LOCALIZATION RESULTS VIA KRASNOSELSKII'S FIXED POINT THEOREM IN CONES

ANDREI HORVAT-MARC
North University of Baia Mare
Department of Mathematics and Computer Science
Victoriei 76, 340072 Baia Mare, Romania
E-mail: hmand@personal.ro, hmandrei@yahoo.com

Abstract

The purpose of this paper is to give an existence result for the nonlinear fourthorder boundary value problem $$
\begin{gathered} u^{(4)}(t)=f(u(t)), \quad t \in[0,1] \\ u(0)=u(1)=A, \\ u^{\prime \prime}(0)=u^{\prime \prime}(1)=B \end{gathered}
$$

where $f:[0, \infty) \rightarrow \mathbb{R}$ is continuous and A, B are positive real numbers. We use a result related to the existence of positive solutions for nonlinear integral equations in Banach spaces, presented in [7].
Key Words and Phrases: ordered Banach space, fourth-order boundary value problem, Krasnoselskii's compression-expansion fixed point theorem.
2000 Mathematics Subject Classification: 34B18, 45N05, 47H10.

1. Introduction and preliminary Results

Localization of solutions for nonlinear operator equations can be obtained by using variational methods [14, 15, 9], upper and lower solution method $[1,4,6]$ or existence results related to ordered Banach spaces $[6,12,2,8]$. In this paper we seek positive solutions of a fourth-order boundary value problem using the results related to the existence of positive solutions for nonlinear integral equation in ordered Banach spaces, presented in [7].
Boundary value problems for m-order differential equations describe physical, biological and chemical phenomena. Fourth-order boundary value problems were studied by many authors $[3,10,11]$. A special attention received
the Lidstone boundary value problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)=f\left(t, u(t), u^{\prime \prime}(t)\right), \quad 0<t<1 \\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

For example, in [3] using the Five Functionals Fixed Point Theorem there are established some growth conditions on f to obtain three symmetric positive solutions, and the Avery-Henderson fixed point theorem is applied in [10] together with some growth conditions on f to prove the existence of at least two positive solutions for three point boundary value problems.

The main tool of our approach is the Krasnoselskii's compression-expansion fixed point theorem.

Theorem 1.1. Let $(E,|\cdot|)$ be a Banach space, and let $C \subset E$ be a cone in E. Assume that Ω_{1}, Ω_{2} are two open subsets of E such that $0 \in \Omega_{1}$ and $\bar{\Omega}_{1} \subset \Omega_{2}$. Let the operator $T: C \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow C$ be completely continuous and either

$$
|T(x)| \leq|x|, x \in C \cap \partial \Omega_{1} \text { and }|T(x)| \geq|x|, x \in C \cap \partial \Omega_{2}
$$

or

$$
|T(x)| \geq|x|, x \in C \cap \partial \Omega_{1} \text { and }|T(x)| \leq|x|, x \in C \cap \partial \Omega_{2}
$$

is true. Then T has a fixed point in $C \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
In [7] the Krasnoselskii's compression-expansion fixed point theorem is used for the nonlinear integral equation

$$
U(t)=\int_{0}^{T} k(t, s) F(U)(s) d s, \quad t \in[0, T]
$$

where $k:[0, T] \times[0, T] \rightarrow \mathbb{R}_{+}$and $F: C([0, T] ; K) \rightarrow C([0, T] ; K)$ is an operator. In that follows, we extend this result to the nonlinear integral equation

$$
\begin{equation*}
U(t)=g(t)+\int_{0}^{T} k(t, s) F(U)(s) d s, \quad t \in[0, T] \tag{1.1}
\end{equation*}
$$

where $g:[0, T] \rightarrow K, k:[0, T] \times[0, T] \rightarrow \mathbb{R}_{+}$and $F: C([0, T] ; K) \rightarrow$ $C([0, T] ; K)$ is an operator.

Theorem 1.2. Let $(X,|\cdot|)$ be a real Banach space and let $K \subset X$ be a cone of X. Assume that the norm $|\cdot|$ is monotone with respect to K and that the following conditions are satisfied:
$\left(H_{1}\right)$ For each $t \in[0, T], k_{t}=k(t, \cdot) \in L^{1}\left(0, T ; \mathbb{R}_{+}\right)$and the map $t \mapsto k_{t}$ is continuous from $[0, T]$ to $L^{1}(0, T)$;
$\left(H_{2}\right)$ There exists $\mu \in(0,1), \kappa \in L^{1}(0, T)$ and an interval $[a, b] \subset[0, T]$, $a<b$, such that

$$
\begin{aligned}
& k(t, s) \leq \kappa(s), t \in[0, T], \text { a.e } s \in[0, T] \\
& \quad \text { and }
\end{aligned}
$$

$$
\mu \kappa(s) \leq k(t, s) t \in[a, b], \text { a.e } s \in[0, T]
$$

$\left(H_{3}\right)$ The map $g:[0, T] \rightarrow K$ is continuous and satisfies the inequality

$$
\begin{equation*}
\mu g(t) \leq g\left(t^{\prime}\right), \quad t \in[0, T], t^{\prime} \in[a, b] \tag{1.2}
\end{equation*}
$$

$\left(H_{4}\right)$ There exists $\Phi: K \rightarrow K$ such that

$$
\begin{equation*}
\Phi(x) \leq F(U)(t), \quad t \in[a, b] \tag{1.3}
\end{equation*}
$$

whenever $U \in C([0, T] ; K), x \in K$ and $x \leq U(t)$ for all $t \in[a, b]$;
$\left(H_{5}\right)$ There exists $\alpha>0$ such that

$$
\begin{equation*}
|F(U)(t)| \leq \frac{\alpha-|g|_{\infty}}{\sup _{t \in[0, T]} \int_{0}^{T} k(t, s) d s} \tag{1.4}
\end{equation*}
$$

for all $t \in[0, T]$ and $U \in C([0, T] ; K)$ with $|U|=\alpha ;$
$\left(H_{6}\right)$ There exists $\beta>0, \beta \neq \alpha$ and $t^{*} \in[0, T]$ such that

$$
\begin{equation*}
\inf \{|\Phi(x)|: x \in K,|x|=\mu \beta\} \cdot \int_{a}^{b} k\left(t^{*}, s\right) d s \geq \beta+\left|g\left(t^{*}\right)\right| \tag{1.5}
\end{equation*}
$$

$\left(H_{7}\right)$ The operator N_{0} defined by

$$
N_{0}(U)(t)=\int_{0}^{T} k(t, s) F(U)(s) d s
$$

is completely continuous from $C([0, T] ; K)$ to $C([0, T] ; X)$.
Then (1.1) has at least one solution $U \in C([0, T] ; K)$ such that

$$
\begin{equation*}
\mu U(t) \leq U\left(t^{\prime}\right) \text { for } t \in[0, T], t^{\prime} \in[a, b] \tag{1.6}
\end{equation*}
$$

and $0<\min \{\alpha, \beta\} \leq|U|_{\infty} \leq \max \{\alpha, \beta\}$.

Proof. To apply Krasnoselskii's theorem, let $E=C([0, T] ; X)$ be endowed with the norm $|U|_{\infty}=\max _{t \in[0, T]}|U(t)|$ and and let us consider the cone

$$
C=\left\{U \in C([0, T] ; K): \mu U(t) \leq U\left(t^{\prime}\right) \text { for } t \in[0, T], t^{\prime} \in[a, b]\right\}
$$

We make the notations $r_{1}=\min \{\alpha, \beta\}$ and $r_{2}=\max \{\alpha, \beta\}$ and we denote

$$
\begin{aligned}
\Omega_{1} & =\left\{U \in C([0, T] ; X):|U|_{\infty}<r_{1}\right\} \\
\Omega_{2} & =\left\{U \in C([0, T] ; X):|U|_{\infty}<r_{2}\right\}
\end{aligned}
$$

Consider the operator

$$
N(U)(t)=g(t)+\int_{0}^{T} k(t, s) F(U)(s) d s, \quad t \in[0, T]
$$

From $\left(H_{1}\right)-\left(H_{3}\right)$ and $\left(H_{7}\right)$ we have that $N: C \rightarrow C$ and N is completely continuous.

Let $U \in C$ and $|U|_{\infty}=\alpha$. Using $\left(H_{5}\right)$ we deduce that

$$
|N(U)(t)| \leq|g(t)|+\int_{0}^{T} k(t, s)|F(U)(s)| d s \leq \alpha
$$

for all $t \in[0, T]$. Hence $|N(U)|_{\infty} \leq|U|_{\infty}$.
Let $U \in C,|U|_{\infty}=\beta$ and we can consider that $\mu U\left(t_{0}\right) \leq U\left(t^{\prime}\right)$ for all $t^{\prime} \in$ $[a, b]$ and $t_{0} \in[0, T]$ with $\left|U\left(t_{0}\right)\right|=\beta$. Now $\left(H_{4}\right)$ implies that $\Phi\left(\mu U\left(t_{0}\right)\right) \leq$ $F(U)(s)$ for $s \in[a, b]$. Then

$$
\begin{aligned}
N(U)\left(t^{*}\right) & =g\left(t^{*}\right)+\int_{0}^{T} k\left(t^{*}, s\right) F(U)(s) d s \\
& \geq g\left(t^{*}\right)+\Phi\left(\mu U\left(t_{0}\right)\right) \int_{0}^{T} k\left(t^{*}, s\right) d s
\end{aligned}
$$

So, $\left|N(U)\left(t^{*}\right)\right| \geq\left|\Phi\left(\mu U\left(t_{0}\right)\right)\right| \int_{0}^{T} k\left(t^{*}, s\right) d s-\left|g\left(t^{*}\right)\right|$ for $t^{*} \in[0, T]$ and from $\left(H_{6}\right)$ it follows that $|N(U)|_{\infty} \geq|U|_{\infty}$.

Therefore, Krasnoselskii's Theorem applies.
In many applications we are interested in multiple solutions. Under similar conditions to $\left(H_{5}\right)$ and $\left(H_{6}\right)$ we obtain the following result:

Theorem 1.3. Assume that $\left(H_{1}\right)-\left(H_{4}\right),\left(H_{7}\right)$ hold and
$\left(M_{1}\right)$ for some $n \in \mathbb{N} \backslash\{0\}$ there exist $\alpha_{i}>0, i=\overline{1, n}$ such that $\left(H_{5}\right)$ is satisfied with $\alpha=\alpha_{i}$ for every $i \in\{1, \ldots, n\}$
$\left(M_{2}\right)$ for some $m \in \mathbb{N} \backslash\{0\}$ there exist $\beta_{j}>0$ and $t_{j}^{*} \in[0, T], j=\overline{1, m}$ such that $\left(H_{6}\right)$ is satisfied with $\beta=\beta_{j}$ and $t^{*}=t_{j}^{*}$ for every $j \in\{1, \ldots, m\}$
Then
(I) If $m=n+1$ and $0<\beta_{1}<\alpha_{1}<\ldots<\beta_{n}<\alpha_{n}<\beta_{n+1}$, then (1.1) has at least $2 n$ nonnegative solutions $U_{1}, \ldots, U_{2 n} \in C([0, T] ; K)$ such that

$$
0<\beta_{1}<\left|U_{1}\right|_{\infty}<\alpha_{1}<\ldots<\alpha_{n}<\left|U_{2 n}\right|_{\infty}<\beta_{n+1}
$$

(II) If $m=n$ and $0<\beta_{1}<\alpha_{1}<\ldots<\beta_{n}<\alpha_{n}$, then (1.1) has at least $2 n-1$ nonnegative solutions $U_{1}, \ldots, U_{2 n-1} \in C([0, T] ; K)$ such that

$$
0<\beta_{1}<\left|U_{1}\right|_{\infty}<\alpha_{1}<\ldots<\beta_{n}<\left|U_{2 n-1}\right|_{\infty}<\alpha_{n}
$$

(III) If $n=m+1$ and $0<\alpha_{1}<\beta_{1}<\ldots<\alpha_{m}<\beta_{m}<\alpha_{m+1}$, then (1.1) has at least $2 m$ nonnegative solutions $U_{0}, \ldots, U_{2 m} \in C([0, T] ; K)$ such that

$$
0<\alpha_{1}<\left|U_{1}\right|_{\infty}<\beta_{1}<\ldots<\beta_{m}<\left|U_{2 m}\right|_{\infty}<\alpha_{m+1}
$$

(IV) If $n=m$ and $0<\alpha_{1}<\beta_{1}<\ldots<\beta_{n}<\alpha_{m}<\beta_{m}$, then (1.1) has at least $2 m-1$ nonnegative solutions $U_{0}, \ldots, U_{2 m-1} \in C([0, T] ; K)$ such that

$$
0<\alpha_{1}<\left|U_{1}\right|_{\infty}<\beta_{1}<\ldots<\alpha_{m}<\left|U_{2 m-1}\right|_{\infty}<\beta_{m}
$$

2. Application

In this section, we apply Theorem 1.2 to localize positive solutions for the nonlinear fourth-order boundary value problem

$$
\begin{gather*}
u^{(4)}(t)=f(u(t)), \quad t \in[0,1] \tag{2.7}\\
u(0)=u(1)=A, \\
u^{\prime \prime}(0)=u^{\prime \prime}(1)=-B
\end{gather*}
$$

where $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous and A, B are nonnegative real numbers.
Theorem 2.4. Let $\varepsilon \in\left(0, \frac{1}{2}\right), \mu \in\left(0, \frac{1}{2}-\varepsilon\right], \sigma_{m}=\min \{A, B\}$ and $\sigma_{M}=\max \{A, B\}$. Suppose that the function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous and
$\left(T_{1}\right)$ there is a map $\Phi: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2}, \Phi=\left(\Phi_{1}, \Phi_{2}\right)$ such that

$$
\begin{equation*}
(0,0) \leq\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right) \text { implies } \Phi\left(x_{1}, x_{2}\right) \leq\left(y_{2}, f\left(y_{1}\right)\right) \tag{2.8}
\end{equation*}
$$

$\left(T_{2}\right)$ there exists $\alpha>0$ such that

$$
\begin{equation*}
\max \left\{f\left(y_{1}\right), y_{2}\right\}<8\left(\alpha-\sigma_{M}\right) \tag{2.9}
\end{equation*}
$$

for any $\left(y_{1}, y_{2}\right) \in \mathbb{R}_{+}^{2}$ with $\max \left\{y_{1}, y_{2}\right\}=\alpha$;
(T_{3}) there exists $\beta>0, \beta \neq \alpha$ and $t^{*} \in[0,1]$ such that

$$
\begin{equation*}
\Sigma \cdot g\left(t^{*}\right)<\beta+\sigma_{m}, \tag{2.10}
\end{equation*}
$$

where

$$
\Sigma=\inf \left\{\max \left\{\Phi_{1}\left(x_{1}, x_{2}\right), \Phi_{2}\left(x_{1}, x_{2}\right)\right\}: x_{1}, x_{2} \in \mathbb{R}_{+}, \max \left\{x_{1}, x_{2}\right\}=\mu \beta\right\}
$$

and

$$
g(t)= \begin{cases}\varepsilon t & \text { if } t \in\left[0, \frac{1}{2}-\varepsilon\right] \\ \frac{t-t^{2}}{2}-\frac{1}{8}+\frac{\varepsilon-\varepsilon^{2}}{2} & \text { if } t \in\left(\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right) \\ \varepsilon(1-t) & \text { if } t \in\left[\frac{1}{2}+\varepsilon, 1\right]\end{cases}
$$

Then (2.7) has at least one solution $u \in C\left([0,1] ; \mathbb{R}_{+}\right)$such that

$$
\mu u(t) \leq u\left(t^{\prime}\right) \quad \text { and } \mu u^{\prime \prime}(t) \geq u^{\prime \prime}\left(t^{\prime}\right)
$$

for $t \in[0,1], t^{\prime} \in\left[\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right]$ and

$$
0<\min \{\alpha, \beta\} \leq \max _{t \in[0,1]}\left\{u(t),-u^{\prime \prime}(t)\right\} \leq \max \{\alpha, \beta\}
$$

Proof. Let $C\left([0,1] ; \mathbb{R}_{+}\right)$be the set of all continuous functions from $[0,1]$ to $\mathbb{R}_{+}=[0, \infty)$. We make the notation $\mathbb{K}=C\left([0,1] ; \mathbb{R}_{+}\right) \times C\left([0,1] ; \mathbb{R}_{+}\right)$. For any $U=\left(u_{1}, u_{2}\right) \in \mathbb{K}$ we consider

$$
\|U\|=\max _{t \in[0,1]} \max \left\{u_{1}(t), u_{2}(t)\right\}
$$

Letting $u_{1}=u$ and $u_{2}=-u^{\prime \prime}$ we see that problem (2.7) is equivalent to the system

$$
\left\{\begin{array}{l}
u_{1}^{\prime \prime}=-u_{2} \tag{2.11}\\
u_{1}(0)=u_{1}(1)=A \\
u_{2}^{\prime \prime}=-f\left(u_{1}(t)\right) \\
u_{2}(0)=u_{2}(1)=B
\end{array}\right.
$$

The Green function associated to the operator $-u^{\prime \prime}$ and the boundary conditions $u(0)=u(1)=0$ is $G:[0,1] \times[0,1] \rightarrow \mathbb{R}$,

$$
G(t, s)= \begin{cases}s(1-t), & 0 \leq s \leq t \leq 1 \tag{2.12}\\ t(1-s), & 0 \leq t \leq s \leq 1\end{cases}
$$

Hence, (2.7) is equivalent to the nonlinear integral equation

$$
\begin{equation*}
U(t)=g(t)+\int_{0}^{1} G(t, s) F(U(s)) d s, \quad t \in[0,1] \tag{2.13}
\end{equation*}
$$

where $U=\left(u_{1}, u_{2}\right) \in C\left([0,1] ; \mathbb{R}_{+}^{2}\right) \cap C^{2}\left([0,1] ; \mathbb{R}_{+}^{2}\right)$, the function $g:[0,1] \rightarrow$ \mathbb{R}_{+}^{2} is given by

$$
g(t)=(A, B), t \in[0,1]
$$

and the operator $F: \mathbb{K} \rightarrow \mathbb{K}$ is defined by

$$
F(U)=F\left(u_{1}, u_{2}\right)=\left(u_{2}, f\left(u_{1}\right)\right)
$$

In what it follows, we show that all conditions of Theorem 1.2 are satisfied. Consider $\kappa:[0,1] \rightarrow \mathbb{R}_{+}, \kappa(s)=s(1-s)$ and $0<\varepsilon<\frac{1}{2}$. We have $\mu \kappa(s) \leq$ $G(t, s)$ for $t \in\left[\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right]$ and all $s \in[0,1]$. Here $\mu \in\left(0, \frac{1}{2}-\varepsilon\right]$. On the other hand, $G(t, s) \leq \kappa(s)$, for all $t, s \in[0,1]$. The proof of these inequalities may be found in [8]. Hence, condition $\left(H_{2}\right)$ is satisfied.

Let $X=\mathbb{R}^{2}$ and $K=\mathbb{R}_{+}^{2}$ be the positive cone of \mathbb{R}^{2}. For $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$, we have $\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right)$ if and only if $x_{1} \leq y_{1}$ and $x_{2} \leq y_{2}$.

Inequality (1.2) is equivalent to $\mu \cdot(A, B) \leq(A, B)$ and is satisfied for any $\mu \leq 1$.

Let $\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2}$ and $U=\left(u_{1}, u_{2}\right) \in C\left([0,1] ; \mathbb{R}_{+}^{2}\right) \cap C^{2}\left([0,1] ; \mathbb{R}_{+}^{2}\right)$ with $\left(x_{1}, x_{2}\right) \leq U(t)$, for every $t \in\left[\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right]$. From hypothesis $\left(T_{1}\right)$ we obtain

$$
\Phi\left(x_{1}, x_{2}\right) \leq\left(u_{2}(t), f\left(u_{1}(t)\right)\right)=F(U)(t), t \in\left[\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right]
$$

Hence, $\left(T_{1}\right)$ implies $\left(H_{4}\right)$.
We have (see $[3,8]$)

$$
\sup _{t \in[0,1]} \int_{0}^{1} G(t, s) d s=\frac{1}{8}
$$

Therefore, (1.4) is equivalent to (2.9).
A simple computation shows

$$
\int_{\frac{1}{2}-\varepsilon}^{\frac{1}{2}+\varepsilon} G(t, s) d s=g(t), \quad t \in[0,1]
$$

Then $\left(T_{3}\right)$ is necessary for $\left(H_{6}\right)$. Hypothesis $\left(H_{7}\right)$ is implied by the continuity of g, G and f.

Remark 2.1. For $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$a nondecreasing map, we can take $\Phi: \mathbb{R}_{+}^{2} \rightarrow$ \mathbb{R}_{+}^{2} given by

$$
\Phi\left(x_{1}, x_{2}\right)=\left(x_{2}, f\left(x_{1}\right)\right)
$$

Remark 2.2. For $t^{*}=\frac{1}{2}$, inequality (2.10) can be replaced by

$$
\Sigma>\frac{2\left(\beta+\sigma_{m}\right)}{\varepsilon(1-\varepsilon)}
$$

see $[3,8]$ for details.
Remark 2.3. Theorem 2.4 can be extended to the nonlinear $2 n$-order boundary value problem

$$
\begin{aligned}
& u^{(2 n)}(t)=f(u(t)), \quad t \in[a, b] \\
& u(a)=u(b)=A_{1} \\
& u^{\prime \prime}(a)=u^{\prime \prime}(b)=A_{2} \\
& u^{(4)}(a)=u^{(4)}(b)=A_{3} \\
& \cdots \\
& u^{(2 n-2)}(a)=u^{(2 n-2)}(b)=A_{n}
\end{aligned}
$$

and some similar results can be established for non autonomous equations.

3. Multiple solutions Result

This part was inspired by [3] where a three symmetric positive solution result is established.

Consider the fourth order Lidstone boundary value problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)=f(u(t)), \quad 0<t<1 \tag{3.14}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

where $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous. Here $A=B=0$. To obtaining three positive solutions we have the next results:

Theorem 3.5. Let $\varepsilon \in\left(0, \frac{1}{2}\right), \mu \in\left(0, \frac{1}{2}-\varepsilon\right]$ and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is continuous. Suppose that there exist $0<\beta_{1}<\alpha_{1}<\beta_{2}<\alpha_{2}$ such that
$\left(M_{1}\right)$ there exists a map $\Phi: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2}$ such that

$$
\left(x_{1}, x_{2}\right) \leq\left(y_{1}, y_{2}\right) \text { implies } \Phi\left(x_{1}, x_{2}\right) \leq\left(y_{2}, f\left(y_{1}\right)\right)
$$

$\left(M_{2}\right)$ for all $y_{i}=\left(y_{i 1}, y_{i 2}\right) \in \mathbb{R}_{+}^{2}$ with $\max \left\{y_{i 1}, y_{i 2}\right\}=\alpha_{i}, i \in\{1,2\}$, we have

$$
\max \left\{f\left(y_{i 1}\right), y_{i 2}\right\}<8 \alpha_{i}, \quad i \in\{1,2\}
$$

$\left(M_{3}\right)$ there exist $t_{1}^{*}, t_{2}^{*} \in[0,1]$ such that

$$
\Sigma_{i} \cdot g\left(t_{i}^{*}\right)<\beta_{i}, \quad i \in\{1,2\}
$$

where $\Sigma_{i}=\inf \left\{\left|\Phi\left(x_{1}, x_{2}\right)\right|: x_{1}, x_{2} \in \mathbb{R}_{+}, \max \left\{x_{1}, x_{2}\right\}=\mu \beta_{i}\right\}$ and

$$
g(t)= \begin{cases}\varepsilon t & \text { if } \quad t \in\left[0, \frac{1}{2}-\varepsilon\right] \\ \frac{t-t^{2}}{2}-\frac{1}{8}+\frac{\varepsilon-\varepsilon^{2}}{2} & \text { if } \quad t \in\left(\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right) \\ \varepsilon(1-t) & \text { if } \quad t \in\left[\frac{1}{2}+\varepsilon, 1\right]\end{cases}
$$

Then the problem (3.14) has at least three positive solutions u_{1}, u_{2}, u_{3} such that

$$
0<\beta_{1}<\max _{t \in[0,1]}\left|u_{1}(t)\right|<\alpha_{1}<\max _{t \in[0,1]}\left|u_{2}(t)\right|<\beta_{2}<\max _{t \in[0,1]}\left|u_{3}(t)\right|<\alpha_{2}
$$

with

$$
\mu u_{i}(t) \leq u_{i}\left(t_{i}^{\prime}\right) \text { and } \mu u_{i}^{\prime \prime}(t) \geq u_{i}^{\prime \prime}\left(t_{i}^{\prime}\right), i \in\{1,2,3\}
$$

for $t \in[0,1], t_{i}^{\prime} \in\left[\frac{1}{2}-\varepsilon, \frac{1}{2}+\varepsilon\right], i \in\{1,2,3\}$.
Proof. The conclusions follow from Theorem 1.3 for $n=m=2$.

References

[1] R. P. Agarwal, Haishen Lü and D. O'Regan, An upper and lower solutions method for the one-dimensional singular p-Laplacian, Memoirs on Differential Equations and Mathematical Physics, 28(2003), 13-31.
[2] R. Agarwal, M. Meehan, D. O'Regan and R. Precup, Location of nonnegative solutions for differential equation on finiteand semi-infinite intervals, Dynamic Systems Appl., 12(2003), 323-341.
[3] R. I. Avery, J. M. Davis, and J. Henderson, Three symmetric positive solutions for Lidstone problems by a generalization of the Leggett-Williams theorem, Electronic Journal of Differential Equations, Vol. 2000(2000), 1-15.
[4] M. Conti, L. Merizz and S. Terracini, Remarks on variational methods and lower-upper solutions, Nonlinear Differential Equations and Applications, 6(1999), 371-393.
[5] Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Birkhauser Verlag, Basel-Boston-Berlin, 1996.
[6] D. Guo, V. Lakshmikantham and X. Liu, Nonlinear Integral Equation in Abstract Spaces, Kluwer Academic Publishers, Dordrecht-Boston-London, 1996.
[7] A. Horvat-Marc and R. Precup, Nonnegative solutions on nonlinear integral equation in ordered Banach spaces, Fixed Point Theory, 5(2004), 65-70.
[8] A. Horvat-Marc, Nonnegative solutions for boundary value problem, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, Matematică Informatică, Vol. 18(2002), 223-228.
[9] A. Horvat-Marc, Variational method for a second order boundary value problem, Mathematical Research, Vol. 9, Proceedings of the Fourth International Conference "Tools for Mathematical Modeling" June 23-28, 2003, 249-254.
[10] Liu Yuji and Ge Weigao, Solvability on a nonlinear four-point boundary-value problem for a fourth order differential equation, Taiwanese J. Math., 7(2003), 591-604.
[11] Liu Yuji and Ge Weigao, Positive solutions of boundary-value problems for 2M-order differential equations, Electronic J. of Diff. Eq., Vol. 2003(2003), 1-12.
[12] M. Meehan and D. O'Regan, Multiple nonnegative solutions of nonlinear integral equation on compact and semi-infinite intervals, Applicable Analysis, 74(2000), 413-427.
[13] L.C. Piccinini, G. Stampacchia and G. Vidossich, Ordinary Differential Equations in \mathbb{R}^{n}, Problems and Methods, Springer-Verlag, New-York, 1984.
[14] D. O'Regan and R. Precup, Existence criteria for integral equations in Banach spaces, J. of Inequal. and Appl., 6(2001), 77-97.
[15] R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht-Boston-London, 2002.

Received: January 26, 2005; Accepted: August 16, 2006.

