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1. Introduction

In the work of E.M. Landesman and A.C. Lazer [14] it was observed that
the boundary value problem for a nonlinear elliptic equation at the presence
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of resonance is solvable not for each nonlinear part even in case when this
term is bounded. The authors of this work presented necessary and sufficient
conditions for the solvability of such problems for the case of one-dimensional
degeneracy of the linear part of equation. In the sequel these ideas and meth-
ods were widely extended to the cases of equations of higher order and multi-
dimensional degeneracy (see, e.g., [17]) as well as to equations with discon-
tinuous nonlinearities (see, e.g. [1], [2], [15], [18], [20], [21] and others). Let
us mention that equations with discontinuous nonlinearities are the subject of
interest of many researchers since they find interesting applications to prob-
lems of mathematical physics (free boundary problems, in particular, obstacle
problem, the seepage surface problem etc.)(see, e.g. [5]-[7], [11]-[13]).

In the present paper we consider a new class of equations containing an
abstract linear Fredholm operator with one-dimensional kernel and a discon-
tinuous nonlinearity. Such equation is reduced to an operator inclusion and
the topological coincidence degree theory for compact multivalued perturba-
tions of Fredholm operators is applied to justify the Landesman-Lazer type
conditions for the existence of solutions to the initial problem. We present
two examples of problems of mathematical physics in which such equations
appear. The first example deals with the equilibrium position of membrane at
the presence of resonance and nonlinear deformation, the second one concerns
the Lavrentiev’s problem on detachable currents. In conclusion we give, in
terms of topological degree for multivalued maps, the extensions of conditions
for solvability to the case when the degeneracy is multi-dimensional and the
Fredholm operator is not necessarily self-adjoint.

2. Preliminaries

By Ω we will denote a bounded open set in Rn with Lipschitz boundary.
For p ≥ 1, we let Lp(Ω) denote the Banach space of p-integrable functions on
Ω with the norm

‖u‖p = ‖u‖Lp = (
∫

Ω
|u|p dx)1/p.

For an integer k > 0 the Sobolev space W k
p (Ω) is defined by

W k
p (Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all |α| ≤ k},
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whereDαu denotes the distributional derivative of u of order α.We will assume
that W k

p (Ω) is equipped with the norm

‖u‖p,k =
∑
|α|≤k

‖Dαu‖p.

By
◦
W k

p (Ω) we will denote the subset of W k
p (Ω) consisting of all functions

vanishing on the boundary ∂Ω.
Let us recall (see, e.g. [8]) that in accordance with the Sobolev embedding

theorem in case pk > n the space W k
p (Ω) is compactly embedded into C(Ω).

Let X and Z be Banach spaces; Cv(Z) [Kv(Z)] denote a collection of
all nonempty closed convex [respectively, compact convex] subsets of Z. A
multivalued map (multimap) Φ : X → Cv (Z) is said to be: (i) upper semi-
continuous (u.s.c.) if for every open set V ⊂ Z, the set

Φ−1
+ (V ) = {x ∈ X : Φ (x) ⊂ V }

is open in X; (ii) closed if its graph

ΓΦ = {(u, f) ∈ X × Z : f ∈ Φ(u)}

is the closed subset of X × Z.

For a linear operator A : domA ⊆ X → Z, let P : X → X and Q : Z → Z

be projectors such that ImP = KerA and KerQ = ImA. If the operator

AP : domA ∩KerP → ImA

is defined as the restriction of A on domA∩KerP then it s clear that AP is an
algebraic isomorphism and we may define KP : ImA→ domA by KP = A−1

P .
Now let CokerA = Z/ImA and Π : Z → CokerA be canonical surjection:

Π(z) = z + ImA

and KP,Q : Z → X be defined by

KP,Q = KP (I −Q).

Let us recall (see, for example, [4], [9], [16]) that a linear operator A :
domA ⊆ X → Z is called Fredholm of zero index if

(i) ImA is closed in Z;
(ii) KerA and CokerA have finte dimension and

dimKerA = dimCokerA.
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We will assume also that

(iii) the operator KP,Q : Z → domA is continuous.

Now, let U ⊂ X be an open bounded subset, Φ : U → Cv(Z) a multimap,
and A : domA ⊆ X → Z a linear Fredholm operator of zero index. Let
Λ : CokerA → KerA be any isomorphism. Suppose that the pair (A,Φ) is
compact on U, i.e. the composition (ΛΠ + KP,Q) ◦ Φ : U → Kv(X) is the
compact u.s.c. multimap.

The set of coincidence points

Coin(A,Φ) = {u ∈ domA : Au ∈ Φ(u)}

is equal to the set of fixed points of the multimap F : U → Kv(X) defined by

F (u) = Pu+ (ΛΠ +KP,Q) ◦ Φ(u).

From the definition and properties of multivalued maps (see, e.g. [3], [10]) it
follows that the multimap F is compact and u.s.c.

Now under assumption that Coin(A,Φ) ∩ ∂U = ∅, the coincidence index
Ind(A,Φ, U) is defined as

Ind(A,Φ, U) = deg(i− F,U),

where the right-hand part of the above equality denotes the topological degree
of the compact multivalued vector field i− F corresponding to the multimap
F (see, e.g. [3], [10]).

It is known (see, e.g. [9], [16], [19]) that the coincidence index has all usual
properties of topological characteristic of that type. Let us select two of them.

(i) If Ind(A,Φ, U) 6= 0 then ∅ 6= Coin(A,Φ) ⊂ U.

(ii) If Ψ : U × [0, 1] → Cv(Z) is a multimap such that

Coin(A,Ψ(·, λ)) ∩ ∂U = ∅

for all λ ∈ [0, 1] and the pair (A,Ψ) is compact on U × [0, 1] then

Ind(A,Ψ(·, 0), U) = Ind(A,Ψ(·, 1), U).

3. Results

3.1. The statement of the problem. We will study the existence of gen-
eralized solutions to the following equation

(Au)(x) + g(u(x)) = ϕ(x, u(x)) (1)



ON SOME GENERALIZATIONS OF THE LANDESMAN-LAZER THEOREM 73

where x belongs to a bounded domain Ω ∈ Rn with a smooth boundary.
We assume that the following main hypothesis are satisfied:

(A1) A : domA := W 2
p (Ω) ∩

◦
W 1

p (Ω) → L1
p(Ω)

is a linear Fredholm operator of zero index, p ≥ 2, 2p > n.

Further, we suggest that

(A2) A is selfajoint in the sense that

(Au, v)L2 = (u,Av)L2

for all u, v ∈ domA, where (u, v)L2 =
∫
Ω uv dx;

(A3) dimKerA = 1 and ω ∈ domA is the basic element of KerA.

Concerning the function g : R → R we assume that

(g) g is continuous; there exist finite limits

g(−∞) = lim
r→−∞

g(r); g(+∞) = lim
r→+∞

g(r),

and

g(−∞) ≤ g(r) ≤ g(+∞)

for all r ∈ R.

At last, the function ϕ : Ω× R → R satisfies the following conditions:

(ϕ1) for a.e. x ∈ Ω there exist finite limits

ϕ(x, ξ) = lim inf
ξ′→ξ

ϕ(x, ξ′); ϕ(x, ξ) = lim sup
ξ′→ξ

ϕ(x, ξ′)

and the functions ϕ, ϕ are superpositionally measurable;
(ϕ2) there exist functions f∗, f∗ ∈ Lp(Ω) such that

f∗(x) ≤ ϕ(x, ξ) ≤ f∗(x)

for a.e. x ∈ Ω and all ξ ∈ R.

Remark 1. Let us recall (see, e.g. [12]) that Carathéodory functions, point-
wise limits of continuous functions, and Borel measurable functions belong to
the class of superpositionnaly measurable measurable functions.

Denote by [f∗, f∗] ⊂ Lp(Ω) the interval

[f∗, f∗] = {f ∈ Lp(Ω) : f∗(x) ≤ f(x) ≤ f∗(x) for a.e. x ∈ Ω}.
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Now define the multimap Φ : C(Ω) → Cv(Lp(Ω)) by the rule

Φ(u) = [ϕ(x, u(x)), ϕ(x, u(x))]. (2)

According to [5], Theorem 1.1 let us mention the following property.

Proposition 2. The multimap Φ is u.s.c.

So, denoting by g̃ : C(Ω) → C(Ω) the function

g̃(u)(x) = g(u(x)), x ∈ Ω

we may substitute equation (1) by the following operator inclusion

Au+ g̃(u) ∈ Φ(u) (3)

Definition 3. A function u ∈ domA satisfying inclusion (3) is called the
generalized solution to equation (1).

Suppose that function u ∈ domA is a generalized solution to the problem.
Then for some f ∈ Φ(u) we have

Au+ g̃(u) = f. (4)

Multiplying the both sides of equality (4) by ω in L2(Ω) and using property
(A2) we obtain

(g̃(u), ω)L2 = (f, ω)L2 .

Denoting

Ω+ = {x ∈ Ω : ω(x) > 0}; Ω− = {x ∈ Ω : ω(x) < 0}

we can rewrite the last equality in the integral form∫
Ω
fω dx =

∫
Ω+

g̃(u)ω dx+
∫

Ω−

g̃(u)ω dx

from which it obviously follows that∫
Ω
fω dx ≤ g(+∞)

∫
Ω+

ω dx+ g(−∞)
∫

Ω−

ω dx (5)

and ∫
Ω
fω dx ≥ g(−∞)

∫
Ω+

ω dx+ g(+∞)
∫

Ω−

ω dx. (6)

Inequalities (5) and (6) form the necessary conditions for the solvability of
problem (1).
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3.2. Sufficient conditions for the solvability of the problem. We will
show that relations similar to (5) and (6) but written in the form of strong
inequalities are sufficient for the existence of a generalized solution to our
problem. In fact, suppose that for functions f∗ and f∗ from condition (ϕ2)
the following relations hold true:∫

Ω+

f∗ω dx+
∫

Ω−

f∗ ω dx < g(+∞)
∫

Ω+

ω dx+ g(−∞)
∫

Ω−

ω dx (7)

and ∫
Ω+

f∗ ω dx+
∫

Ω−

f∗ω dx > g(−∞)
∫

Ω+

ω dx+ g(+∞)
∫

Ω−

ω dx. (8)

It is easy to verify that these two relations are equivalent to the following
condition:

g(−∞)
∫

Ω+

ω dx+ g(+∞)
∫

Ω−

ω dx

<

∫
Ω
fω dx < g(+∞)

∫
Ω+

ω dx+ g(−∞)
∫

Ω−

ω dx (9)

for each f ∈ [f∗, f∗].
Now we may formulate the following existence result.

Theorem 4. Under conditions (A1)-(A3), (g), (ϕ1)-(ϕ2), and (7)-(8) (or,
equivalently (9)) there exists a generalized solution to problem (1).

Before proving the theorem let us mention that from the properties of the
operator A it follows that the spaces E = domA and Z = Lp(Ω) may be
decomposed as

E = E0 ⊕ E1,

where E0 = KerA and

Z = Z0 ⊕ Z1,

where Z0 = KerA and Z1 = ImA. The corresponding decompositions of
elements u ∈ E and f ∈ Z will be denoted by

u = u0 + u1

and

f = f0 + f1.
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Consider the multimap Ψ : C(Ω)× [0, 1] → Cv(Z) given by

Ψ(u, λ) = α(Φ(u), λ)− g̃0(u)− λg̃1(u),

where α : Z × [0, 1] → Z is defined as

α(f0 + f1, λ) = f0 + λf1.

Lemma 5. For each bounded set D ⊂ C(Ω) the multimap Σ : D × [0, 1] →
Kv(C(Ω)),

Σ(u, λ) = Pu+ (ΛΠ +KP,Q) ◦Ψ(u, λ)

is compact u.s.c.

Proof. Denote by Zw the space Z endowed with weak topology. From the
definition of multimap Φ and condition (ϕ2) it follows that the multimap Φ
and hence Ψ̂, Ψ̂(u, λ) = α(Φ(u), λ) have w-compact values and are w-compact.
From Proposition 2 we have that the multimap Φ : C(Ω) → Kv(Zw) is u.s.c.
Decomposing Ψ̂ as

(u, λ) −→ Φ(u)× {λ} α−→ Ψ̂(u, λ)

and using the properties of operations over multivalued maps (see, e.g. [3],
[10]) we come to the conclusion that the multimap Ψ̂ : C(Ω)×[0, 1] → Kv(Zw)
and hence Ψ : C(Ω)× [0, 1] → Kv(Zw) are u.s.c.

Now, let us demonstrate that the multimap Θ ◦Ψ : C(Ω)× [0, 1] ( C(Ω),
where Θ = ΛΠ + KP,Q is closed. In fact, let {(un, λn)} ⊂ C(Ω) × [0, 1],
(un, λn) → (u0, λ0), {yn} ⊂ C(Ω), yn ∈ Θ ◦ Ψ(un, λn), and yn → y0. Take
a sequence zn ∈ Ψ(un, λn) such that yn = Θ(zn). We may assume w.l.o.g.
that zn →

w
z0. Since Θ is the continuous linear operator, we have that y0 =

Θ(z0). From the other side, the multimap Ψ is closed with respect to the
weak topology of Z (see, e.g. [3], [10]) and hence z0 ∈ Ψ(u0, λ0). So y0 ∈
Θ ◦Ψ(u0, λ0).

Further, the range of Ψ is a bounded subset of Z. But then the range of
Θ ◦ Ψ is a bounded subset of E, and by the Sobolev embedding theorem it
is relatively compact subset of C(Ω). Closed and compact multimap Θ ◦Ψ is
u.s.c. (see, e.g. [3], [10]) and now the assertion follows from the fact that P is
continuous and have a finite-dimensional range. �
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Lemma 6. The set of coincidence points Coin(A,Ψ) is a priori bounded in
the space C(Ω).

Proof. In fact, suppose that for any (u, λ) ∈ E × [0, 1] we have that

Au ∈ Ψ(u, λ). (10)

Decomposing u = u0 + u1 we can write this inclusion in the following compo-
nent form: {

Au1 + λg̃1(u) = λf1

g̃0(u0 + u1) = f0,
(11)

where f = f0 + f1 ∈ Φ(u). In turn, the first equality may be expressed as

u1 = λKP,Q(f1 − g̃1(u))

and since f1− g̃1(u) belongs to a bounded subset of Z, applying the embedding
theorem we come to the conclusion that the component u1 is a priori bounded
in C(Ω).

Further, multiplying the both sides of the second equality from (11) by ω

in L2 and using the orthogonality of ω to components g̃1 and f1 we come to
the equality ∫

Ω
g̃(u0 + u1)ω dx =

∫
Ω
fω dx

Expressing u0 = aω we can write the above relation as∫
Ω+

g̃(aω + u1)ω dx+
∫

Ω−

g̃(aω + u1)ω dx =
∫

Ω
fω dx

Now suppose to the contrary that there exist sequences an → +∞, {u(n)
1 } ⊂

E1, and f (n) ∈ Φ(anω + u
(n)
1 ) such that∫

Ω+

g̃(anω + u
(n)
1 )ω dx+

∫
Ω−

g̃(anω + u
(n)
1 )ω dx =

∫
Ω
f (n)ω dx (12)

Since the sequence {u(n)
1 } is bounded it is easy to see that the first integral

in (12) tends to

g(+∞)
∫

Ω+

ω dx

while n→ +∞ whereas the second one has the limit

g(−∞)
∫

Ω−

ω dx.
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From the other side, the sequence {f (n)} belongs to a bounded subset [f∗, f∗]
and so we may assume w.l.o.g. that it weakly converges in L2(Ω) to a function
f̃ ∈ [f∗.f∗]. Passing to the limit in (12) we obtain

g(+∞)
∫

Ω+

ω dx+ g(−∞)
∫

Ω−

ω dx =
∫

Ω
f̃ω dx

that contradicts to the right part of condition (9).
Assuming that an → −∞ we analogously obtain he contradiction to the left

part of (9). �

Proof of Theorem 4. Let U ⊂ C(Ω) be a bounded open domain contain-
ing the set Coin(A,Ψ). Let us mention that while λ = 1 inclusion (10) turns
into initial inclusion (3).

Applying Lemma 5 and the property of homotopy invariance of the coinci-
dence index we obtain

Ind(A,Ψ(·, 1), U) = Ind(A,Ψ(·, 0), U).

Let us evaluate Ind(A,Ψ(·, 0), U). To do this, notice that the map Ψ(·, 0)
has the form

Φ0(u)− g̃0(u),

where Φ0 = Q ◦ Φ.
By definition, Ind(A,Ψ(·, 0), U) = deg(i−F,U), where deg(i−F,U) is the

topological degree of a compact multivalued vector field i − F corresponding
to the multimap F

F (u) = Pu+ (ΛΠ +KP,Q)Ψ(·, 0) = Pu+ (ΛΠ +KP,Q)(Q ◦ Φ(u)− g̃0(u))

= Pu+ ΛΠ(Φ0(u)− g̃0(u)).

W.l.o.g. we may assume that the maps Π|Z0 and Λ are identities. Then the
multimap F has it range in E0, and in accordance with the principle of map
restriction (see, e.g. [3], [10])

deg(i− F,U) = deg(i− F0, U0),

where U0 = U ∩E0 and F0 is the restriction of F to U0. The multifield i−F0

has the form

Φ0(u0)− g̃0(u0).
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A point u0 may be expressed as u0 = aω, a ∈ R, where we may assume
w.l.o.g. that ‖ω‖ = 1. Take any f0 ∈ Φ0(u0) and let f = f0 + f1 ∈ Φ(u0). Let

f0 − g̃0(u0) = lω, l ∈ R.

To estimate the coefficient l we can use the following:

l = (lω, ω)L2 =
∫

Ω
(f0 − g̃0(u0))ω dx =

∫
Ω
fω dx−

∫
Ω
g̃(u0)ω dx

=
∫

Ω
fω dx−

∫
Ω+

g̃(aω)ω dx−
∫

Ω−

g̃(aω)ω dx

≤
∫

Ω+

f∗ω dx+
∫

Ω−

f∗ω dx−
∫

Ω+

g̃(aω)ω dx−
∫

Ω−

g̃(aω)ω dx.

And now from (7) it follows that l < 0 for a sufficiently large. At the same
time applying (8) we have

l ≥
∫

Ω+

f∗ω dx+
∫

Ω−

f∗ω dx−
∫

Ω+

g̃(aω)ω dx−
∫

Ω−

g̃(aω)ω dx > 0

if a < 0 and |a| is sufficiently large.
From the properties of the Brouwer degree it follows now that

deg(i− F0, U0) = −1

and hence Ind(A,Ψ(·, 1), U) = −1 and Coin(A,Φ) 6= ∅ proving the theorem.�

Remark 7. It is easy to see that under above conditions the set Coin(A,Φ)
is compact. So we can guarantee the existence of a generalized solution of our
problem optimizing a given continuous quality functional j : C(Ω) → R.

Example 8. Consider a membrane with fixed boundary, acted on by an ex-
ternal force f ∈ Lp(Ω), and obstructed by a fixed obstacle ψ ∈ W 2

p (Ω) satis-
fying ψ|∂Ω ≥ 0. Nonlinear effects of deformation are simulated by a function
g : R → R. At the presence of resonance the equilibrium position of membrane

u ∈ W 2
p (Ω)

⋂ ◦
W 1

p (Ω) satisfies the following partial differential equation with
discontinuous nonlinearity (cf. [5], [7]).

−4u(x) + λu(x) + g(u(x)) = ϕ(x, u(x))
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where λ is the first eigenvalue of Laplasian ∆ and

ϕ(x, ξ) =

 min{f(x), (−4+ λ)ψ(x)}, ξ ≥ ψ(x);

f(x), ξ < ψ(x).

It is clear that here f∗(x) = min{f(x), (−4+λ)ψ(x)} whereas f∗(x) = f(x),
and sufficient conditions for the existence of a solution may be written in form
of (7)-(9).

Example 9. Lavrentiev’s problem on detachable currents at the presence of
resonance and nonlinear perturbations may be described by the following equa-
tion (cf. [13]):

−4u(x) + λu(x) + g(u(x)) = µ sign(u(x)),

u(x)|∂Ω = 0,

where µ > 0.
We have

ϕ(x, ξ) =

 µ, ξ > 0,

−µ, ξ ≤ 0;

and

ϕ(x, ξ) =

 µ, ξ ≥ 0,

−µ, ξ < 0.

So

f∗(x) = −µ; f∗(x) = µ

and conditions (7)-(8) may be written in the following form

µ(
∫

Ω+

ω dx−
∫

Ω−

ω dx) < g(+∞)
∫

Ω+

ω dx+ g(−∞)
∫

Ω−

ω dx

and

µ(
∫

Ω−

ω dx−
∫

Ω+

ω dx) > g(−∞)
∫

Ω+

ω dx+ g(+∞)
∫

Ω−

ω dx.
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4. On some generalizations

In this section we will consider the situation when the Fredholm operator
A has a multidimensional kernel (i.e. dimKerA ≥ 1) and is not necessarily
selfadjoint. First we apply the coincidence degree theory to prove the abstract
existence result for an operator inclusion which is the extension of Theorem
4.1.4 from [17] to the case when the Fredholm operator is not necessarily
continuous and the nonlinear part is multivalued and not necessarily compact.

Let X be a Banach space; Z a reflexive Banach space;

A : domA ⊆ X → Z

a linear Fredholm operator of zero index with dimKerA = d ≥ 1. We will
suppose that the Banach space E = domA is compactly embedded into X. As
earlier, we may consider the decompositions

E = E0 ⊕ E1,

where E0 = KerA and

Z = Z0 ⊕ Z1,

where Z1 = ImA and dimZ0 = d.

For a continuous linear operator KP,Q : Z → X, let C = ‖KP,Q‖.
Denote by Zw the space Z endowed with the weak topology and let

Φ : X → Kv(Zw)

be an u.s.c. multimap.

Theorem 10. Assume that the following conditions hold true:

(i) the mutimap Φ is bounded, i.e. there exists a constant M > 0 such
that

‖Φ(u)‖ := sup{‖f‖ : f ∈ Φ(u)} ≤M

for all u ∈ X;
(ii) there exists a constant N > 0 such that for each u = u0 + u1 ∈ E with

‖u1‖X ≤ CM and ‖u0‖X ≥ N we have

0 /∈ Q ◦ Φ(u);
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(iii)

deg(Q ◦ Φ|SN
, SN ) 6= 0,

where SN = {u0 ∈ E0 : ‖u0‖X = N}.

Then the inclusion

Au ∈ Φ(u)

has a solution.

Remark 11. It is easy to see that that the multimap

Q ◦ Φ|SN
: SN → Kv(Z0 \ {0})

is u.s.c. and hence the topological degree in condition (iii) is well-defined.

Remark 12. Conditions (ii) and (iii) are fulfilled if

(iv) there exists an u.s.c. multimap

G : S1 ⊂ E0 → Kv(Z0 \ {0})

with

deg(G,S1) 6= 0

with the property that for each ε > 0 there exists R > 0 such that

Q ◦ Φ(ru0 + u1) ⊂ Vε(G(u0))

for all u = u0 +u1 ∈ E with u0 ∈ S1, ‖u1‖X ≤ CM, and r ≥ R, where
Vε denotes the ε-neighborhood of a set.

Proof of Theorem 10. Since we will follow the main lines of the proof
of Theorem 4 we will restrict ourselves to the sketch. The multimap Ψ :
X × [0, 1] → Kv(Zw),

Ψ(u, λ) = α(Φ(u), λ)

is u.s.c. and for each bounded D ⊂ X the multimap Σ : D × [0, 1] → Kv(X),

Σ(u, λ) = Pu+ (ΛΠ +KP,Q) ◦Ψ(u, λ)

is compact u.s.c. The inclusion

Au ∈ Ψ(u, λ) (13)
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is equivalent to the system {
Au1 = λf1

0 = f0,
(14)

where u = u0 + u1 and f = f0 + f1 ∈ Φ(u). The first equality of (14) results

u1 = λKP,Q(f1)

and hence ‖u1‖X ≤ CM. Applying condition (ii) we conclude from the second
equality of (14) that ‖u0‖X ≤ N.

So the ball BL ⊂ X centered at the origin of radius L = CM + N + 1 a
priori contains all solutions u ∈ X of inclusion (13) and we have

ind(A,Ψ(·, 1), BL) = ind(A,Ψ(·, 0), BL).

Applying condition (iii), the map restriction principle and other basic prop-
erties of topological degree we obtain

ind(A,Ψ(·, 0), BL) 6= 0

that concludes the proof. �

Corollary 13. Let

A : domA := W 2
p (Ω) ∩

◦
W 1

p (Ω) → L1
p(Ω)

be a linear Fredholm operator of zero index, p ≥ 2, 2p > n. Let a function
ϕ : Ω× R → R satisfies conditions (ϕ1) and (ϕ2). If the multimap

Φ : C(Ω) → Cv(Lp(Ω))

generated by ϕ (see (2)) satisfies conditions (ii) and (iii) (or, respectively,
(iv)) of Theorem 10 (for X = C(Ω) and Z = Lp(Ω)) then the equation

(Au)(x) = ϕ(x, u(x))

has a generalized solution.
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[15] I. Massabò, Elliptic boundary value problems at resonance with discontinuous nonlin-

earities, Boll. Un. Mat. Ital., B (5) 17(1980), no. 3, 1308-1320.

[16] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, Ex-

pository lectures from the CBMS Regional Conference held at Harvey Mudd College,

Claremont, Calif., June 9-15, 1977, CBMS Regional Conference Series in Mathematics,

40, American Mathematical Society, Providence, R.I., 1979.



ON SOME GENERALIZATIONS OF THE LANDESMAN-LAZER THEOREM 85

[17] L. Nirenberg, Topics in Nonlinear Functional Analysis, With a chapter by E. Zehnder,

Notes by R. A. Artino, Lecture Notes, 1973-1974, Courant Institute of Mathematical

Sciences, New York University, New York, 1974.

[18] V.N. Pavlenko, V.V. Vinokur, Resonance boundary value problems for elliptic-type equa-

tions with discontinuous nonlinearities, (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat.

2001, , no. 5, 43-58; English translation in Russian Math. (Iz. VUZ) 45(2001), no. 5,

40-55.

[19] T. Pruszko, A coincidence degree for L-compact convex-valued mappings and its appli-

cation to the Picard problem of orientors fields, Bull. Acad. Polon. Sci. Sér. Sci. Math.,

27(1979), no. 11-12, 895-902 (1981).

[20] J. Rauch, Discontinuous semilinear differential equations and multiple valued maps,

Proc. Amer. Math. Soc., 64(1977), no. 2, 277-282.

[21] C. A. Stuart, Maximal and minimal solutions of elliptic differential equations with dis-

continuous nonlinearities, Math. Z., 163(1978), no. 3, 239-249.

Received: February 13, 2007; Accepted: February 22, 2007.


