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1. Introduction

Let F and G be two mappings of a metric space (X, d) into itself. Pathak
[3] defined F and G to be weakly compatible mappings with respect to G if
and only if whenever

lim
n→∞

Fxn = lim
n→∞

Gxn = t ∈ X,

lim
n→∞

d(FGxn, GFxn) ≤ d(Ft, Gt)

for all sequences {xn} in X, and

d(Ft,Gt) ≤ lim
n→∞

d(Gt, GFxn)

for at least one sequence {xn} in X.
In [4], the authors obtained some results on common fixed points for two

weakly compatible mappings on a Banach space. Their results generalized and
improved some results in [1] and [2].

In this paper, we extend the results of [4] for three weakly compatible map-
pings on a Banach space.
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The following lemma in [3] is useful in the sequel.

Lemma 1. Let F and G be mappings of a metric space (X, d) into itself which
are weakly compatible with respect to G.

(P1) If Ft = Gt, then FGt = GFt.

(P2) Suppose that

lim
n→∞

Fxn = lim
n→∞

Gxn = t for some t in X.

Then
(a) If F is continuous at t, then

lim
n→∞

d(GFxn, F t) ≤ d(Ft, Gt).

(b) If F and G are continuous at t, then

Ft = Gt and FGt = GFt.

2. Main Results

We prove the following result.

Theorem 1. Let X be a Banach space and let F , G and H be three self
mappings on X satisfying the following conditions:

(1− k)G(X) + kF (X) ⊂ G(X), ∀ k ∈ (0, 1), (1)

(1− ḱ)G(X) + ḱH(X) ⊂ G(X), ∀ ḱ ∈ (0, 1), (2)

{F,G} and {H,G} are weakly compatible pairs with respect to G, (3)

‖Fx−Hy‖p ≤ Φ(max{‖Gx−Gy‖p, ‖Gx− Fx‖p,

‖Gy −Hy‖p, ‖Gx−Hy‖p, ‖Gy − Fx‖p}), (4)

for all x, y ∈ X, where p > 0 and the function Φ satisfies the following condi-
tions:

(c) Φ : [0,∞) → [0,∞) is nondecreasing and right continuous.
(d) For every α > 0, Φ(α) < α.

If for some x0 in X, the sequence {xn} defined by

Gx2n+1 = (1− c2n)Gx2n + c2nFx2n, (5)

Gx2n+2 = (1− c2n+1)Gx2n+1 + c2n+1Hx2n+1, (6)

n = 0, 1, 2, ..., where c0 = 1 and 0 < cn ≤ 1 and limn→∞ cn = h > 0,
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converges to a point z in X and if G is continuous at z, then z is a coincidence
point of F,G and H.

Proof. Note first of all that the points xn in the theorem exist because of
conditions (1) and (2). Now let z be a point in X such that limn→∞ xn = z.

Since G is continuous at z, we have limn→∞Gxn = Gz

and so from (5) we have

lim
n→∞

Fx2n = lim
n→∞

C−1
2n [Gx2n+1 − (1− C2n)Gx2n]

= h−1[Gz − (1− h)Gz] = Gz.

It follows similarly, from (6) that limn→∞Hx2n+1 = Gz.

We will now show that Fz = Gz = Hz. From (4) we have

‖Fx2n −Hz‖p ≤ Φ(max{‖Gx2n −Gz‖p, ‖Gx2n − Fx2n‖p, ‖Gz −Hz‖p,

‖Gx2n −Hz‖p, ‖Gz − Fx2n‖p}).

Letting n tend to infinity we get

‖Gz −Hz‖p ≤ Φ(max{0, 0, ‖Gz −Hz‖p, ‖Gz −Hz‖p, 0}),

we get a contradiction if ‖Gz −Hz‖p > 0, and so ‖Gz −Hz‖p = 0.

Thus Gz = Hz and so z is a coincidence point of G and H.

Now suppose that Fz 6= Gz so that for large enough n, Fz 6= Gx2n.
Then using inequality (4) we have

‖Fz−Hx2n+1‖p ≤ Φ(max{‖Gz−Gx2n+1‖p, ‖Gz−Fz‖p, ‖Gx2n+1−Hx2n+1‖p,

‖Gz −Hx2n+1‖p, ‖Gx2n+1 − Fz‖p}).

Letting n tend to infinity, it follows that

‖Fz −Gz‖p ≤ Φ(max{0, ‖Gz − Fz‖p, 0, 0, ‖Gz − Fz‖p})

= Φ(‖Gz − Fz‖p) < ‖Gz − Fz‖p,

a contradiction. Thus Gz = Fz = Hz.

From (3), since F and G are weakly compatible with respect to G and Fz =
Gz, we have FGz = GFz by Lemma 1.

Similarly, HGz = GHz since Gz = Hz and H,G are weakly compatible
with respect to G.
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Hence, using (4), we have

‖F 2z −Hz‖p ≤ Φ(max{‖GFz −Gz‖p, ‖GFz − F 2z‖p, ‖Gz −Hz‖p,

‖GFz −Hz‖p, ‖Gz − F 2z‖p})

= Φ(max{‖F 2z −Hz‖p, 0, 0, ‖F 2z − Fz‖p, ‖Hz − F 2z‖p),

which implies that, FFz = Hz = Fz = FHz = HFz = Gz = GFz. So Fz =
u is common fixed point of F,G and H.

Let v be a second common fixed point of F,G and H.

By (4), we have
‖u− v‖p = ‖Fu−Hv‖p

≤ Φ(max{‖Gu−Gv‖p, ‖Gu−Fu‖p, ‖Gv−Hv‖p, ‖Gu−Fv‖p, ‖Gv−Hu‖p})

= Φ(max{‖u− v‖p, 0, 0, ‖u− v‖p, ‖u− v‖p}),
which implies that u = v.

Completing the proof of the theorem.
We next investigate the solvability of a certain nonlinear functional equation

in a Banach space.

Theorem 2. Let {fn} and {gn} be sequences of elements in a Banach
space X. Let {vn} be the unique solution of the system of equations u−FGu =
fn and u −HGu = gn, where F,G and H are self mappings on X satisfying
the following conditions:

(g) {F,G} and {H,G} are weakly compatible with respect to G,

(h) F 2 = G2 = H2 = I, where I denotes the identity mapping and
(i) ‖Fx−Hy‖2 ≤ q max {‖Gx−Gy‖2, ‖Gx−Fx‖2, ‖Gy−Hy‖2, ‖Gx−

Fy‖2, ‖Gy −Hx‖2},
for all x, y in X, where q ∈ (0, 1).
If limn→∞ ‖fn‖ = limn→∞ ‖gn‖ = 0,

then the sequence {vn} converges to the solution of the equations

u = Fu = Gu = Hu.

Proof. We will show that {vn} is a Cauchy sequence.
We have

‖vn − vm‖2 ≤ [‖vn − FGvn‖+ ‖FGvn −HGvm‖+ ‖HGvm − vm‖]2

≤ {‖vn − FGvn‖+ ‖HGvm − vm‖}2 + 2{‖vn − FGvn‖+ ‖HGvm − vm‖}
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[‖FGvn − vn‖+ ‖vn − vm‖+ ‖vm −HGvm‖]+

q max {‖G2vn −G2vm‖, ‖G2vn − FGvn‖, ‖G2vm −HGvm‖2,

‖G2vn − FGvm‖2, ‖G2vm −HGvn‖2}

≤ {‖vn − FGvn‖+ ‖HGvm − vm‖}2 + 2{‖vn − FGvn‖+ ‖HGvm − vm‖}

[‖FGvn − vn‖+ ‖vn − vm‖+ ‖vm −HGvm‖]+

q max{‖vn − vm‖2, ‖vn − FGvn‖2, ‖vm −HGvm‖2,

[‖vn − vm‖+ ‖vm − FGvm‖]2, [‖vm − vn‖+ ‖vn −HGvn‖]2}.

Letting n tend to infinity with m > n, we have

lim
m,n→∞

‖vn − vm‖2 ≤ q lim
m,n→∞

‖vn − vm‖2,

which implies that
lim

m,n→∞
‖vn − vm‖2 = 0.

Thus {vn} is a Cauchy sequence and converges to a point v in X.

Further,

‖v −HGv‖ ≤ ‖v − vn‖+ ‖vn − FGvn‖+ ‖FGvn −HGv‖

≤ ‖v − vn‖+ ‖vn − FGvn‖+ {q max {‖vn − v‖2, ‖vn − FGvn‖2, ‖v −HGv‖2,

[‖vn − v‖+ ‖v − FGv‖]2, [‖vn − v‖+ ‖vn −HGvn‖]2}}
1
2 .

Letting n tend to infinity we get v = HGv, which from (h) implies
that Hv = Gv. Similarly, Gv = Fv.

From (g), we now have FGv = GFv = v = HGv = GHv.

Using (i) and (h), we have

‖v −Hv‖2 = ‖F 2v −Hv‖2

≤ q max {‖GFv −Gv‖2, ‖GFv − F 2v‖2,

‖Gv −Hv‖2, ‖GFv − Fv‖2, ‖Gv −HFv‖2}

≤ q max {‖v −Hv‖2, 0, 0, ‖v −Hv‖2, ‖v −Hv‖2},

which implies that v = Hv. It follows that Gv = GFv = FGv = v = GHv =
HGv, completing the proof of the theorem.

Remark 1. Theorems 2.1 and 3.1 of [4] follows from the above theorems
respectively by putting F = H.
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