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1. Introduction

The problem of fixed point principles in a set with two metrics has been
investigated by several authors. See for example M.G. Maia [10], I.A. Rus
[16], M. Albu [2], B. Rzepecki [23], D.K. Bayen [4], R. Precup [13], I.A. Rus,
A.S. Mureşan and V. Mureşan [20], I.A. Rus, A. Petruşel and G. Petruşel [21]
and the references therein (S.P. Singh (1970), B.K. Ray (1975), B. Rzepecki
(1980), V. Berinde (1997), A.S. Mureşan (1988), V. Mureşan (1988), R. Precup
(1988),...).

The aim of this paper is to study the data dependence of the fixed points in
a set with two metrics. For this a new variant of Maia fixed point theorem is
presented for generalized contractions in the generalized metric spaces. Some
applications to integral equations are given.

Throughout of the paper we follow the notations and terminologies in [18].
See also [17] and [21].
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2. Generalized contractions in metric spaces

We begin our considerations with
Theorem 2.1. Let X be a nonempty set, d and ρ two metric on X and

A : X → X an operator. We suppose that:
(i) (X, d) is a complete metric space;
(ii) there exists k ∈ N such that Ak : (X, ρ) → (X, d) be uniformly continu-

ous;
(iii) A : (X, d) → (X, d) is closed;
(iv) A : (X, ρ) → (X, ρ) is a α-contraction.

Then:
(a) FA = {x∗A};
(b) An(x) d−→ x∗A, as n →∞, ∀ x ∈ X;
(c) An(x)

ρ−→ x∗A, as n →∞, ∀ x ∈ X, and

ρ(An(x), x∗A) ≤ αnρ(x, x∗A), ∀ n ∈ N∗, ∀ x ∈ X;

(d) ρ(x, x∗A) ≤ 1
1− α

ρ(x, A(x)), ∀ x ∈ X.

Proof. The implication, (i)-(iv) ⇒ (a)+(b) is the fixed point theorem of
Maia (see Maia [10], Rus [16] and Precup [13]).

(c) In the relation

ρ(An(x), An(y)) ≤ αnρ(x, y)

we take y = x∗A.
(d) We have

ρ(x, x∗A) ≤ ρ(x,A(x)) + ρ(A(x), x∗A)

≤ ρ(x,A(x)) + αρ(x, x∗A).

So,

ρ(x, x∗A) ≤ 1
1− α

ρ(x,A(x)).

Remark 2.1. In the terms of Picard operators (see [18] and [21]) the
conclusions of Theorem 2.1 take the following form:

• (a)+(b). The operator A : (X, d) → (X, d) is Picard operator.

• (c)+(d). The operator A : (X, ρ) → (X, ρ) is
1

1− α
−Picard operator.
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Remark 2.2. Condition d(Ak(x), Ak(y)) ≤ Cρ(x, y) implies condition (ii)
in Theorem 2.1.

From Theorem 2.1 we have
Theorem 2.2. Let X, d, ρ and A : X → X be as in Theorem 2.1. Let

B : X → X and η > 0 be such that

ρ(A(x), B(x)) ≤ η, ∀ x ∈ X.

Then:

x∗B ∈ FB ⇒ ρ(x∗A, x∗B) ≤ η

1− α
.

Proof. We take in the relation (d) of Theorem 2.1, x = x∗B. We have

ρ(x∗B, x∗A) ≤ 1
1− α

ρ(x∗B, A(x∗B))

=
1

1− α
ρ(B(x∗B), A(x∗B)) ≤ η

1− α
.

Theorem 2.3. Let X, d, ρ and A : X → X be as in Theorem 2.1. Then we
have:

(e) The fixed point problem for A : (X, ρ) → (X, ρ) is well posed;
(f) The operator A : (X, ρ) → (X, ρ) has the limit shadowing property.
Proof. (e). By definition (see, for example, [19]) the fixed point problem

for A : (X, ρ) → (X, ρ) is well posed iff:

• FA = {x∗A}

and

• xn ∈ X, ρ(xn, A(xn)) → 0 as n →∞ ⇒ ρ(xn, x∗A) → 0 as n →∞.

So, let xn ∈ X, n ∈ N be such that ρ(xn, A(xn)) → 0 as n →∞. We have

ρ(xn, x∗A) ≤ ρ(xn, A(xn)) + ρ(A(xn), x∗A)

≤ ρ(xn, A(xn)) + αρ(xn, x∗A).

Since, ρ(xn, x∗A) ≤ 1
1− α

ρ(xn, A(xn)) → 0 as n →∞.

(f). By definition (see, for example [19]) the operator A : (X, ρ) → (X, ρ)
has the limit shadowing property iff xn ∈ X, n ∈ N, ρ(xn+1, A(xn)) → 0 as
n →∞ imply that there exists x ∈ X such that ρ(xn, An(x)) → 0 as n →∞.
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In our case, FA = {x∗A} and ρ(An(x), x∗A) → 0 as n → ∞, ∀ x ∈ X. We
have

ρ(xn, x∗A) ≤ ρ(xn, A(xn−1)) + ρ(A(xn−1, x
∗))

≤ ρ(xn, A(xn−1)) + αρ(xn−1, x
∗) ≤ . . .

≤ ρ(xn, A(xn−1)) + αρ(xn−1, A(xn−2)) + . . .

+ αn−1ρ(x1, A(x0)) + αnρ(x0, x
∗
A).

From the Cauchy’s lemma (see [18], p.208) we have that ρ(xn, x∗A) → 0 as
n →∞. So,

ρ(xn, An(x0)) ≤ ρ(xn, x∗A) + ρ(x∗A, An(x0)) → 0

as n →∞.
There are many types of generalized contractions. See, for example B.E.

Rhoades [15], W.A. Kirk [9], I.A. Rus [17], I.A. Rus, A. Petruşel and G.
Petruşel [21] and references therein. The above considerations give rise to

Problem 2.1. Extend the above results for the case when A : (X, ρ) →
(X, ρ) is a generalized contraction.

For example
Theorem 2.1’. Let X be a nonempty set, d, ρ two metrics on X and

A : X → X an operator. We suppose that:
(i) (X, d) is a complete metric space;
(ii) There exists k ∈ N such that Ak : (X, ρ) → (X, d) be uniformly contin-

uous;
(iii) A : (X, d) → (X, d) is closed;
(iv’) There exists a strict comparison function ϕ : R+ → R+ (see [17], p.69)

such that

ρ(A(x), A(y)) ≤ ϕ(d(x, y)), ∀ x, y ∈ X.

Then:
(a) FA = {x∗A};
(b) An(x) d−→ x∗A as n →∞, ∀ x ∈ X;
(c’) An(x)

ρ−→ x∗A as n →∞, ∀ x ∈ X and

ρ(An(x), x∗A) ≤ ϕn(ρ(x, x∗A)), ∀ n ∈ N∗, ∀ x ∈ X;

(d’) ρ(x, x∗A) ≤ sup{t ∈ R+ | t− ϕ(t) ≤ ρ(x,A(x))}.
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Theorem 2.2’. Let X, d, ρ and X → X be as in Theorem 2.1’. Let B :
X → X and η > 0 be such that

ρ(A(x), B(x)) ≤ η, ∀ x ∈ X.

Then:

x∗B ∈ FB ⇒ ρ(x∗A, x∗B) ≤ sup{t ∈ R+ | t− ϕ(t) ≤ η}.

Theorem 2.3’. Let X, d, ρ and A : X → X be as in Theorem 2.1’. Then
we have:

(e’) The fixed point problem for A : (X, ρ) → (X, ρ) is well posed.
Remark 2.2. For to have a (f’) as in Theorem 2.3 we need some supple-

mental conditions on the comparison function ϕ.

3. Generalized contractions in generalized metric spaces

We begin with the following suggestive example.
Theorem 3.1. Let X be a nonempty set, d and ρ two generalized metrics

on X (d(x, y) ∈ Rm
+ , ρ(x, y) ∈ Rm

+ ) and A : X → X an operator. We suppose
that:

(i) (X, d) is a complete metric space;
(ii) There exists k ∈ N such that Ak : (X, ρ) → (X, d) be uniformly contin-

uous;
(iii) A : (X, d) → (X, d) is closed;
(iv) A : (X, ρ) → (X, ρ) is a S-contraction, i.e., the matrix S is convergent

toward zero (see [17], p.96) and

ρ(A(x), A(y)) ≤ Sρ(x, y), ∀ x, y ∈ X.

Then:
(a) FA = {x∗A};
(b) An(x) d−→ x∗A as n →∞, ∀ x ∈ X;
(c) An(x)

ρ−→ x∗A as n →∞, ∀ x ∈ X and

ρ(An(x), x∗A) ≤ Snρ(x, x∗A), ∀ n ∈ N, ∀ x ∈ X;

(d) ρ(x, x∗A) ≤ (E − S)−1ρ(x,A(x)), ∀ x ∈ X.
Proof. The proof is similar with that of Theorem 2.1.
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Theorem 3.1. For the case when k = 1 and A : (X, d) → (X, d) is
continuous see A.I. Perov [12], M. Albu [2] and R. Precup [13]. See also, D.
O’Regan and R. Precup [11].

Theorem 3.2. Let X, d, ρ and A : X → X be as in Theorem 3.1. Let
B : X → X and η ∈ Rm

+ be such that

ρ(A(x), B(x)) ≤ η, ∀ x ∈ X.

Then:

x∗B ∈ FB ⇒ ρ(x∗A, x∗B) ≤ (E − S)−1η.

Theorem 3.3. Let X, d, ρ and A : X → X be as in Theorem 3.1. Then we
have:

(e) The fixed point problem for A : (X, ρ) → (X, ρ) is well posed;
(f) The operator A : (X, ρ) → (X, ρ) has the limit shadowing property.
The above results give rise to
Problem 3.1. Extend the above results for the case of K-metric spaces

and generalized contractions.
References: P.P. Zabreiko [25], V. Berinde [4], I.A. Rus, A.S. Mureşan

and V. Mureşan [20], I.A. Rus, A. Petruşel and M.A. Şerban [22].
Problem 3.2. Extend the above results for the case of generalized metric

spaces (ultrametric space, partial metric space, 2-metric space, probabilistic
metric space,...) and generalized contractions.

References: W.A. Kirk [9], M. Frigon [7], R. Precup [13], D.K. Bayen,
V. Radu [14], I.A. Rus [17], I.A. Rus, A. Petruşel and G. Petruşel [21], B.
Rzepecki [23], E. Schörner [24].

Problem 3.3. Extend the above results for the case of gauge spaces and
generalized contractions.

References: W.A. Kirk [9], I.A. Rus [17], Precup [13], R.P. Agarwal and
D. O’Regan [1], V.G. Angelov [3], A. Chiş and R. Precup [6], M. Frigon [7],
N. Gheorghiu [8], B. Rzepecki [23].
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4. Applications to integral equations

Let Ω ⊂ Rp be a bounded domain. We consider the following integral
equations

x(t) = k(t) +
∫
Ω

K(t, s, x(s))ds (4.1)

and

x(t) = h(t) +
∫
Ω

H(t, s, x(s))ds (4.2)

We suppose that
(i) k, h ∈ C(Ω), K, H ∈ C(Ω× Ω× R);
(ii) there exists L ∈ C(Ω× Ω) such that

|K(t, s, u)−K(t, s, v)| ≤ L(t, s)|u− v|

for all t, s ∈ Ω and u, v ∈ R;

(iii)
∫

Ω×Ω

|L(t, s)|2dtds < 1;

(iv) there exist η1 > 0, η2 > 0 such that

|k(t)− h(t)| ≤ η1, |K(t, s, u)−H(t, s, u)| ≤ η2

for all t, s ∈ Ω, u ∈ R.
We have
Theorem 4.1. In the above conditions:
(a) equation (4.1) has in C(Ω) a unique solution, x∗.
(b) if y∗ ∈ C(Ω) is a solution of the equation (4.2), then

‖x∗ − y∗‖L2(Ω) ≤
(m(Ω))

1
2

1− ‖L‖L2(Ω×Ω)
[η1 + η2m(Ω)].

Proof. We take X = C(Ω), d(x, y) = ‖x−y‖C(Ω) and ρ(x, y) = ‖x−y‖L2(Ω).
Let A,B : C(Ω) → C(Ω) be given by

A(x)(t) := k(t) +
∫
Ω

K(t, s, x(s))ds

B(x)(t) := h(t) +
∫
Ω

H(t, s, x(s))ds
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Then we are in the conditions of the Theorem 2.1 and 2.2. The proof follows
from these theorems.

Remark 4.1. If the function H is bounded then the equation (4.2) has
in C(Ω) at least a solution. Indeed, if h ∈ C(Ω), H ∈ C(Ω × Ω × R) and H

is bounded then the operator B : (C(Ω), ‖ · ‖C) → (C(Ω), ‖ · ‖C) is complete
continuous and bounded. So, we are in the conditions of the Schauder fixed
point theorem.
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