ON ISOMORPHISMS OF CANONICAL \mathcal{E} -LATTICES

MARIUS TĂRNĂUCEANU

Faculty of Mathematics, "Al.I. Cuza" University, Iaşi, Romania E-mail: tarnauc@uaic.ro

Abstract. The aim of the present paper is to study isomorphisms of canonical \mathcal{E} -lattices. Some interesting results are obtained in the particular case of isomorphisms between two subgroup \mathcal{E} -lattices.

Key Words and Phrases: canonical ε-lattices, subgroup ε-lattices, isomorphisms. **2000 Mathematics Subject Classification**: 06B99, 08A35, 20D25, 20D30.

1. Preliminaries

The starting point for our discussion is given by the paper [10], where there is introduced the category of \mathcal{E} -lattices and there are made some basic constructions in this category. Given a nonempty set L and a map $\varepsilon: L \to L$, we denote by Ker ε the kernel of ε (i.e. Ker $\varepsilon = \{(a,b) \in L \times L \mid \varepsilon(a) = \varepsilon(b)\}$), by Im ε the image of ε (i.e. Im $\varepsilon = \{\varepsilon(a) \mid a \in L\}$) and by Fix ε the set consisting of all fixed points of ε (i.e. Fix $\varepsilon = \{a \in L \mid \varepsilon(a) = a\}$). We say that L is an \mathcal{E} -lattice (relative to ε) if there exist two binary operations $\wedge_{\varepsilon}, \vee_{\varepsilon}$ on L which satisfy the following properties:

- a) $a \wedge_{\varepsilon} (b \wedge_{\varepsilon} c) = (a \wedge_{\varepsilon} b) \wedge_{\varepsilon} c$, $a \vee_{\varepsilon} (b \vee_{\varepsilon} c) = (a \vee_{\varepsilon} b) \vee_{\varepsilon} c$, for all $a, b, c \in L$;
- b) $a \wedge_{\varepsilon} b = b \wedge_{\varepsilon} a$, $a \vee_{\varepsilon} b = b \vee_{\varepsilon} a$, for all $a, b \in L$;
- c) $a \wedge_{\varepsilon} a = a \vee_{\varepsilon} a = \varepsilon(a)$, for any $a \in L$;
- d) $a \wedge_{\varepsilon} (a \vee_{\varepsilon} b) = a \vee_{\varepsilon} (a \wedge_{\varepsilon} b) = \varepsilon(a)$, for all $a, b \in L$.

Clearly, in an \mathcal{E} -lattice L (relative to ε) the map ε is idempotent and $\operatorname{Im} \varepsilon = \operatorname{Fix} \varepsilon$. Moreover, the set $\operatorname{Fix} \varepsilon$ is closed under the binary operations $\wedge_{\varepsilon}, \vee_{\varepsilon}$ and, denoting by $\wedge_{\varepsilon}^{\circ}, \vee_{\varepsilon}^{\circ}$ the restrictions of $\wedge_{\varepsilon}, \vee_{\varepsilon}$ to $\operatorname{Fix} \varepsilon$, we have that $(\operatorname{Fix} \varepsilon, \wedge_{\varepsilon}^{\circ}, \vee_{\varepsilon}^{\circ})$ is a lattice. The connection between the \mathcal{E} -lattice concept and the lattice concept is very powerful. So, if $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ is an \mathcal{E} -lattice and \sim

is an equivalence relation on L such that $\sim \subseteq \operatorname{Ker} \varepsilon$, then the factor set L/\sim is a lattice isomorphic to the lattice $\operatorname{Fix} \varepsilon$. Conversely, if L is a nonvoid set and \sim is an equivalence relation on L having the property that the factor set L/\sim is a lattice, then the set L can be endowed with an \mathcal{E} -lattice structure (relative to a map $\varepsilon: L \longrightarrow L$) such that $\sim \subseteq \operatorname{Ker} \varepsilon$ and $L/\sim \cong \operatorname{Fix} \varepsilon$.

We say that an \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ is a canonical \mathcal{E} -lattice if $a \wedge_{\varepsilon} b, a \vee_{\varepsilon} b \in \operatorname{Fix} \varepsilon$, for all $a, b \in L$. Three fundamental types of canonical \mathcal{E} -lattices have been identified in [10]. One of the most important example of a canonical \mathcal{E} -lattice is constituted by the lattice L(G) of all subgroups of a group G (called the subgroup \mathcal{E} -lattice of G). Here the map ε is defined by $\varepsilon(H) = H_G$ (where H_G is the core of H in G), for any $H \in L(G)$ and the binary operations $\wedge_{\varepsilon}, \vee_{\varepsilon}$ are defined by $H_1 \wedge_{\varepsilon} H_2 = \varepsilon(H_1) \cap \varepsilon(H_2), H_1 \vee_{\varepsilon} H_2 = \varepsilon(H_1)\varepsilon(H_2)$, for all $H_1, H_2 \in L(G)$. Mention that in this situation the lattice $\operatorname{Fix} \varepsilon$ is just the normal subgroup lattice N(G) of G.

Let $(L_1, \wedge_{\varepsilon_1}, \vee_{\varepsilon_1})$ and $(L_2, \wedge_{\varepsilon_2}, \vee_{\varepsilon_2})$ be two \mathcal{E} -lattices. A map $f: L_1 \to L_2$ is called an \mathcal{E} -lattice homomorphism if:

- a) $f \circ \varepsilon_1 = \varepsilon_2 \circ f$;
- b) for all $a, b \in L_1$, we have:
 - i) $f(a \wedge_{\varepsilon_1} b) = f(a) \wedge_{\varepsilon_2} f(b);$
 - i) $f(a \vee_{\varepsilon_1} b) = f(a) \vee_{\varepsilon_2} f(b)$.

Moreover, if the map f is one-to-one and onto, then we say that it is an \mathcal{E} -lattice isomorphism. An \mathcal{E} -lattice isomorphism of an \mathcal{E} -lattice into itself is called an \mathcal{E} -lattice automorphism. For an \mathcal{E} -lattice L, we shall denote by $\mathrm{Aut}_{\mathcal{E}}(L)$ the group consisting of all \mathcal{E} -lattice automorphisms of L.

2. Main results

2.1. Isomorphisms of canonical \mathcal{E} -lattices. In this section we present some general results concerned to isomorphisms between canonical \mathcal{E} -lattices.

Let $(L_1, \wedge_{\varepsilon_1}, \vee_{\varepsilon_1})$ and $(L_2, \wedge_{\varepsilon_2}, \vee_{\varepsilon_2})$ be two canonical \mathcal{E} -lattices. For every element $a \in L_i$, we denote by $[a]_i$ the equivalence class of a modulo $\operatorname{Ker} \varepsilon_i$ (i.e. $[a]_i = \{b \in L_i \mid \varepsilon_i(b) = \varepsilon_i(a)\}$), i = 1, 2. First of all, we give a characterization of \mathcal{E} -lattice isomorphisms from L_1 to L_2 .

Proposition 1. Let $(L_1, \wedge_{\varepsilon_1}, \vee_{\varepsilon_1})$ and $(L_2, \wedge_{\varepsilon_2}, \vee_{\varepsilon_2})$ be two canonical \mathcal{E} -lattices and $f: L_1 \to L_2$ be a map. Then the following two conditions are equivalent:

- a) f is an \mathcal{E} -lattice isomorphism.
- b) i) The restriction f_0 of f to the set Fix ε_1 is a lattice isomorphism from Fix ε_1 to Fix ε_2 .
 - ii) $f \mid [a]_1 : [a]_1 \longrightarrow [f(a)]_2$ is one-to-one and onto, for each $a \in \operatorname{Fix} \varepsilon_1$.

Proof. a) \Longrightarrow b) Let $a \in \operatorname{Fix} \varepsilon_1$. Then $\varepsilon_1(a) = a$ and so $f_0(a) = f(a) = f(\varepsilon_1(a)) = (f \circ \varepsilon_1)(a) = (\varepsilon_2 \circ f)(a) = \varepsilon_2(f(a)) \in \operatorname{Fix} \varepsilon_2$. Thus $\operatorname{Im} f_0 \subseteq \operatorname{Fix} \varepsilon_2$. For all $a, b \in L_1$, we have $f_0(a \wedge_{\varepsilon_1}^{\circ} b) = f(a \wedge_{\varepsilon_1} b) = f(a) \wedge_{\varepsilon_2} f(b) = f_0(a) \wedge_{\varepsilon_2} f(b) = f_0(a) \wedge_{\varepsilon_2} f(b)$ and $f_0(a \vee_{\varepsilon_1}^{\circ} b) = f(a \vee_{\varepsilon_1} b) = f(a) \vee_{\varepsilon_2} f(b) = f_0(a) \vee_{\varepsilon_2} f(b) = f_0(a) \vee_{\varepsilon_2} f(b)$, which show that f_0 is a lattice homomorphism. Since f is one-to-one and onto, it is clear that f_0 has the same properties and hence i) holds.

Now, let $b \in [a]_1$. Then $\varepsilon_1(b) = \varepsilon_1(a) = a$, which implies that $\varepsilon_2(f(b)) = (\varepsilon_2 \circ f)(b) = (f \circ \varepsilon_1)(b) = f(\varepsilon_1(b)) = f(a)$. Therefore $\operatorname{Im}(f \mid [a]_1) \subseteq [f(a)]_2$. As f is one-to-one, $f \mid [a]_1$ is one-to-one, too. If $c \in [f(a)]_2$, then $\varepsilon_2(c) = f(a)$ and so $\varepsilon_1(f^{-1}(c)) = (\varepsilon_1 \circ f^{-1})(c) = (f^{-1} \circ \varepsilon_2)(c) = f^{-1}(\varepsilon_2(c)) = f^{-1}(f(a)) = a$. It results that $f^{-1}(c) \in [a]_1$. Hence $f \mid [a]_1$ is onto.

b) \Longrightarrow a) For any $a \in L_1$, we have $a \in [\varepsilon_1(a)]_1$. From the condition ii) of b), it obtains $f(a) \in [f(\varepsilon_1(a))]_2$, which implies that $(\varepsilon_2 \circ f)(a) = \varepsilon_2(f(a)) = f(\varepsilon_1(a)) = (f \circ \varepsilon_1)(a)$. Thus $f \circ \varepsilon_1 = \varepsilon_2 \circ f$. Since both L_1 and L_2 are canonical \mathcal{E} -lattices, we have $f(a \wedge_{\varepsilon_1} b) = f(\varepsilon_1(a \wedge_{\varepsilon_1} b)) = f(\varepsilon_1(a) \wedge_{\varepsilon_1} \varepsilon_1(b)) = f_0(\varepsilon_1(a) \wedge_{\varepsilon_2}^{\circ} \varepsilon_1(b)) = f_0(\varepsilon_1(a) \wedge_{\varepsilon_2}^{\circ} f_0(\varepsilon_1(b)) = (f \circ \varepsilon_1)(a) \wedge_{\varepsilon_2} (f \circ \varepsilon_1)(b) = (\varepsilon_2 \circ f)(a) \wedge_{\varepsilon_2} (\varepsilon_2 \circ f)(b) = \varepsilon_2(f(a)) \wedge_{\varepsilon_2} \varepsilon_2(f(b)) = \varepsilon_2(f(a) \wedge_{\varepsilon_2} f(b)) = f(a) \wedge_{\varepsilon_2} f(b)$ and, in the same manner, $f(a \vee_{\varepsilon_1} b) = f(a) \vee_{\varepsilon_2} f(b)$, for all $a, b \in L_1$. Therefore f is an \mathcal{E} -lattice homomorphism. Clearly, the map f is one-to-one and onto and hence our proof if finished.

As a consequence of the above proposition, it obtains the next characterization of \mathcal{E} -lattice automorphisms of a canonical \mathcal{E} -lattice.

Corollary. Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be a canonical \mathcal{E} -lattice, $\operatorname{Aut}(\operatorname{Fix} \varepsilon)$ be the group consisting of all automorphisms of the lattice $\operatorname{Fix} \varepsilon$ and $f: L \longrightarrow L$ be a map.

Then $f \in \operatorname{Aut}_{\mathcal{E}}(L)$ if and only if $f \mid \operatorname{Fix} \varepsilon \in \operatorname{Aut}(\operatorname{Fix} \varepsilon)$ and $f \mid [a] : [a] \longrightarrow [f(a)]$ is one-to-one and onto, for each $a \in \operatorname{Fix} \varepsilon$.

In the following we shall investigate the structure of the group $\operatorname{Aut}_{\mathcal{E}}(L)$ associated to a canonical \mathcal{E} -lattice $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$. Suppose that $\operatorname{Fix}_{\varepsilon} = \{a_i \mid i \in I\}$. Let $S([a_i])$ be the symmetric group on the set $[a_i] = \{a \in L \mid \varepsilon(a) = a_i\}$ and $S'([a_i]) = \{u_i \in S([a_i]) \mid u_i(a_i) = a_i\}$ (of course, $S'([a_i])$ is a subgroup of $S([a_i])$), $i \in I$. Denote by $\sum_{i \in I} S'([a_i])$ the direct product of the groups

 $S'([a_i]), i \in I$. For every $(u_i)_{i \in I} \in \underset{i \in I}{\times} S'([a_i])$, we construct an \mathcal{E} -lattice automorphism f of L by $f \mid \operatorname{Fix} \varepsilon = 1_{\operatorname{Fix} \varepsilon}$ and $f \mid [a_i] = u_i, i \in I$. In this way we defined a map $\varphi : \underset{i \in I}{\times} S'([a_i]) \longrightarrow \operatorname{Aut}_{\mathcal{E}}(L)$. Moreover, note that φ is a group monomorphism.

On the other hand, by the previous corollary, every element $f \in \operatorname{Aut}_{\mathcal{E}}(L)$ induces a lattice automorphism $f \mid \operatorname{Fix} \varepsilon \in \operatorname{Aut}(\operatorname{Fix} \varepsilon)$. Thus we defined another map $\psi : \operatorname{Aut}_{\mathcal{E}}(L) \longrightarrow \operatorname{Aut}(\operatorname{Fix} \varepsilon)$, which is a group epimorphism. Also, it is easy to see that $\operatorname{Im} \varphi = \operatorname{Ker} \psi$, therefore we have proved the next result.

Proposition 2. With the above notations, there exists an exact sequence:

$$1 \longrightarrow \underset{i \in I}{\times} S'([a_i]) \xrightarrow{\varphi} \operatorname{Aut}_{\mathcal{E}}(L) \xrightarrow{\psi} \operatorname{Aut}(\operatorname{Fix} \varepsilon) \longrightarrow 1.$$

Remark that we identified an important normal subgroup of $Aut_{\mathcal{E}}(L)$:

$$\operatorname{Aut}_{\mathcal{E}}^{0}(L) = \{ f \in \operatorname{Aut}_{\mathcal{E}}(L) \mid f | \operatorname{Fix}_{\mathcal{E}} = 1_{\operatorname{Fix}_{\mathcal{E}}} \},$$

which is isomorphic to the direct product $\sum_{i \in I} S'([a_i])$. A case when the group

 $\operatorname{Aut}_{\mathcal{E}}(L)$ itself is isomorphic to $\sum_{i\in I} S'([a_i])$ is described by the following corollary.

Corollary 1. Under the same notations as in Proposition 2, if the group $Aut(Fix \varepsilon)$ is trivial, then we have:

$$\operatorname{Aut}_{\mathcal{E}}(L) \cong \underset{i \in I}{\times} S'([a_i]).$$

There exist many situations in which the group of all automorphisms of a lattice is trivial. One of them is obtained when the lattice is finite and fully ordered.

Corollary 2. Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be a canonical \mathcal{E} -lattice having a finite fully ordered lattice of fixed points $\operatorname{Fix} \varepsilon = \{a_1, a_2, ..., a_n\}$. Then the following group isomorphism holds:

$$\operatorname{Aut}_{\mathcal{E}}(L) \cong \sum_{i=1}^{n} S'([a_i]).$$

Moreover, if L itself is finite, we can estimate its number of \mathcal{E} -lattice automorphisms.

Corollary 3. Let $(L, \wedge_{\varepsilon}, \vee_{\varepsilon})$ be a finite canonical \mathcal{E} -lattice having a fully ordered lattice of fixed points $\operatorname{Fix} \varepsilon = \{a_1, a_2, ..., a_n\}$. If $m_i = |[a_i]|, i = \overline{1, n}$, then the following equality holds:

$$|\operatorname{Aut}_{\mathcal{E}}(L)| = \prod_{i=1}^{n} (m_i - 1)!.$$

2.2. Isomorphisms of subgroup \mathcal{E} -lattices. In this section we investigate isomorphisms between subgroup \mathcal{E} -lattices.

Let G_1, G_2 be two groups and $L(G_1), L(G_2)$ be their subgroups lattices. Remind that G_1 and G_2 are called L-isomorphic if $L(G_1) \cong L(G_2)$ (a lattice isomorphism from $L(G_1)$ to $L(G_2)$ will be called an L-isomorphism). Now, let us consider the \mathcal{E} -lattice structure on $L(G_i)$, i=1,2. As we have seen above, in this situation the lattices of fixed points associated to $L(G_1)$, $L(G_2)$ are the normal subgroup lattices $N(G_1), N(G_2)$ of G_1 and G_2 , respectively. We say that G_1 and G_2 are $\mathcal{E}L$ -isomorphic if the \mathcal{E} -lattices $L(G_1)$ and $L(G_2)$ are isomorphic (an \mathcal{E} -lattice isomorphism from $L(G_1)$ to $L(G_2)$ will be called an $\mathcal{E}L$ -isomorphism).

Our first goal is to establish some connections between these different types of isomorphisms from G_1 to G_2 . Clearly, if $G_1 \cong G_2$, then G_1, G_2 are both L-isomorphic and $\mathcal{E}L$ -isomorphic. Also, if G_1 and G_2 are $\mathcal{E}L$ -isomorphic,

then, by Proposition 1, 2.1, $N(G_1) \cong N(G_2)$, but they are not necessarily L-isomorphic. Conversely, $N(G_1) \cong N(G_2)$ does not imply that G_1 and G_2 are $\mathcal{E}L$ -isomorphic (for example, take G_1 the quaternion group and G_2 the dihedral group of order 8). Moreover, even the lattice isomorphism $L(G_1) \cong L(G_2)$ does not assure that G_1 and G_2 are $\mathcal{E}L$ -isomorphic (for example, take G_1 a finite elementary abelian p-group and G_2 the nonabelian p-group which is L-isomorphic to G_1 (see [7], page 11)).

The following result indicates us some classes of groups which are preserved by $\mathcal{E}L$ -isomorphisms.

Proposition 1. Let G_1 and G_2 be two $\mathcal{E}L$ -isomorphic groups. If G_1 is a simple group or a Dedekind (in particular abelian) group, then G_2 is also simple or Dedekind, respectively.

Proof. Let $f: L(G_1) \longrightarrow L(G_2)$ be an $\mathcal{E}L$ -isomorphism.

If G_1 is simple, then $|N(G_1)| = 2$. Since $N(G_1) \cong N(G_2)$, it results that $|N(G_2)| = 2$ and hence G_2 is simple, too.

If G_1 is a Dedekind group, then any subgroup $H_1 \in L(G_1)$ is normal in G_1 and its congruence class $[H_1]_1$ consists only of H_1 . Because f maps normal subgroups into normal subgroups and induces an one-to-one and onto map between the congruence classes $[H_1]_1$ and $[f(H_1)]_2$ of the \mathcal{E} -lattices $L(G_1)$ and $L(G_2)$, respectively, it obtains $[H_2]_2 = \{H_2\}$, for all $H_2 \in N(G_2)$. This implies that every subgroup of G_2 is normal and hence G_2 is also Dedekind.

Note that, for two groups of the above types, we are able to indicate some necessary and sufficient conditions in order to be $\mathcal{E}L$ -isomorphic. In this way, two finite simple groups are $\mathcal{E}L$ -isomorphic iff they have the same number of subgroups and two Dedekind (in particular abelian) groups are $\mathcal{E}L$ -isomorphic iff they are L-isomorphic.

Next, we shall present a property satisfied by $\mathcal{E}L$ -isomorphisms between two finite groups in the case when one of them is nilpotent.

Proposition 2. Let G_1, G_2 be two finite groups, $\Phi(G_1), \Phi(G_2)$ be their Frattini subgroups and $f: L(G_1) \longrightarrow L(G_2)$ be an $\mathcal{E}L$ -isomorphism. If G_1 is nilpotent, then $f(\Phi(G_1)) \supseteq \Phi(G_2)$.

Proof. Let M_1 be a maximal subgroup of G_1 . Since G_1 is nilpotent, it follows that M_1 is normal in G_1 and so $M_2 = f(M_1)$ is a normal subgroup of G_2 . Let $H_2 \in L(G_2)$ such that $M_2 \subseteq H_2 \subseteq G_2$ and assume that $H_2 \neq G_2$. Then M_2 is contained in the core G_2 of G_2 . As G_2 is a normal subgroup between G_2 and G_2 it results that $G_1 = f^{-1}(G_2)$ is a normal subgroup of G_1 and G_2 in G_3 . By the maximality of G_3 it is a normal subgroup of G_3 and G_4 in G_5 in G_6 in G_6 in G_7 in $G_$

Corollary. Let G be a finite nilpotent group, $\Phi(G)$ be its Frattini subgroup and f be an $\mathcal{E}L$ -automorphism of G. Then $\Phi(G)$ is a fixed point of f.

Proof. By Proposition 2, we have $f(\Phi(G)) \supseteq \Phi(G)$. On the other hand, applying Proposition 2 to f^{-1} , it results that $f^{-1}(\Phi(G)) \supseteq \Phi(G)$ and therefore $\Phi(G) \supseteq f(\Phi(G))$. Hence the equality $f(\Phi(G)) = \Phi(G)$ holds.

Remark. Assume that G_1, G_2 are two finite groups and let $f: L(G_1) \to L(G_2)$ be an $\mathcal{E}L$ -isomorphism. By a well-known result of H. Heineken (see [4]), under the additional conditions that G_1 is a noncyclic p-group and the derived subgroup of G_2 is nilpotent, it obtains that G_2 is also a p-group of the same order as G_1 . In this case f maps any principal series of G_1 into a principal series of G_2 and induces an one-to-one and onto map between the sets of maximal subgroups of G_1 and G_2 . By Proposition 2, we have $f(\Phi(G_1)) = \Phi(G_2)$ and thus $|\Phi(G_1)| = |\Phi(G_2)|$. It follows that the vector spaces (over F_p) $G_1/\Phi(G_1)$ and $G_2/\Phi(G_2)$ have the same dimension. Hence G_1 and G_2 can be generated by exactly the same number of generators.

Let G_1, G_2 be two groups, $f: L(G_1) \longrightarrow L(G_2)$ be an $\mathcal{E}L$ -isomorphism and H_1 be a (normal) subgroup of G_1 . Since a normal subgroup of H_1 is not necessarily mapped by f into a normal subgroup of $f(H_1)$, f induces not

an $\mathcal{E}L$ -isomorphism between H_1 and $f(H_1)$. The situation is different with respect to the factor groups of our two groups, as shows the following lemma.

Lemma. If G_1, G_2 are two groups, $f: L(G_1) \longrightarrow L(G_2)$ is an $\mathcal{E}L$ -isomorphism and H_1 is a normal subgroup of G_1 , then the map

$$\bar{f}: L(G_1/H_1) \longrightarrow L(G_2/f(H_1))$$

defined by $\bar{f}(K_1/H_1) = f(K_1)/f(H_1)$, for all $K_1/H_1 \in L(G_1/H_1)$, is also an $\mathcal{E}L$ -isomorphism.

In the hypothesis of the above lemma consider H_1 be the derived subgroup $D(G_1)$ of G_1 . Then the groups $G_1/D(G_1)$ and $G_2/f(D(G_1))$ are $\mathcal{E}L$ -isomorphic. But $G_1/D(G_1)$ is abelian and an $\mathcal{E}L$ -isomorphism maps abelian groups into Dedekind groups (see Proposition 1, 2.1), therefore $G_2/f(D(G_1))$ is a Dedekind group L-isomorphic to $G_1/D(G_1)$. It is well-known (for example, see [7], Theorem 6, page 39) that a primary hamiltonian group cannot be L-isomorphic to an abelian group. Thus, under a supplementary condition of type

(*) every hamiltonian quotient of G_2 is primary,

it follows that $G_2/f(D(G_1))$ is also abelian and therefore $D(G_2) \subseteq f(D(G_1))$ (mention that the author has not be able to decide if without a condition of type (*) it obtains the commutativity of $G_2/f(D(G_1))$). Hence we have proved the next proposition.

Proposition 3. Let G_1, G_2 be two groups, $D(G_1), D(G_2)$ be their derived subgroups and $f: L(G_1) \longrightarrow L(G_2)$ be an $\mathcal{E}L$ -isomorphism. If G_2 satisfies the condition (*), then $f(D(G_1)) \supseteq D(G_2)$.

By Proposition 3, we can easily see that the following result holds.

Corollary. Let G be a group which satisfies the condition (*), D(G) be its derived subgroup and f be an $\mathcal{E}L$ -automorphism of G. Then D(G) is a fixed point of f.

As we have already seen in 2.1, an important normal subgroup of the group $\operatorname{Aut}_{\mathcal{E}}(L(G))$ associated to a group G is $\operatorname{Aut}_{\mathcal{E}}^0(L(G)) = \{f \in \operatorname{Aut}_{\mathcal{E}}(L(G)) \mid$

 $f|N(G) = 1_{N(G)}$ }. We finish this section by indicating another two remarkable subgroups of $\mathrm{Aut}_{\mathcal{E}}(L(G))$:

- the subgroup $\operatorname{Aut}_{\mathcal{E}}^1(L(G))$ consisting of all L-automorphisms of G induced by group automorphisms;
- the subgroup $\operatorname{Aut}_{\mathcal{E}}^2(L(G))$ consisting of all L-automorphisms of G of the type $f_a: L(G) \longrightarrow L(G), f_a(H) = H^a$, for all $H \in L(G)$ $(a \in G)$.

Note that $\operatorname{Aut}_{\mathcal{E}}^2(L(G))$ is a normal subgroup of $\operatorname{Aut}_{\mathcal{E}}^1(L(G))$ and, also, it is contained in $\operatorname{Aut}_{\mathcal{E}}^0(L(G))$.

Finally, we find these subgroups in two situations.

Examples.

1) For the symmetric group S_3 of degree 3, we have:

$$\operatorname{Aut}_{\mathcal{E}}^{0}(L(S_3)) = \operatorname{Aut}_{\mathcal{E}}^{1}(L(S_3)) = \operatorname{Aut}_{\mathcal{E}}^{2}(L(S_3)) \cong S_3.$$

2) For the dihedral group D_4 of order 8, we have:

$$\operatorname{Aut}_{\mathcal{E}}^{0}(L(D_4)) \cong S_4$$
, $\operatorname{Aut}_{\mathcal{E}}^{1}(L(D_4)) \cong D_4$, $\operatorname{Aut}_{\mathcal{E}}^{2}(L(D_4)) \cong \mathbb{Z}_2$.

References

- [1] G. Birkhoff, Lattice Theory, Amer. Math. Soc., Providence, R.I., 1967.
- [2] M. Curzio, Una caratterizzazione reticolare dei gruppi abeliani, Rend. Mat. Appl., 24(1965), 1-10.
- [3] G. Grätzer, General Lattice Theory, Academic Press, New York, 1978.
- [4] H. Heineken, Über die Charakterisierung von Gruppen durch gewisse Untergruppenverbände, J. Reine Angew. Math., **220**(1965), 30-36.
- [5] R. Schmidt, Subgroup Lattices of Groups, W. de Gruyter Expositions in Mathematics 14, W. de Gruyter, Berlin, 1994.
- [6] M. Suzuki, Group Theory I, II, Springer-Verlag, Berlin, 1982, 1986.
- [7] M. Suzuki, Structure of a Group and the Structure of its Lattice of Subgroups, Springer-Verlag, Berlin, 1956.
- [8] M. Ştefănescu, Introduction to group theory, Ed. Univ. "Al.I. Cuza" Iaşi, 1993 (in Romanian).
- [9] M. Tărnăuceanu, Actions of finite groups on lattices, Seminar Series in Mathematics, Algebra 4, Univ. "Ovidius", Constanţa, 2003.
- [10] M. Tărnăuceanu, \mathcal{E} -lattices, Italian Journal of Pure and Applied Mathematics, to appear.

Received: April 7, 2006; Accepted: June 16, 2006.