0) ≤ ‖u‖ ≤ max(r0, R0).

Remark 3.3. Recall that p(x) = min(x, 1−x). Since 0 ≤ p(s) ≤ 1, ∀ s ∈ [0, 1],
it is easy to check that (3.3) implies that

∃ r0 > 0, 0 ≤ f(x, r0) ≤ φ(r0), ∀x ∈ [0, 1]

which is nothing but a weak sub-linear growth condition with respect to φ.
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Proof. Without loss of generality, suppose that 0 < r0 < R0 and consider
the open sets

Ω1 = {u ∈ C([0, 1]), ‖u‖ < r0} and Ω2 = {u ∈ C([0, 1]), ‖u‖ < R0} .

(a) Let u ∈ K ∩ ∂Ω1, that is u ∈ K and ‖u‖ = r0. For any x ∈ [0, 1], we
have, by Assumption (3.3)

0 ≤ Tu(x) ≤ ψ

(∫ 1

0
[F1(u(x)) + F2(u(x))] dx

)
.

With Lemma 2.4 and r0 ≥ u(x) ≥ p(x)r0, we infer the upper bound

0 ≤ Tu(x) ≤ ψ

((
1 +

F2(r0)
F1(r0)

)∫ 1

0
F1(r0p(x)) dx

)
≤ ψ(φ(r0)) = r0 = ‖u‖.

Thus, ‖Tu‖ ≤ ‖u‖ for any u ∈ K ∩ ∂Ω1.
(b) Let u ∈ K ∩∂Ω2, that is u ∈ K and ‖u‖ = R0. We have the discussion:
• If θ < σ or θ > 1 − σ, then, by Lemma 2.6 and u(x) ≥ σ‖u‖ for x ∈

[σ, 1− σ], we get

‖Tu‖ ≥ σψ

(∫ 1−σ

σ
f(τ, u(τ))dτ

)
≥ σψ

(∫ 1−σ

σ
G1(u)

(
1 +

G2(u)
G1(u)

)
dτ

)
≥ σψ

(∫ 1−σ

σ
G1(‖u‖)

(
1 +

G2(σ‖u‖)
G1(σ‖u‖)

)
dτ

)
= σψ

(
(1− 2σ)G1(R0)

(
1 +

G2(σR0)
G1(σR0)

))
= σD2(σ) ≥ σD∗

2 ≥ 2R0 > ‖u‖.

• If θ ∈ [σ, 1− σ], then Lemma 2.6 again yields the following estimates:

2‖Tu‖ ≥ σψ

(∫ θ

σ
f(τ, u(τ)) dτ

)
+ σψ

(∫ 1−σ

θ
f(τ, u(τ)) dτ

)
≥ σψ

(
(θ − σ)G1(R0)

(
1 +

G2(σR0)
G1(σR0)

))
+ σψ

(
(1− σ − θ)G1(R0)

(
1 +

G2(σR0)
G1(σR0)

))
= σD2(θ)

≥ σD∗
2 ≥ 2R0 = 2‖u‖.
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Consequently, ‖Tu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2. Therefore, all assumptions of
Theorem A are met and so Problem (1.1) admits a positive solution such that
r0 ≤ ‖u‖ ≤ R0.

Remark 3.4. In Assumptions (a) and (b) respectively, one may choose the
functions F1 and F2 (respectively the functions G1 and G2) be such that F1

and F2
F1

are nondecreasing (respectively G1 and G2
G1

are nonincreasing).

3.4. The sublinear and superlinear-like cases. In this subsection, we
suppose further that the operator φ satisfies the following condition

∃α, β ∈ (0,+∞), ∀ t ∈ [0, 1], ∀x ∈ R+, tβφ(x) ≤ φ(tx) ≤ tαφ(x). (3.5)

Remark 3.5. (a) Condition (3.5) implies that

∀ t ∈ [0, 1], ∀x ∈ R+, ψ(tβx) ≤ tψ(x) ≤ ψ(tαx), (3.6)

that is

∀ t ∈ [0, 1], ∀x ∈ R+, t
1
αψ(x) ≤ ψ(tx) ≤ t

1
βψ(x). (3.7)

(b) Let x, y ∈ R+ be such that x+ y > 0. From (3.7), we infer that(
x

x+y

) 1
α
ψ(x+ y) ≤ ψ(x) ≤

(
x

x+y

) 1
β
ψ(x+ y)(

y
x+y

) 1
α
ψ(x+ y) ≤ ψ(y) ≤

(
y

x+y

) 1
β
ψ(x+ y),

which yields((
x

x+y

) 1
α +

(
y

x+y

) 1
α

)
ψ(x+ y) ≤ ψ(x) + ψ(y)

≤
((

x
x+y

) 1
β +

(
y

x+y

) 1
β

)
ψ(x+ y).

Depending on the position of the positive parameter γ with respect to unity,
the function t ↪→ tγ + (1 − t)γ , defined on the interval (0, 1), has either the
maximum 2

(
1
2

)γ and a minimum equal to unity or the converse. Setting

α∗ : = min

(
1, 2

(
1
2

) 1
α

)
and β∗ : = max

(
1, 2

(
1
2

) 1
β

)
,

we finally arrive at the useful estimate

α∗ψ(x+ y) ≤ ψ(x) + ψ(y) ≤ β∗ψ(x+ y). (3.8)
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Remark 3.6. Here are some functions which satisfy Condition (3.5):
(a) The p−Laplacian operator φ(x) = |x|p−2x (p > 1) is homogenous

φ(tx) = φ(t)φ(x) = tp−1φ(x), ∀ (t, x) ∈ [0, 1]× R+.

(b) The sum of a p and a q Laplacian φ(x) = |x|p−2x + |x|q−2x (p 6=
q and p, q > 1). Indeed, for every x ∈ R+ and t ∈ [0, 1], we have:

tmax(p,q)−1φ(x) ≤ φ(tx) ≤ tmin(p,q)−1φ(x).

(c) φ(x) = |x|p−1x ln(1 + |x|) (p > 1) and φ(x) = |x|p arctanx (p > 0)
satisfy

tp+1φ(x) ≤ φ(tx) ≤ tpφ(x), ∀ (t, x) ∈ [0, 1]× R+.

(d) φ(x) = x|x|p−1

1+x2 (p > 2) satisfies

tpφ(x) ≤ φ(tx) ≤ tp−2φ(x), ∀ (t, x) ∈ [0, 1]× R+.

The main existence result in this sub-section is

Theorem 3.3. Let

lim inf
u→0+

(
min

x∈[0,1]

f(x,u)
φ(u)

)
= q0, lim sup

u→0+

(
max

x∈[0,1]

f(x,u)
φ(u)

)
= q0,

lim inf
u→+∞

(
min

x∈[0,1]

f(x,u)
φ(u)

)
= q∞, lim sup

u→+∞

(
max

x∈[0,1]

f(x,u)
φ(u)

)
= q∞.

(3.9)

Then, Problem (1.1) has at least one positive nontrivial solution provided one
of the following conditions holds true:

either q0 >
2β

σ2β(1− 2σ)αβ
∗

and q∞ < 1 (3.10)

or q0 < 1 and q∞ >
2β

σ2β(1− 2σ)αβ
∗
· (3.11)

Proof. (a) The sublinear-like case.
• Claim 1. Let ε > 0 be such that q0−ε ≥ 2β

σ2β(1−2σ)αβ
∗
· By definition of q0,

there exists an rε > 0 such that f(t, u) ≥ (q0−ε)φ(u) for every (t, u) ∈ [0, 1]×
[0, rε]. Consider the open ball Ω1 : = B(0, rε) and let u ∈ K ∩ ∂Ω1, that is
u ∈ K and ‖u‖ = rε. Then, in one hand, we have that u(x) ≥ p(x)‖u‖ ≥ σ‖u‖
for any x ∈ [σ, 1 − σ] and in the other hand, the following discussion holds
true:
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• If θ < σ or θ > 1− σ, then, by Lemma 2.6, we get, since φ is increasing

‖Tu‖ ≥ σψ

(∫ 1−σ

σ
f(τ, u(τ)) dτ

)
≥ σψ

(∫ 1−σ

σ
(q0 − ε)φ(u(τ)) dτ

)
≥ σψ ((q0 − ε)(1− 2σ)φ(σ‖u‖)) .

Owing to (3.5) and (3.6) together with 2β > αβ
∗ , we deduce

‖Tu‖ ≥ ψ
(
σ2β(1− 2σ)(q0 − ε)φ(‖u‖)

)
≥ ‖u‖.

• If θ ∈ [σ, 1− σ], then again by Lemmas 2.4, 2.6, we have successively the
estimates:

‖Tu‖ ≥ σ

2
ψ

(∫ θ

σ
f(τ, u(τ)) dτ

)
+
σ

2
ψ

(∫ 1−σ

θ
f(τ, u(τ)) dτ

)
≥ σ

2
ψ

(∫ θ

σ
(q0 − ε)φ(u(τ)) dτ

)
+
σ

2
ψ

(∫ 1−σ

θ
(q0 − ε)φ(u(τ)) dτ

)
≥ σ

2
ψ ((θ − σ)(q0 − ε)φ(σ‖u‖)) +

σ

2
ψ ((1− σ − θ)(q0 − ε)φ(σ‖u‖)) ,

which, with (3.8), imply

‖Tu‖ ≥ σ

2
α∗ψ ((1− 2σ)(q0 − ε)φ(σ‖u‖)) .

Turning back to (3.5) and (3.6) together with the choice of ε, we arrive at

‖Tu‖ ≥ ψ

(
σ2β

2β
(1− 2σ)αβ

∗ (q0 − ε)φ(‖u‖)
)
≥ ‖u‖.

Therefore, in both cases ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω2.

• Claim 2. Let ε > 0 be such that q∞ + ε < 1. By definition of q∞, there
exists a C > 0 such that f(t, u) ≤ (q∞+ε)φ(u)+C for every (t, u) ∈ [0, 1]×R+.

Let the open ball Ω2 : = B(0, R) be such that (q∞ + ε)φ(R) + C < φ(R) and
let u ∈ K ∩ ∂Ω2, that is u ∈ K and ‖u‖ = R. If v = Tu, then v verifies{

−(φ(v′))′(x) = f(x, u), 0 < x < 1
v(0) = v(1) = 0.

Let θ be such that v′(θ) = 0. Given some s ∈ [0, 1], we have

φ(v′(s)) =
∫ θ

s
f(τ, u(τ)) dτ
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and
|φ(v′(s))| = φ(|v′(s)|) ≤

∫ 1
0 f(τ, u(τ)) dτ

≤
∫ 1
0 ((q∞ + ε)φ(u(τ)) + C) dτ

≤ (q∞ + ε)φ(‖u‖) + C ≤ φ(R)

whence, |v′(s)| ≤ R, ∀ s ∈ [0, 1] and then

v(t) =
∫ t

0
v′(s) ds ≤ sup

s∈[0,1]
|v′(s)| ≤ R = ‖u‖,

that is
‖Tu‖ ≤ ‖u‖.

(b) The superlinear-like case.
It can be treated in a similar way. In this case, consider some ε > 0 such that
q0 + ε ≤ 1 so that there exists an Rε > 0 such that f(t, u) ≤ (q0 + ε)φ(u) for
every (t, u) ∈ [0, 1]× [0, Rε]. For Ω1 : = B(0, Rε) and u ∈ K ∩ ∂Ω1, we get

∀x ∈ [0, 1], Tu(x) ≤ ψ

(∫ 1

0
f(τ, u(τ)) dτ

)
≤ ψ (φ(‖u‖)) = ‖u‖.

Let ε > 0 be such that q∞ − ε ≥ 2β

σ2β(1−2σ)αβ
∗
· Then there exists an Rε > 0

such that f(t, u) ≤ (q∞ − ε)φ(u) for every (t, u) ∈ [0, 1] × [Rε,+∞). Let
Ω2 : = B(0, R) with R = Rε

σ · Then, as in Part (a), we have to distinguish
between two cases and derive the estimate

‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω2.

By Theorem A, Problem (1.1) admits a positive solution such that R ≤ ‖u‖ ≤
Rε.

As a consequence, we recover a classical result:

Corollary 3.4. Let q ∈ C([0, 1],R+) with min
x∈[0,1]

q(x) > 0 and F satisfies

either (sub-linear case) lim inf
s→0+

F (s)
φ(s)

= +∞ and lim sup
s→+∞

F (s)
φ(s)

= 0,

or (super-linear case) lim sup
s→0+

F (s)
φ(s)

= 0 and lim inf
s→+∞

F (s)
φ(s)

= +∞.

Then, the boundary value problem{
−(φ(u′))′ = q(x)F (u), 0 < x < 1,

u(0) = u(1) = 0
(3.12)
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has at least one nontrivial positive solution.

Remark 3.7. The real function σ ↪→ ζ(σ) = 2β

σ2β(1−2σ)αβ
∗

defined for σ ∈ (0, 1
2)

achieves its minimum at the point σ0 = β
2β+1 and assumes the value ζ(σ0) =(

2

αβ
∗

)β
(2β+1)2β+1

β2β · Theorem 3.3 may then be changed as follows; we omit the
proof.

Theorem 3.5. With the notations in (3.9), assume that

either q0 > ζ(σ0) and q∞ < 1

or q0 < 1 and q∞ > ζ(σ0).

Then, Problem (1.1) has at least one positive nontrivial solution.

4. Applications: Problems involving the p−Laplacian

In the first two examples, we assume φ(s) = φp(s) = |s|p−2s for some p > 1.
The number q = p

p−1 will denote the conjugate of p. The third example is
concerned with the sum of two p−Laplacian operators.

4.1. Example 1. Consider the function f : R+ → R+ defined by f(s) =
c1s

α + 1
c1
sβ with some 0 < α < p−1 = 1

q−1 < β and c1 a positive real number.

For any 0 ≤ s ≤ η = ψ(M1) = M q−1
1 , Assumption (a) in Theorem 3.1, namely

the condition f(s) ≤M1, is satisfied whenever

∃M1 > 0, c1M
a
1 +

1
c1
M b

1 ≤ 1, (4.1)

where we have set a : = α(q − 1) − 1 and b : = β(q − 1) − 1. Hereafter, we
assume a < 0, b > 0 and a+ b > 0, that is

α(q − 1) < 1, β(q − 1) > 1 and (α+ β)(q − 1) > 2. (4.2)

Equivalently,

0 < α < p− 1 < β and 0 < p− 1 <
α+ β

2
·

The graph of the function χ defined on R+ by χ(x) = c1x
a + 1

c1
xb looks like

a convex parabola with a minimum achieved at some point x0 =
(
−ac21

b

) 1
b−a

.
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Condition (4.1) is then satisfied if and only if

χ(x0) = c
b+a
b−a

1

((
−a
b

) a
b−a

+
(
−a
b

) b
b−a

)
≤ 1

which is fulfilled for every

0 < c1 ≤
1((−a

b

) a
b−a +

(−a
b

) b
b−a

) b−a
b+a

· (4.3)

As for Assumption (b) in Theorem 3.1, notice that s ≥ σµ implies that c1sα +
1
c1
sβ ≥ c1(σµ)α + 1

c1
(σµ)β ≥ M2 which in turn yields f(s) ≥ M2. Keeping in

mind the value of µ (see Remark 3.1), this is equivalent to finding an M2 > 0
such that

C1M
a
2 + C2M

b
2 ≥ 1 (4.4)

where
C1 : = c1σ

2α(1− 2σ)α(q−1)2α min(2−q,0)

C2 : = 1
c1
σ2β(1− 2σ)β(q−1)2β min(2−q,0).

Given the graph of the function %(x) = C1x
a+C2x

b, Condition (4.4) is satisfied
whenever M2 is either small enough or large enough; in particular, this ensures
that µ 6= η, that is (σ

2

) 1
q−1 (1− 2σ)2

min(2−q,0)
q−1 M2 6= M1,

as required in Theorem 3.1. To summarize, we have proved that the au-
tonomous problem{

−
(
|u′|p−2u′

)′ (x) = c1u
α + 1

c1
uβ, 0 < x < 1

u(0) = u(1) = 0

has a positive nontrivial solution under Condition (4.2) and for some constant
c1 obeying (4.3). Note that the nonlinear right-hand term encompasses sub-
linear and super-linear parts with respect to the p−Laplacian.

4.2. Example 2. Let the right-hand term be variable-separated f(x, s) =
g(x)h(s) with a nonnegative continuous function g, hence bounded over
[0, 1], and a real positive continuous function h which satisfies the bound-
ing G1(s) + G2(s) ≤ h(s) ≤ F1(s) + F2(s) with F1(s) = 1√

s
, F2(s) = sα,

G1(s) = 1√
s+1

, G2(s) = sα for s > 0 and some positive real number α. Thus
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F2
F1

= sα+ 1
2 and G2

G1
= sα(s + 1)

1
2 . Notice that F1 + F2 is neither bounded at

positive infinity nor in the vicinity of the origin.
After computing

∫ 1
0 F1(r0p(s)) ds = 4√

2r0
, Assumption (a) in Theorem 3.2

becomes

∃ r0 > 0,
4
(

1 + r
α+ 1

2
0

)
√

2r0
≤ rp−1

0 (4.5)

which is satisfied for every 0 < α < p−1 and r0 large enough. As for Condition
(b) in Theorem 3.2, it is fulfilled whenever

22−qσ (K(1− 2σ))q−1 ≥ 2R0 (4.6)

where q = p
p−1 and K = K(R0) = G1(R0)

(
1 + G2(σR0)

G1(σR0)

)
that is

K =
1√

R0 + 1

(
1 + (σR0)α

√
1 + σR0

)
.

Since lim
R0→0+

K(R0) = 1, Condition (4.6) is satisfied for small R0. Therefore,

all assumptions in Theorem 3.2 are met and Problem (1.1) has a positive
solution u with R0 ≤ ‖u‖ ≤ r0.

4.3. Example 3. Consider the boundary value problem:{
− (φ(u′))′ (x) = a(x)f(u(x)), 0 < x < 1
u(0) = u(1) = 0

(4.7)

with a ∈ C([0, 1],R+) satisfies min
x∈[0,1]

a(x) > 0, φ(u) = φp(u) + φq(u) and

f(u) = k1|φs(u)|+k2|φt(u)| for some positive constants k1, k2 and p, q, s, t > 1.
Then, Problem (4.7) has a positive nontrivial solution if

either k1 > 0, 1 < s < p < q and s < t < q

or k2 > 0, 1 < p < q < t and p < s < t.

Indeed, the ratio
f(u)
φ(u)

=
k1u

s−1 + k2u
t−1

up−1 + uq−1
, u > 0

behaves as ut−q when u goes to +∞ and as us−p when u approaches 0+. Thus
Corollary 3.4 applies.
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5. Concluding remarks

(a) We may notice that in Theorem 3.1 no condition is assumed on the
function φ. Assumptions (a) and (b) rather provide local growth conditions on
the nonlinearity φ, which are weaker than usual polynomial growth conditions.
As Example 3.1 shows, this theorem provides existence of solution when the
nonlinearity is the sum of the sub-linear and the super-linear case with respect
to (p − 1). Clearly, the case p = 2 is reminiscent of second-order boundary
value problems.

(b) Thanks to Theorem 3.2, we can see that the nonlinearity f may be the
sum of an increasing function and a decreasing one (see example 2 in Section
4). Similar results may be extended to obtain existence results for singular
φ−Laplacian boundary value problems.

(c) Theorem 3.3 not only gives existence of positive solutions for a new
class of φ−Laplacian Dirichlet boundary value problems but also allows for
the nonlinear operator φ to be the sum of p and q−Laplacian mappings. We
believe that the results obtained in this paper can make a contribution to
the existence theory of positive solutions for φ−Laplacian Dirichlet boundary
value problems.
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