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Abstract. The purpose of this work is to present some fixed point results for multivalued
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1. Introduction

Throughout this paper, the standard notations and terminologies in non-
linear analysis (see [14], [15], [7]) are used. For the convenience of the reader
we recall some of them.

Let (X, d) be a metric space. In the sequel we will use the following symbols:
P (X) := {Y ⊂ X| Y is nonempty}, Pcl(X) := {Y ∈ P (X)| Y is closed}.
Let A and B be nonempty subsets of the metric space (X, d). The gap

between these sets is

D(A,B) = inf{d(a, b)| a ∈ A, b ∈ B}.

In particular, D(x0, B) = D({x0}, B) (where x0 ∈ X) is called the distance
from the point x0 to the set B.
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Also, if A,B ∈ Pb(X), then one denote

δ(A,B) := sup{d(a, b)| a ∈ A, b ∈ B}.

The Pompeiu-Hausdorff generalized distance between the nonempty closed
subsets A and B of the metric space (X, d) is defined by the following formula:

H(A,B) := max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

The symbol T : X ( Y means T : X → P (Y ), i. e. T is a multivalued
operator from X to Y . We will denote by G(T ) := {(x, y) ∈ X ×Y |y ∈ T (x)}
the graph of T . The multivalued operator T is said to be closed if G(T ) is
closed in X × Y .

For T : X → P (X) the symbol FT := {x ∈ X| x ∈ T (x)} denotes the fixed
point set of the multivalued operator T , while (SF )T := {x ∈ X| {x} = T (x)}
is the strict fixed point set of T . Also, for x ∈ X, we denote Fn(x) :=
F (Fn−1(x)), n ∈ N∗, where F 0(x) := {x}.

If F : X → Pcl(X) is a multi-valued operator then F is said to be α-
contraction if

α ∈ [0, 1[ and for x, y ∈ X ⇒ H(F (x), F (y)) ≤ αd(x, y).

The aim of this paper is to give some fixed point theorems for multivalued
operators on a set endowed with two metrics. For the singlevalued case, see
R. P. Agarwal, D. O’Regan [1], I. A. Rus, A. Petruşel, G. Petruşel [14] and
the references therein.

2. Multivalued contraction on a set with two metrics

Our first main result is a multivalued version of Maia’s fixed point theorem.
Theorem 2.1 Let X be a nonempty set, d and ρ two metrics on X and

T : X → P (X) be a multivalued operator. We suppose that:
(i) (X, d) is a complete metric space;
(ii) there exists c > 0 such that d(x, y) ≤ cρ(x, y), for each x, y ∈ X;
(iii) T : (X, d) → (P (X),Hd) is closed;
(iv) there exists α ∈ [0, 1[ such that Hρ(F (x), F (y)) ≤ αρ(x, y), for each

x, y ∈ X.
Then we have:

(a) FT 6= ∅;
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(b) for each x ∈ X and each y ∈ T (x) there exists a sequence (xn)n∈N

such that:
(1) x0 = x, x1 = y;
(2) xn+1 ∈ T (xn), n ∈ N;
(3) xn

d→ x∗ ∈ T (x∗), as n →∞.
Proof. As in the proof of Avramescu-Markin-Nadler’s theorem (see [3],

[6], [12]) hypothesis (iv) implies that there exists a Cauchy sequence (xn)n∈N

in (X, ρ), such that (1) and (2) hold. From (ii) it follows that the sequence
(xn)n∈N is Cauchy in (X, d). Denote by x∗ ∈ X the limit of this sequence.
From (i) and (iii) we get that xn

d→ x∗ ∈ T (x∗), as n → ∞. The proof is
complete. �

Remark 2.1 In terms of the multivalued weakly Picard operators theory
(see [15], [12]), the conclusion of the above result takes the following form:

(a’)-(b’) T : (X, d) ( (X, d) is a multivalued weakly Picard operator.

The second main result of this section is the following theorem.
Theorem 2.2 Let X be a nonempty set, d and ρ two metrics on X and

T : X → P (X) be a multivalued operator. We suppose that:
(i) (X, d) is a complete metric space;
(ii) there exists c > 0 such that d(x, y) ≤ cρ(x, y), for each x, y ∈ X;
(iii) T : (X, d) → (P (X),Hd) is closed;
(iv) there exists α ∈ [0, 1[ such that Hρ(T (x), T (y)) ≤ αρ(x, y), for each

x, y ∈ X;
(v) (SF )T 6= ∅.

Then we have:
(a) FT = (SF )T = {x∗};
(b) Hρ(Tn(x), x∗) ≤ αn · ρ(x, x∗), for each n ∈ N and each x ∈ X;
(c) ρ(x, x∗) ≤ 1

1−α ·Hρ(x, T (x)), for each x ∈ X;
(d) the fixed point problem is well-posed for T with respect to Dρ.

Proof. (a)-(b) From (iv) we have that if x∗ ∈ (SF )T then (SF )T = {x∗},
see I. A. Rus [12], pp. 87. Also, by taking y := x∗ in (iv) we have
that Hρ(T (x), x∗) ≤ αρ(x, x∗), for each x ∈ X. By induction we get that
Hρ(Tn(x), x∗) ≤ αnρ(x, x∗), for each x ∈ X. Consider now y∗ ∈ FT . Then:

ρ(y∗, x∗) ≤ Hρ(Tn(x), x∗) ≤ αnρ(x, x∗) → 0, as n →∞. Hence y∗ = x∗.
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(c) We successively have: ρ(x, x∗) ≤ Hρ(x, T (x)) + Hρ(T (x), x∗) ≤
Hρ(x, T (x)) + αρ(x, x∗). Hence ρ(x, x∗) ≤ 1

1−α ·Hρ(x, T (x)), for each x ∈ X.
(d) Let (xn)n∈N be such that Dρ(xn, T (xn)) → 0, as n → ∞. We have to

prove that ρ(xn, x∗) → 0, as n →∞ (see [10]).
Then we have:

ρ(xn, x∗) ≤ Dρ(xn, T (xn)) + Hρ(T (xn), T (x∗)) ≤ Dρ(xn, T (xn)) + αρ(xn, x∗).

Hence we get ρ(xn, x∗) ≤ 1
1−α ·Dρ(xn, T (xn)) → 0, as n →∞. �

Remark 2.2 For the implication (SF )T 6= ∅ ⇒ (SF )T = {x∗} in the theory
of multivalued generalized contractions see I. A. Rus [13] and A. Ŝıntămărian
[16].

Remark 2.3 In the conditions of Theorem 2.2 we also have that:
(1) T : (X, d) ( (X, d) is a multivalued weakly Picard operator;
(2) T : (X, ρ) ( (X, ρ) is a multivalued Picard operator (see A. Petruşel,

I. A. Rus [9]).

A data dependence result is the following theorem.
Theorem 2.3 Let X be a nonempty set, d and ρ two metrics on X and

T, S : X → P (X) be two multivalued operators. We suppose that:
(i) (X, d) is a complete metric space;
(ii) there exists c > 0 such that d(x, y) ≤ cρ(x, y), for each x, y ∈ X;
(iii) T : (X, d) → (P (X),Hd) is closed;
(iv) there exists α ∈ [0, 1[ such that Hρ(T (x), T (y)) ≤ αρ(x, y), for each

x, y ∈ X

(v) (SF )T 6= ∅;
(vi) FS 6= ∅
(vii) there exists η > 0 such that Hρ(T (x), S(x)) ≤ η, for each x ∈ X.

Then H(FT , FS) ≤ η
1−α .

Proof. Let y∗ ∈ FS . From the conclusion (c) of the above theorem we have
that:

ρ(y∗, x∗) ≤ 1
1−α ·Hρ(y∗, T (y∗)) ≤ 1

1−α ·Hρ(S(y∗), T (y∗)) ≤ η
1−α .

Hence H(FT , FS) = sup
y∗∈FS

ρ(y∗, x∗) ≤ η

1− α
. The proof is complete. �



FIXED POINT THEORY OF MULTIVALUED OPERATORS 101

3. Multivalued generalized contraction on a set with two

metrics

Let (X, d) be a metric space and T : X → Pcl(X) be a multivalued operator.
For x, y ∈ X, let us denote

MT
d (x, y) :=max{d(x, y),Dd(x, T (x)),Dd(y, T (y)),

1
2
[Dd(x, T (y))+Dd(y,T (x))]}.

Ćirić proved that if the space (X, d) is complete and if the multivalued operator
T : X → Pcl(X) satisfies the following condition:

there exists α∈ [0, 1[ such that Hd(T (x),T (y))≤α·MT
d (x, y), for each x, y∈X,

then FT 6= ∅ and for each x ∈ X and each y ∈ T (x) there exists a sequence
(xn)n∈N such that:

(1) x0 = x, x1 = y;
(2) xn+1 ∈ T (xn), n ∈ N;
(3) xn

d→ x∗ ∈ T (x∗), as n →∞.

Next result is a multivalued version of Maia’s theorem for Ćirić-type mul-
tivalued operators.

Theorem 3.1 Let X be a nonempty set, d, ρ two metrics on X and T :
X → P (X) be a multivalued operator. We suppose that:

(i) (X, d) is a complete metric space;
(ii) there exists c > 0 such that d(x, y) ≤ cρ(x, y), for each x, y ∈ X;
(iii) T : (X, d) → (P (X),Hd) is closed;
(iv) there exists α ∈ [0, 1[ such that Hρ(T (x), T (y)) ≤ αMT

ρ (x, y), for
each x, y ∈ X.

Then we have:
(a) FT 6= ∅;
(b) for each x ∈ X and each y ∈ T (x) there exists a sequence (xn)n∈N

such that:
(1) x0 = x, x1 = y;
(2) xn+1 ∈ T (xn), n ∈ N;
(3) xn

d→ x∗ ∈ T (x∗), as n →∞.
Proof. As in the proof of Ćirić’s theorem (see [2], Theorem 2), hypothesis

(iv) implies that there exists a Cauchy sequence (xn)n∈N in (X, ρ), such that
(1)and (2) hold. From (ii) it follows that the sequence (xn)n∈N is Cauchy in
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(X, d). Denote by x∗ ∈ X the limit of this sequence. From (i) and (iii) we get
that xn

d→ x∗ ∈ T (x∗), as n →∞. The proof is complete. �

Remark 3.1 In terms of the multivalued weakly Picard operators theory,
the conclusion of the above result takes the following form:

(a’)-(b’) T : (X, d) ( (X, d) is a multivalued weakly Picard operator.

For the next results, let us denote

NT
d (x, y) := max{d(x, y), Dd(y, T (y)),

1
2
[Dd(x, T (y)) + Dd(y, T (x))]}.

The second main result of this section is the following theorem.
Theorem 3.2 Let X be a nonempty set, T : X → P (X) be a multivalued

operator and d, ρ two metrics on X. We suppose that:
(i) (X, d) is a complete metric space;
(ii) there exists c > 0 such that d(x, y) ≤ cρ(x, y), for each x, y ∈ X;
(iii) T : (X, d) → (P (X),Hd) is closed;
(iv) there exists α ∈ [0, 1[ such that Hρ(T (x), T (y)) ≤ αNT

ρ (x, y), for
each x, y ∈ X;

(v) (SF )T 6= ∅.
Then we have:

(a) FT = (SF )T = {x∗};
(b) Hρ(Tn(x), x∗) ≤ αn · ρ(x, x∗), for each n ∈ N and each x ∈ X;
(c) ρ(x, x∗) ≤ 1

1−α ·Hρ(x, T (x)), for each x ∈ X;
(d) the fixed point problem is well-posed for T with respect to Dρ.

Proof. (a)-(b) From (iv) we have that if x∗ ∈ (SF )T then (SF )T = {x∗}.
Indeed, if y ∈ (SF )T then ρ(x∗, y) = Hρ(T (x∗), T (y)) ≤ αNT

ρ (x∗, y) = α ·
max{ρ(x∗, y), 1

2 [ρ(x∗, y) + ρ(y, x∗)]} = α · ρ(x∗, y). Hence y = x∗.
For the second conclusion let’s take, in the condition (iv), y := x∗. Then,

for each x ∈ X, we have: Hρ(T (x), x∗) = Hρ(T (x), T (x∗)) ≤ αNρT (x, x∗) =
α·max{ρ(x, x∗), 1

2 [Dρ(x∗, T (x))+Dρ(T (x∗), x)]}. We distinguish the following
two cases:

1) If the above maximum is ρ(x, x∗) then we have Hρ(T (x), x∗) ≤ α ·
ρ(x, x∗).

2) If the maximum is 1
2 [Dρ(x∗, T (x))+Dρ(T (x∗), x)], then Hρ(T (x), x∗) ≤

α · 1
2 [Hρ(x∗, T (x)) + ρ(x∗, x)]. Hence Hρ(T (x), x∗) ≤ α

2−αρ(x∗, x).
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Since max{α, α
2−α} = α < 1, from both cases, we have that: Hρ(T (x), x∗) ≤

αρ(x, x∗), for each x ∈ X.

By induction we get that Hρ(Tn(x), x∗) ≤ αnρ(x, x∗), for each x ∈ X.
Consider now y∗ ∈ FT . Then: ρ(y∗, x∗) ≤ Hρ(Tn(x), x∗) ≤ αnρ(x, x∗) → 0, as
n →∞. Hence y∗ = x∗.

(c) We successively have: ρ(x, x∗) ≤ Hρ(x, T (x)) + Hρ(T (x), x∗) ≤
Hρ(x, T (x)) + αρ(x, x∗). Hence ρ(x, x∗) ≤ 1

1−α ·Hρ(x, T (x)), for each x ∈ X.
(d) Let (xn)n∈N be such that Dρ(xn, T (xn)) → 0, as n → ∞. We have to

prove that ρ(xn, x∗) → 0, as n →∞.
Then we have:

ρ(xn, x∗) ≤ Dρ(xn, T (xn)) + Hρ(T (xn), T (x∗)) ≤ Dρ(xn, T (xn)) + αρ(xn, x∗).

Hence we get ρ(xn, x∗) ≤ 1
1−α ·Dρ(xn, T (xn)) → 0, as n →∞. �

Remark 3.2 In the conditions of Theorem 3.2 we also have that:
(1) T : (X, d) ( (X, d) is a multivalued weakly Picard operator;
(2) T : (X, ρ) ( (X, ρ) is a multivalued Picard operator.

A data dependence result for Ćirić-type multivalued operators is the follow-
ing theorem.

Theorem 3.3 Let X be a nonempty set, d and ρ two metrics on X and
T, S : X → P (X) be two multivalued operators. We suppose that:

(i) (X, d) is a complete metric space;
(ii) there exists c > 0 such that d(x, y) ≤ cρ(x, y), for each x, y ∈ X;
(iii) T : (X, d) → (P (X),Hd) is closed;
(iv) there exists α ∈ [0, 1[ such that Hρ(T (x), T (y)) ≤ αNT

ρ (x, y), for
each x, y ∈ X

(v) (SF )T 6= ∅;
(vi) FS 6= ∅
(vii) there exists η > 0 such that Hρ(T (x), S(x)) ≤ η, for each x ∈ X.

Then H(FT , FS) ≤ η
1−α .

Proof. Let y∗ ∈ FS . From the conclusion (c) of the previous theorem we
have that:

ρ(y∗, x∗) ≤ 1
1−α ·Hρ(y∗, T (y∗)) ≤ 1

1−α ·Hρ(S(y∗), T (y∗)) ≤ η
1−α .

Hence H(FT , FS) = sup
y∗∈FS

ρ(y∗, x∗) ≤ η

1− α
. The proof is complete. �
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