SOME FIXED POINT THEOREMS IN BANACH SPACES FOR THREE WEAKLY COMPATIBLE MAPPINGS

A. M. SADDEEK
Department of Mathematics, Faculty of Science
Assiut University, Assiut, Egypt
E-mail: a_m _saddeek@yahoo.com

Abstract

A fixed point theorem for three weakly compatible mappings on a Banach space is proved. An application is also given for the solvability of certain non-linear functional equations. The results generalize the corresponding theorems in [4]. Key Words and Phrases: Banach space, coincidence point, common fixed point, weakly compatible, generalized contractive condition. 2000 Mathematics Subject Classification: 47 H 10 .

1. Introduction

Let F and G be two mappings of a metric space (X, d) into itself. Pathak [3] defined F and G to be weakly compatible mappings with respect to G if and only if whenever

$$
\begin{gathered}
\lim _{n \rightarrow \infty} F x_{n}=\lim _{n \rightarrow \infty} G x_{n}=t \in X \\
\lim _{n \rightarrow \infty} d\left(F G x_{n}, G F x_{n}\right) \leq d(F t, G t)
\end{gathered}
$$

for all sequences $\left\{x_{n}\right\}$ in X, and

$$
d(F t, G t) \leq \lim _{n \rightarrow \infty} d\left(G t, G F x_{n}\right)
$$

for at least one sequence $\left\{x_{n}\right\}$ in X.
In [4], the authors obtained some results on common fixed points for two weakly compatible mappings on a Banach space. Their results generalized and improved some results in [1] and [2].

In this paper, we extend the results of [4] for three weakly compatible mappings on a Banach space.

The following lemma in [3] is useful in the sequel.
Lemma 1. Let F and G be mappings of a metric space (X, d) into itself which are weakly compatible with respect to G.
(P1) If $F t=G t$, then $F G t=G F t$.
(P2) Suppose that

$$
\lim _{n \rightarrow \infty} F x_{n}=\lim _{n \rightarrow \infty} G x_{n}=t \text { for some } t \text { in } X
$$

Then
(a) If F is continuous at t, then

$$
\lim _{n \rightarrow \infty} d\left(G F x_{n}, F t\right) \leq d(F t, G t)
$$

(b) If F and G are continuous at t, then

$$
F t=G t \text { and } F G t=G F t
$$

2. Main Results

We prove the following result.
Theorem 1. Let X be a Banach space and let F, G and H be three self mappings on X satisfying the following conditions:

$$
\begin{align*}
& (1-k) G(X)+k F(X) \subset G(X), \forall k \in(0,1) \tag{1}\\
& \left(1-k^{\prime}\right) G(X)+k^{\prime} H(X) \subset G(X), \forall k^{\prime} \in(0,1), \tag{2}
\end{align*}
$$

$\{F, G\}$ and $\{H, G\}$ are weakly compatible pairs with respect to G,

$$
\begin{gather*}
\|F x-H y\|^{p} \leq \Phi\left(\operatorname { m a x } \left\{\|G x-G y\|^{p},\|G x-F x\|^{p}\right.\right. \tag{3}\\
\left.\left.\|G y-H y\|^{p},\|G x-H y\|^{p},\|G y-F x\|^{p}\right\}\right) \tag{4}
\end{gather*}
$$

for all $x, y \in X$, where $p>0$ and the function Φ satisfies the following conditions:
(c) $\Phi:[0, \infty) \rightarrow[0, \infty)$ is nondecreasing and right continuous.
(d) For every $\alpha>0, \Phi(\alpha)<\alpha$.

If for some x_{0} in X, the sequence $\left\{x_{n}\right\}$ defined by

$$
\begin{gather*}
G x_{2 n+1}=\left(1-c_{2 n}\right) G x_{2 n}+c_{2 n} F x_{2 n} \tag{5}\\
G x_{2 n+2}=\left(1-c_{2 n+1}\right) G x_{2 n+1}+c_{2 n+1} H x_{2 n+1} \tag{6}
\end{gather*}
$$

$n=0,1,2, \ldots$, where $c_{0}=1$ and $0<c_{n} \leq 1$ and $\lim _{n \rightarrow \infty} c_{n}=h>0$,
converges to a point z in X and if G is continuous at z, then z is a coincidence point of F, G and H.

Proof. Note first of all that the points x_{n} in the theorem exist because of conditions (1) and (2). Now let z be a point in X such that $\lim _{n \rightarrow \infty} x_{n}=z$.

Since G is continuous at z, we have $\lim _{n \rightarrow \infty} G x_{n}=G z$ and so from (5) we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} F x_{2 n} & =\lim _{n \rightarrow \infty} C_{2 n}^{-1}\left[G x_{2 n+1}-\left(1-C_{2 n}\right) G x_{2 n}\right] \\
& =h^{-1}[G z-(1-h) G z]=G z
\end{aligned}
$$

It follows similarly, from (6) that $\lim _{n \rightarrow \infty} H x_{2 n+1}=G z$.
We will now show that $F z=G z=H z$. From (4) we have

$$
\begin{aligned}
\left\|F x_{2 n}-H z\right\|^{p} \leq & \Phi\left(\operatorname { m a x } \left\{\left\|G x_{2 n}-G z\right\|^{p},\left\|G x_{2 n}-F x_{2 n}\right\|^{p},\|G z-H z\|^{p},\right.\right. \\
& \left.\left.\left\|G x_{2 n}-H z\right\|^{p},\left\|G z-F x_{2 n}\right\|^{p}\right\}\right) .
\end{aligned}
$$

Letting n tend to infinity we get

$$
\|G z-H z\|^{p} \leq \Phi\left(\max \left\{0,0,\|G z-H z\|^{p},\|G z-H z\|^{p}, 0\right\}\right)
$$

we get a contradiction if $\|G z-H z\|^{p}>0$, and so $\|G z-H z\|^{p}=0$.
Thus $G z=H z$ and so z is a coincidence point of G and H.
Now suppose that $F z \neq G z$ so that for large enough $n, F z \neq G x_{2 n}$.
Then using inequality (4) we have

$$
\begin{gathered}
\left\|F z-H x_{2 n+1}\right\|^{p} \leq \Phi\left(\operatorname { m a x } \left\{\left\|G z-G x_{2 n+1}\right\|^{p},\|G z-F z\|^{p},\left\|G x_{2 n+1}-H x_{2 n+1}\right\|^{p},\right.\right. \\
\left.\left.\left\|G z-H x_{2 n+1}\right\|^{p},\left\|G x_{2 n+1}-F z\right\|^{p}\right\}\right)
\end{gathered}
$$

Letting n tend to infinity, it follows that

$$
\begin{aligned}
\|F z-G z\|^{p} & \leq \Phi\left(\max \left\{0,\|G z-F z\|^{p}, 0,0,\|G z-F z\|^{p}\right\}\right) \\
& =\Phi\left(\|G z-F z\|^{p}\right)<\|G z-F z\|^{p}
\end{aligned}
$$

a contradiction. Thus $G z=F z=H z$.
From (3), since F and G are weakly compatible with respect to G and $F z=$ $G z$, we have $F G z=G F z$ by Lemma 1.

Similarly, $H G z=G H z$ since $G z=H z$ and H, G are weakly compatible with respect to G.

Hence, using (4), we have

$$
\begin{aligned}
\left\|F^{2} z-H z\right\|^{p} \leq & \Phi\left(\operatorname { m a x } \left\{\|G F z-G z\|^{p},\left\|G F z-F^{2} z\right\|^{p},\|G z-H z\|^{p}\right.\right. \\
& \left.\left.\|G F z-H z\|^{p},\left\|G z-F^{2} z\right\|^{p}\right\}\right) \\
= & \Phi\left(\max \left\{\left\|F^{2} z-H z\right\|^{p}, 0,0,\left\|F^{2} z-F z\right\|^{p},\left\|H z-F^{2} z\right\|^{p}\right)\right.
\end{aligned}
$$

which implies that, $F F z=H z=F z=F H z=H F z=G z=G F z$. So $F z=$ u is common fixed point of F, G and H.

Let v be a second common fixed point of F, G and H.
By (4), we have

$$
\begin{gathered}
\|u-v\|^{p}=\|F u-H v\|^{p} \\
\leq \Phi\left(\max \left\{\|G u-G v\|^{p},\|G u-F u\|^{p},\|G v-H v\|^{p},\|G u-F v\|^{p},\|G v-H u\|^{p}\right\}\right) \\
=\Phi\left(\max \left\{\|u-v\|^{p}, 0,0,\|u-v\|^{p},\|u-v\|^{p}\right\}\right)
\end{gathered}
$$

which implies that $u=v$.
Completing the proof of the theorem.
We next investigate the solvability of a certain nonlinear functional equation in a Banach space.

Theorem 2. Let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be sequences of elements in a Banach space X. Let $\left\{v_{n}\right\}$ be the unique solution of the system of equations $u-F G u=$ f_{n} and $u-H G u=g_{n}$, where F, G and H are self mappings on X satisfying the following conditions:
(g) $\{F, G\}$ and $\{H, G\}$ are weakly compatible with respect to G,
(h) $F^{2}=G^{2}=H^{2}=I$, where I denotes the identity mapping and
(i) $\|F x-H y\|^{2} \leq q \max \left\{\|G x-G y\|^{2},\|G x-F x\|^{2},\|G y-H y\|^{2}, \| G x-\right.$ $\left.F y\left\|^{2},\right\| G y-H x \|^{2}\right\}$,
for all x, y in X, where $q \in(0,1)$.
If $\lim _{n \rightarrow \infty}\left\|f_{n}\right\|=\lim _{n \rightarrow \infty}\left\|g_{n}\right\|=0$,
then the sequence $\left\{v_{n}\right\}$ converges to the solution of the equations

$$
u=F u=G u=H u .
$$

Proof. We will show that $\left\{v_{n}\right\}$ is a Cauchy sequence.
We have

$$
\begin{aligned}
& \left\|v_{n}-v_{m}\right\|^{2} \leq\left[\left\|v_{n}-F G v_{n}\right\|+\left\|F G v_{n}-H G v_{m}\right\|+\left\|H G v_{m}-v_{m}\right\|\right]^{2} \\
\leq & \left\{\left\|v_{n}-F G v_{n}\right\|+\left\|H G v_{m}-v_{m}\right\|\right\}^{2}+2\left\{\left\|v_{n}-F G v_{n}\right\|+\left\|H G v_{m}-v_{m}\right\|\right\}
\end{aligned}
$$

$$
\begin{gathered}
{\left[\left\|F G v_{n}-v_{n}\right\|+\left\|v_{n}-v_{m}\right\|+\left\|v_{m}-H G v_{m}\right\|\right]+} \\
q \max \left\{\left\|G^{2} v_{n}-G^{2} v_{m}\right\|,\left\|G^{2} v_{n}-F G v_{n}\right\|,\left\|G^{2} v_{m}-H G v_{m}\right\|^{2},\right. \\
\left.\left\|G^{2} v_{n}-F G v_{m}\right\|^{2},\left\|G^{2} v_{m}-H G v_{n}\right\|^{2}\right\} \\
\leq\left\{\left\|v_{n}-F G v_{n}\right\|+\left\|H G v_{m}-v_{m}\right\|\right\}^{2}+2\left\{\left\|v_{n}-F G v_{n}\right\|+\left\|H G v_{m}-v_{m}\right\|\right\} \\
{\left[\left\|F G v_{n}-v_{n}\right\|+\left\|v_{n}-v_{m}\right\|+\left\|v_{m}-H G v_{m}\right\|\right]+} \\
q \max \left\{\left\|v_{n}-v_{m}\right\|^{2},\left\|v_{n}-F G v_{n}\right\|^{2},\left\|v_{m}-H G v_{m}\right\|^{2},\right. \\
\left.\left[\left\|v_{n}-v_{m}\right\|+\left\|v_{m}-F G v_{m}\right\|\right]^{2},\left[\left\|v_{m}-v_{n}\right\|+\left\|v_{n}-H G v_{n}\right\|\right]^{2}\right\} .
\end{gathered}
$$

Letting n tend to infinity with $m>n$, we have

$$
\lim _{m, n \rightarrow \infty}\left\|v_{n}-v_{m}\right\|^{2} \leq q \lim _{m, n \rightarrow \infty}\left\|v_{n}-v_{m}\right\|^{2}
$$

which implies that

$$
\lim _{m, n \rightarrow \infty}\left\|v_{n}-v_{m}\right\|^{2}=0
$$

Thus $\left\{v_{n}\right\}$ is a Cauchy sequence and converges to a point v in X.
Further,

$$
\begin{gathered}
\|v-H G v\| \leq\left\|v-v_{n}\right\|+\left\|v_{n}-F G v_{n}\right\|+\left\|F G v_{n}-H G v\right\| \\
\leq\left\|v-v_{n}\right\|+\left\|v_{n}-F G v_{n}\right\|+\left\{q \operatorname { m a x } \left\{\left\|v_{n}-v\right\|^{2},\left\|v_{n}-F G v_{n}\right\|^{2},\|v-H G v\|^{2},\right.\right. \\
\left.\left.\left[\left\|v_{n}-v\right\|+\|v-F G v\|\right]^{2},\left[\left\|v_{n}-v\right\|+\left\|v_{n}-H G v_{n}\right\|\right]^{2}\right\}\right\}^{\frac{1}{2}} .
\end{gathered}
$$

Letting n tend to infinity we get $v=H G v$, which from (h) implies that $H v=G v$. Similarly, $G v=F v$.

From (g), we now have $F G v=G F v=v=H G v=G H v$.
Using (i) and (h), we have

$$
\begin{aligned}
\|v-H v\|^{2}= & \left\|F^{2} v-H v\right\|^{2} \\
\leq & q \max \left\{\|G F v-G v\|^{2},\left\|G F v-F^{2} v\right\|^{2},\right. \\
& \left.\|G v-H v\|^{2},\|G F v-F v\|^{2},\|G v-H F v\|^{2}\right\} \\
\leq & q \max \left\{\|v-H v\|^{2}, 0,0,\|v-H v\|^{2},\|v-H v\|^{2}\right\},
\end{aligned}
$$

which implies that $v=H v$. It follows that $G v=G F v=F G v=v=G H v=$ $H G v$, completing the proof of the theorem.

Remark 1. Theorems 2.1 and 3.1 of [4] follows from the above theorems respectively by putting $F=H$.

Acknowledgment. The author would like to express his sincere thanks to professor Mohammad S. Khan for his careful reading of the manuscript and his valuable suggestions.

References

[1] M.S. Khan, M. Imdad and S. Sessa, A coincidence theorem in line ar normed spsces, Libertas Math., 6(1986), 83-94.
[2] H.K. Pathak, Some fixed point theorems in a Banach space for commuting mappings, Indian J. Pure Appl. Math., 17(1986), 969-973.
[3] H.K. Pathak, On a fixed point theorem of Jungck, Proc. of the First World Congress and Nonlinear Analysis, (1992), 19-26.
[4] R. A. Rashwan and A. M. Saddeek, Some fixed point theorems in a Banach space for weakly compatible mappings, Stud. Cerc. St., Ser. Mat., 8(1998), 119-126.

Received: January 5, 2006; Accepted: October 16, 2006.

