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Abstract. The purpose of this paper is to give an existence result for the nonlinear fourth-

order boundary value problem
ul (t) = f(u(t)), t€(0,1]

u(0) =wu(l) = A,

v (0)=u"(1)=B
where f : [0,00) — R is continuous and A, B are positive real numbers. We use a result
related to the existence of positive solutions for nonlinear integral equations in Banach spaces,
presented in [7].
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1. INTRODUCTION AND PRELIMINARY RESULTS

Localization of solutions for nonlinear operator equations can be obtained
by using variational methods [14, 15, 9], upper and lower solution method
[1, 4, 6] or existence results related to ordered Banach spaces [6, 12, 2, 8]. In
this paper we seek positive solutions of a fourth-order boundary value problem
using the results related to the existence of positive solutions for nonlinear
integral equation in ordered Banach spaces, presented in [7].

Boundary value problems for m-order differential equations describe phys-
ical, biological and chemical phenomena. Fourth-order boundary value prob-
lems were studied by many authors [3, 10, 11]. A special attention received
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the Lidstone boundary value problem

{ U@ (t) = f(t,ut),u"(t)), 0<t<1
u(0) =u (1) =u"(0) =u"(1) = 0.

For example, in [3] using the Five Functionals Fixed Point Theorem there are
established some growth conditions on f to obtain three symmetric positive
solutions, and the Avery-Henderson fixed point theorem is applied in [10]
together with some growth conditions on f to prove the existence of at least
two positive solutions for three point boundary value problems.

The main tool of our approach is the Krasnoselskii’s compression-expansion
fixed point theorem.

Theorem 1.1. Let (E,|-|) be a Banach space, and let C' C E be a cone in E.
Assume that Qq, Qo are two open subsets of E such that 0 € Q1 and Q1 C Qo.
Let the operator T : C'N (ﬁg\Ql) — C be completely continuous and either

IT(z)| < |z|, x € CNIY and |T(x)| > |z|, € C NNy

or
T (x)| > |z, x € CNIQ and |T(x)|] < |z|, x € C NI
1s true. Then T has a fized point in C N (52\ Ql).

In [7] the Krasnoselskii’s compression-expansion fixed point theorem is used

for the nonlinear integral equation
T
U (t) :/ k(t,s)F (U)(s)ds, te€0,T],
0

where k : [0,T] x[0,7] - Ry and F : C'([0,T]; K) — C([0,T]; K) is an oper-
ator. In that follows, we extend this result to the nonlinear integral equation

T
U(t)=g(t) +/O k(t,s) F(U)(s)ds, t€[0,T] (1.1)

where g : [0,T] — K, k : [0,T] x [0,T] — Ry and F : C([0,T];K) —
C ([0,7]; K) is an operator.

Theorem 1.2. Let (X, |-|) be a real Banach space and let K C X be a cone
of X. Assume that the norm |-| is monotone with respect to K and that the

following conditions are satisfied:
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(Hy) For each t € [0,T), ky = k(t,-) € L' (0,T;Ry) and the map t — ky is
continuous from [0,T] to L' (0,T);

(Hs) There exists p € (0,1), k € L' (0,T) and an interval [a,b] C [0,T],
a < b, such that

k(t,s)

IN

k(s), t€[0,T],a.e s€[0,T]
and

pk(s) < k(t,s) tela,b],ae sel0,T];
(H3) The map g : [0,T] — K is continuous and satisfies the inequality
pg(t) <g(t), te0,7],¢ € a,b] (1.2)
(Hy) There exists ® : K — K such that
O (x) <F(U)(t), te]a,bl; (1.3)

whenever U € C ([0,T];K),z € K and x < U (t) for all t € [a,b];
(Hs) There exists o > 0 such that

o —|g|
F(U) ()| < 0 1.4
[F(U) )] < s [Th(t5)ds (1.4)
te[0,7

forallt € [0,T] and U € C([0,T]; K) with |U| = a;
(Hg) There exists > 0,5 # a and t* € [0,T] such that

b
inf {|@ (2)| :xeK,m:uﬁ}./ k(t,s)ds > B+ 1g(E):  (L5)

(H7) The operator Ny defined by

T
No (U) (t) = /0 k(t,) F (U) (s) ds

is completely continuous from C ([0,T]; K) to C ([0,T];X).
Then (1.1) has at least one solution U € C ([0,T]; K) such that

pU () <U (¢') fort€[0,T),t € [a,b] (1.6)

and 0 < min{a, 8} < |U| < max{«, 3}.
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Proof. To apply Krasnoselskii’s theorem, let £ = C ([0,7];X) be endowed
with the norm |U| = n%ax] |U (t)| and and let us consider the cone
t€[0,T

C={UecC(0,T);K): pU(t) <U (') fort €[0,T],t € [a,b]}.
We make the notations 71 = min{a, 8} and ro = max{«, 5} and we denote
M ={UecC(0,T]:;X):|U|, <7}
O = {U € C([0,T]: X) : |U], <12}
Consider the operator
NU) (@) =g(t) +/0Tk(t,s)F(U) (s)ds, te[0,T].

From (H;) — (Hs) and (H7) we have that N : C' — C and N is completely
continuous.
Let U € C and |U|,, = a. Using (Hs) we deduce that

T
INWWNQMM+Ak@$WWMﬂ%§a

for all ¢ € [0,7]. Hence |N (U)|,, <|U|-

Let U € C, |U|,, = # and we can consider that pU (to) < U (¢) for all t' €
[a,b] and to € [0,T] with |U (t9)| = 5. Now (Hy4) implies that ® (uU (t9)) <
F(U) (s) for s € [a,b]. Then

T
N(U) () = g(t*)+/0 k(t*,s) F (U) (s) ds

T
> )+ 80 (o) [ R(Es)ds

So, N (U) (t*)| > |® (uU (to))| fgk(t*,s) ds — |g (t*)| for t* € [0,T] and from
(Hs) it follows that [N (U)| > |U| -
Therefore, Krasnoselskii’s Theorem applies. O

In many applications we are interested in multiple solutions. Under similar
conditions to (Hs) and (Hg) we obtain the following result:

Theorem 1.3. Assume that (Hy) — (Hy), (H7) hold and

(M) for somen € N\ {0} there exist a; > 0,7 = 1,n such that (Hs) is satisfied
with « = «; for every i € {1,...,n}
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(Mz) for some m € N\ {0} there exist 8; > 0 and t; € [0,T],j = 1,m such
that (Hg) is satisfied with 3 = B; and t* =t} for every j € {1,...,m}
Then

() Ifm=n+4+1and0< 1 <1 <...<Bp<an<Bnt1, then (1.1) has
at least 2n nonnegative solutions Uy, ..., U, € C ([0,T]; K) such that

0< 1 <|Ully <a1 <...<ap<|Unly < Bnt1

(II) Ifm=nand 0 < f1 < a1 < ... < Bp < an, then (1.1) has at least
2n — 1 nonnegative solutions Uy, ...,Usp—1 € C([0,T]; K) such that

0<ﬂ1<’Ul‘oo<041<--~<ﬂn<’U2n—1‘oo<an

(IIT) Ifn=m+1and 0 < oy < B1 < ... < am < B < @1, then (1.1)
has at least 2m nonnegative solutions Uy, ..., Usy, € C ([0,T]; K) such
that

0<ar <|Ully <B1<...<Bm <|Uzmly < ms1

(IV)Ifn=mand 0 < a1 < (1 < ... < Bp < am < B, then (1.1) has at
least 2m — 1 nonnegative solutions Uy, . ..,Usm—1 € C([0,T]; K) such
that

O0<ar < |U1‘Oo <O <. o< ay< |U2m71‘oo < Bm-
2. APPLICATION

In this section, we apply Theorem 1.2 to localize positive solutions for the
nonlinear fourth-order boundary value problem

u® () = f (u(t)), te0,1] (2.7)
u(0)=u(l)=A4,
u”" (0)=vu"(1)=-B
where f: Ry — Ry is continuous and A, B are nonnegative real numbers.
Theorem 2.4. Let ¢ € (0, %), u € (O, % — 5}, om = min{A, B} and

oy = max {A, B}. Suppose that the function f : Ry — Ry is continuous
and

(Ty) there is a map @ : R2 — R2, ® = (91, y) such that

(0,0) < (w1, 72) < (y1,92) implies @ (z1,22) < (y2, f (y1)) (2.8)
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(T3) there exists o > 0 such that

max {f (y1),y2} < 8 (o —on), (2.9)

for any (y1,y2) € R with max {y1,y2} = a;
(T3) there exists 3 >0, # o and t* € [0,1] such that

S g(t) < 0+ om: (2.10)
where

Y =inf {max {(I)l (.%1,332) , dy (xl,xg)} 1 IT1,T2 € R+,max {:6'1,.%'2} = ,uﬂ}

and
et if te[O,%—a]
gt)={ 52 -1p=2 yf te(l-clie).
e(1—1) if te[}+el]
Then (2.7) has at least one solution v € C ([0,1];R) such that

pu(t) <u(t') and pu” () > u” (')
forte[0,1],t' € [% —8,%4—6] and

0 < min{a, 8} < trél[g,)l(} {u(t), —u" (t)} < max{a, B} .

Proof. Let C ([0,1];R) be the set of all continuous functions from [0, 1] to
R4 = [0,00). We make the notation K = C ([0,1];Ry) x C ([0,1];R,). For
any U = (u1,u2) € K we consider

Ul = max max {u; (t),u2 (t)}.
te[0,1]

Letting u; = w and uy = —u” we see that problem (2.7) is equivalent to the
system

u] = —ug

up (0)=u1(1)=A

uy = —f (w1 ()

uz (0) = w2 (1) = B.

The Green function associated to the operator —u” and the boundary con-

ditions v (0) =u (1) =0is G: [0,1] x [0,1] — R,

G(ts) s(l—t), 0<s<t<1
yS) =
t(l—s), 0<t<s<lL.

(2.11)

(2.12)
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Hence, (2.7) is equivalent to the nonlinear integral equation
1
Ut) = g(t) +/ Gt s)F (U (s))ds, te[0,1], (2.13)
0

where U = (u1,u2) € C ([0,1];R%) N C?([0,1];R%), the function g : [0,1] —
Ri is given by

g(t)=(A,B),te[0,1]
and the operator F': K — K is defined by

F(U) = F (u1,u2) = (u2, f (u1)).

In what it follows, we show that all conditions of Theorem 1.2 are satisfied.
Consider « : [0,1] — Ry, r(s) =s(1 —s) and 0 < & < &. We have ux (s) <
G(t,s) fort € [ —e,5+¢] and all s € [0,1]. Here u € (0,3 —¢]. On the
other hand, G (t,s) < k (s), for all ¢,s € [0, 1]. The proof of these inequalities
may be found in [8]. Hence, condition (H3) is satisfied.

Let X = R? and K = R? be the positive cone of R?. For x = (21, x2) and
y = (y1,92), we have (x1,z2) < (y1,y2) if and only if x; < y; and x9 < yo.

Inequality (1.2) is equivalent to - (A, B) < (A, B) and is satisfied for any
p <1l

Let (z1,22) € R and U = (u1,u2) € C ([0,1];R3) N C?([0,1];R%) with
(z1,22) < U (t), for every t € [3 — e, 3 +¢]. From hypothesis (1) we obtain

P (w1,22) < (u2 (), f (ur (1)) = F(U) (¢) .t € [;—5,;+5] :

Hence, (T7) implies (Hy).
We have (see [3, 8])

! 1
sup / G (t,s)ds = =.
/o 8

te(0,1

Therefore, (1.4) is equivalent to (2.9).
A simple computation shows

1

ate
/ Gt s)ds=g(t), te01].

1
2—8

Then (73) is necessary for (Hg). Hypothesis (H7) is implied by the continuity
of g,G and f. (|
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Remark 2.1. For f: Ry — Ry a nondecreasing map, we can take ® : R%— —
Ri given by
® (21, 22) = (w2, f (21)) -

Remark 2.2. For t* = 1, inequality (2.10) can be replaced by

=3,
2(5"‘0'771)

>
e(l—ge)’

see [3, 8] for details.

Remark 2.3. Theorem 2.4 can be extended to the nonlinear 2n-order boundary

value problem
ul) () = f(u(t)), t€ la,b]

and some similar results can be established for non autonomous equations.

3. MULTIPLE SOLUTIONS RESULT

This part was inspired by [3] where a three symmetric positive solution
result is established.
Consider the fourth order Lidstone boundary value problem

u(t) = f(u®), 0<t<1
{ w(0) = u (1) = u”(0) = (1) = 0. (3.14)

where f : Ry — Ry is continuous. Here A = B = 0. To obtaining three
positive solutions we have the next results:

Theorem 3.5. Letc € (0, %), we (0, % - 5] and f: Ry — Ry is continuous.
Suppose that there exist 0 < 01 < aq < P2 < ag such that
(M) there exists a map ® : RZ — R% such that
(z1,22) < (y1,92) implies © (x1,22) < (y2, f (y1))
(Ms) for all y; = (yi1, yi2) € ]R%_ with max {y;1,yi2} = a4, 1 € {1,2}, we have

max { f (yi1) ,yi2} < 8ay, i€ {1,2}
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(M3) there exist t5,t5 € [0,1] such that

S5 (t) < B i€ {1,2}.

where ¥; = inf {|® (z1,x2)| : 1,22 € Ry, max {1, 22} = pfi} and

et if te[(),%—s]
s0=1 S -k+ =2 i te(-adre) .
e(1—1) if telj+el]

Then the problem (3.14) has at least three positive solutions uy, ug, us such
that

0 < 1 < max |ug ()] < a1 < max |ug (t)| < B2 < max |ug (t)| < az
te[0,1 tel0,1] te(0,1]
with
pu; (t) < g (t7) and g (t) > g () i € {1,2,3}

forte0,1], the [t —e s +e],ie{1,2,3}.
Proof. The conclusions follow from Theorem 1.3 for n = m = 2. O
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