Fixed Point Theory, Volume 8, No. 1, 2007, 125-130 http://www.math.ubbcluj.ro/~nodeacj/sfptcj.html

SOME FIXED POINT THEOREMS IN BANACH SPACES FOR THREE WEAKLY COMPATIBLE MAPPINGS

A. M. SADDEEK

Department of Mathematics, Faculty of Science Assiut University, Assiut, Egypt E-mail: a_m _saddeek@yahoo.com

Abstract. A fixed point theorem for three weakly compatible mappings on a Banach space is proved. An application is also given for the solvability of certain non-linear functional equations. The results generalize the corresponding theorems in [4].

Key Words and Phrases: Banach space, coincidence point, common fixed point, weakly compatible, generalized contractive condition.

2000 Mathematics Subject Classification: 47H10.

1. INTRODUCTION

Let F and G be two mappings of a metric space (X, d) into itself. Pathak [3] defined F and G to be weakly compatible mappings with respect to G if and only if whenever

$$\lim_{n \to \infty} Fx_n = \lim_{n \to \infty} Gx_n = t \in X,$$
$$\lim_{n \to \infty} d(FGx_n, GFx_n) \leq d(Ft, Gt)$$

for all sequences $\{x_n\}$ in X, and

$$d(Ft,Gt) \le \lim_{n \to \infty} d(Gt,GFx_n)$$

for at least one sequence $\{x_n\}$ in X.

In [4], the authors obtained some results on common fixed points for two weakly compatible mappings on a Banach space. Their results generalized and improved some results in [1] and [2].

In this paper, we extend the results of [4] for three weakly compatible mappings on a Banach space.

125

The following lemma in [3] is useful in the sequel.

Lemma 1. Let F and G be mappings of a metric space (X, d) into itself which are weakly compatible with respect to G.

(P1) If Ft = Gt, then FGt = GFt.

(P2) Suppose that

$$\lim_{n \to \infty} Fx_n = \lim_{n \to \infty} Gx_n = t \text{ for some } t \text{ in } X_n$$

Then

(a) If F is continuous at t, then

$$\lim_{n \to \infty} d(GFx_n, Ft) \le d(Ft, Gt).$$

(b) If F and G are continuous at t, then

Ft = Gt and FGt = GFt.

2. Main Results

We prove the following result.

Theorem 1. Let X be a Banach space and let F, G and H be three self mappings on X satisfying the following conditions:

$$(1-k)G(X) + kF(X) \subset G(X), \ \forall \ k \in (0,1),$$
(1)

$$(1 - \acute{k})G(X) + \acute{k}H(X) \subset G(X), \ \forall \ \acute{k} \in (0, 1),$$
 (2)

 $\{F,G\}$ and $\{H,G\}$ are weakly compatible pairs with respect to G, (3)

$$\|Fx - Hy\|^{p} \leq \Phi(max\{\|Gx - Gy\|^{p}, \|Gx - Fx\|^{p}, \|Gy - Hy\|^{p}, \|Gx - Hy\|^{p}, \|Gy - Fx\|^{p}\}),$$
(4)

for all $x, y \in X$, where p > 0 and the function Φ satisfies the following conditions:

(c) $\Phi: [0,\infty) \to [0,\infty)$ is nondecreasing and right continuous.

(d) For every $\alpha > 0$, $\Phi(\alpha) < \alpha$.

If for some x_0 in X, the sequence $\{x_n\}$ defined by

$$Gx_{2n+1} = (1 - c_{2n})Gx_{2n} + c_{2n}Fx_{2n},$$
(5)

$$Gx_{2n+2} = (1 - c_{2n+1})Gx_{2n+1} + c_{2n+1}Hx_{2n+1},$$
(6)

 $n = 0, 1, 2, ..., where c_0 = 1 and 0 < c_n \le 1 and \lim_{n \to \infty} c_n = h > 0,$

126

converges to a point z in X and if G is continuous at z, then z is a coincidence point of F, G and H.

Proof. Note first of all that the points x_n in the theorem exist because of conditions (1) and (2). Now let z be a point in X such that $\lim_{n\to\infty} x_n = z$.

Since G is continuous at z, we have $\lim_{n\to\infty} Gx_n = Gz$

and so from (5) we have

$$\lim_{n \to \infty} F x_{2n} = \lim_{n \to \infty} C_{2n}^{-1} [G x_{2n+1} - (1 - C_{2n}) G x_{2n}]$$
$$= h^{-1} [G z - (1 - h) G z] = G z.$$

It follows similarly, from (6) that $\lim_{n\to\infty} Hx_{2n+1} = Gz$.

We will now show that Fz = Gz = Hz. From (4) we have

$$||Fx_{2n} - Hz||^{p} \leq \Phi(max\{||Gx_{2n} - Gz||^{p}, ||Gx_{2n} - Fx_{2n}||^{p}, ||Gz - Hz||^{p}, \\ ||Gx_{2n} - Hz||^{p}, ||Gz - Fx_{2n}||^{p}\}).$$

Letting n tend to infinity we get

$$||Gz - Hz||^p \le \Phi(max\{0, 0, ||Gz - Hz||^p, ||Gz - Hz||^p, 0\}),$$

we get a contradiction if $||Gz - Hz||^p > 0$, and so $||Gz - Hz||^p = 0$.

Thus Gz = Hz and so z is a coincidence point of G and H.

Now suppose that $Fz \neq Gz$ so that for large enough $n, Fz \neq Gx_{2n}$. Then using inequality (4) we have

$$||Fz - Hx_{2n+1}||^p \le \Phi(max\{||Gz - Gx_{2n+1}||^p, ||Gz - Fz||^p, ||Gx_{2n+1} - Hx_{2n+1}||^p, ||Gz - Hx_{2n+1}||^p, ||Gx_{2n+1} - Fz||^p\}).$$

Letting n tend to infinity, it follows that

$$||Fz - Gz||^{p} \leq \Phi(max\{0, ||Gz - Fz||^{p}, 0, 0, ||Gz - Fz||^{p}\})$$

= $\Phi(||Gz - Fz||^{p}) < ||Gz - Fz||^{p},$

a contradiction. Thus Gz = Fz = Hz.

From (3), since F and G are weakly compatible with respect to G and Fz = Gz, we have FGz = GFz by Lemma 1.

Similarly, HGz = GHz since Gz = Hz and H, G are weakly compatible with respect to G.

Hence, using (4), we have

$$\begin{split} \|F^{2}z - Hz\|^{p} &\leq \Phi(max\{\|GFz - Gz\|^{p}, \|GFz - F^{2}z\|^{p}, \|Gz - Hz\|^{p}, \\ \|GFz - Hz\|^{p}, \|Gz - F^{2}z\|^{p}\}) \\ &= \Phi(max\{\|F^{2}z - Hz\|^{p}, 0, 0, \|F^{2}z - Fz\|^{p}, \|Hz - F^{2}z\|^{p}\}) \end{split}$$

which implies that, FFz = Hz = Fz = FHz = HFz = Gz = GFz. So Fz = u is common fixed point of F, G and H.

Let v be a second common fixed point of F, G and H.

By (4), we have

$$\begin{split} \|u - v\|^p &= \|Fu - Hv\|^p \\ &\leq \Phi(\max\{\|Gu - Gv\|^p, \|Gu - Fu\|^p, \|Gv - Hv\|^p, \|Gu - Fv\|^p, \|Gv - Hu\|^p\}) \\ &= \Phi(\max\{\|u - v\|^p, 0, 0, \|u - v\|^p, \|u - v\|^p\}), \end{split}$$

which implies that u = v.

Completing the proof of the theorem.

We next investigate the solvability of a certain nonlinear functional equation in a Banach space.

Theorem 2. Let $\{f_n\}$ and $\{g_n\}$ be sequences of elements in a Banach space X. Let $\{v_n\}$ be the unique solution of the system of equations $u - FGu = f_n$ and $u - HGu = g_n$, where F, G and H are self mappings on X satisfying the following conditions:

(g) {F,G} and {H,G} are weakly compatible with respect to G,

(h) $F^2 = G^2 = H^2 = I$, where I denotes the identity mapping and

(i) $||Fx - Hy||^2 \le q \max \{ ||Gx - Gy||^2, ||Gx - Fx||^2, ||Gy - Hy||^2, ||Gx - Fy||^2, ||Gy - Hx||^2 \},$

for all x, y in X, where $q \in (0, 1)$.

If $\lim_{n\to\infty} \|f_n\| = \lim_{n\to\infty} \|g_n\| = 0$,

then the sequence $\{v_n\}$ converges to the solution of the equations

$$u = Fu = Gu = Hu.$$

Proof. We will show that $\{v_n\}$ is a Cauchy sequence. We have

$$||v_n - v_m||^2 \le [||v_n - FGv_n|| + ||FGv_n - HGv_m|| + ||HGv_m - v_m||]^2$$

$$\le \{||v_n - FGv_n|| + ||HGv_m - v_m||\}^2 + 2\{||v_n - FGv_n|| + ||HGv_m - v_m||\}$$

128

SOME FIXED POINT THEOREMS IN BANACH SPACES

$$\begin{split} \|FGv_n - v_n\| + \|v_n - v_m\| + \|v_m - HGv_m\|] + \\ q \max \{ \|G^2v_n - G^2v_m\|, \|G^2v_n - FGv_n\|, \|G^2v_m - HGv_m\|^2, \\ \|G^2v_n - FGv_m\|^2, \|G^2v_m - HGv_n\|^2 \} \\ \leq \{ \|v_n - FGv_n\| + \|HGv_m - v_m\|\}^2 + 2\{ \|v_n - FGv_n\| + \|HGv_m - v_m\|\} \\ \|[FGv_n - v_n\| + \|v_n - v_m\| + \|v_m - HGv_m\|] + \\ q \max\{ \|v_n - v_m\|^2, \|v_n - FGv_n\|^2, \|v_m - HGv_m\|^2, \\ [\|v_n - v_m\| + \|v_m - FGv_m\|]^2, [\|v_m - v_n\| + \|v_n - HGv_n\|]^2 \}. \end{split}$$

Letting n tend to infinity with m > n, we have

$$\lim_{m,n \to \infty} \|v_n - v_m\|^2 \le q \lim_{m,n \to \infty} \|v_n - v_m\|^2,$$

which implies that

$$\lim_{m,n \to \infty} \|v_n - v_m\|^2 = 0.$$

Thus $\{v_n\}$ is a Cauchy sequence and converges to a point v in X. Further,

$$||v - HGv|| \le ||v - v_n|| + ||v_n - FGv_n|| + ||FGv_n - HGv||$$

$$\leq \|v - v_n\| + \|v_n - FGv_n\| + \{q \max\{\|v_n - v\|^2, \|v_n - FGv_n\|^2, \|v - HGv\|^2, \|v_n - v\| + \|v - FGv\|^2, \|v_n - v\| + \|v_n - HGv_n\|^2\} \}^{\frac{1}{2}}.$$

Letting n tend to infinity we get v = HGv, which from (h) implies that Hv = Gv. Similarly, Gv = Fv.

From (g), we now have FGv = GFv = v = HGv = GHv. Using (i) and (h), we have

$$\begin{aligned} \|v - Hv\|^2 &= \|F^2v - Hv\|^2 \\ &\leq q \max \{\|GFv - Gv\|^2, \|GFv - F^2v\|^2, \\ \|Gv - Hv\|^2, \|GFv - Fv\|^2, \|Gv - HFv\|^2 \} \\ &\leq q \max \{\|v - Hv\|^2, 0, 0, \|v - Hv\|^2, \|v - Hv\|^2 \}, \end{aligned}$$

which implies that v = Hv. It follows that Gv = GFv = FGv = v = GHv = HGv, completing the proof of the theorem.

Remark 1. Theorems 2.1 and 3.1 of [4] follows from the above theorems respectively by putting F = H.

A. M. SADDEEK

Acknowledgment. The author would like to express his sincere thanks to professor Mohammad S. Khan for his careful reading of the manuscript and his valuable suggestions.

References

- M.S. Khan, M. Imdad and S. Sessa, A coincidence theorem in line ar normed spsces, Libertas Math., 6(1986), 83-94.
- H.K. Pathak, Some fixed point theorems in a Banach space for commuting mappings, Indian J. Pure Appl. Math., 17(1986), 969-973.
- [3] H.K. Pathak, On a fixed point theorem of Jungck, Proc. of the First World Congress and Nonlinear Analysis, (1992), 19-26.
- [4] R. A. Rashwan and A. M. Saddeek, Some fixed point theorems in a Banach space for weakly compatible mappings, Stud. Cerc. St., Ser. Mat., 8(1998), 119-126.

Received: January 5, 2006; Accepted: October 16, 2006.