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Abstract. The purpose of this paper is to give an existence result for the nonlinear fourth-

order boundary value problem

u(4) (t) = f (u (t)) , t ∈ [0, 1]

u (0) = u (1) = A,

u′′ (0) = u′′ (1) = B

where f : [0,∞) → R is continuous and A, B are positive real numbers. We use a result

related to the existence of positive solutions for nonlinear integral equations in Banach spaces,

presented in [7].
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1. Introduction and preliminary results

Localization of solutions for nonlinear operator equations can be obtained
by using variational methods [14, 15, 9], upper and lower solution method
[1, 4, 6] or existence results related to ordered Banach spaces [6, 12, 2, 8]. In
this paper we seek positive solutions of a fourth-order boundary value problem
using the results related to the existence of positive solutions for nonlinear
integral equation in ordered Banach spaces, presented in [7].

Boundary value problems for m-order differential equations describe phys-
ical, biological and chemical phenomena. Fourth-order boundary value prob-
lems were studied by many authors [3, 10, 11]. A special attention received
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the Lidstone boundary value problem{
u(4)(t) = f(t, u(t), u′′(t)), 0 < t < 1
u (0) = u (1) = u′′(0) = u′′(1) = 0.

For example, in [3] using the Five Functionals Fixed Point Theorem there are
established some growth conditions on f to obtain three symmetric positive
solutions, and the Avery-Henderson fixed point theorem is applied in [10]
together with some growth conditions on f to prove the existence of at least
two positive solutions for three point boundary value problems.

The main tool of our approach is the Krasnoselskii’s compression-expansion
fixed point theorem.

Theorem 1.1. Let (E, |·|) be a Banach space, and let C ⊂ E be a cone in E.
Assume that Ω1, Ω2 are two open subsets of E such that 0 ∈ Ω1 and Ω1 ⊂ Ω2.
Let the operator T : C ∩

(
Ω2\Ω1

)
→ C be completely continuous and either

|T (x)| ≤ |x| , x ∈ C ∩ ∂Ω1 and |T (x)| ≥ |x| , x ∈ C ∩ ∂Ω2

or

|T (x)| ≥ |x| , x ∈ C ∩ ∂Ω1 and |T (x)| ≤ |x| , x ∈ C ∩ ∂Ω2

is true. Then T has a fixed point in C ∩
(
Ω2\Ω1

)
.

In [7] the Krasnoselskii’s compression-expansion fixed point theorem is used
for the nonlinear integral equation

U (t) =
∫ T

0
k (t, s) F (U) (s) ds, t ∈ [0, T ] ,

where k : [0, T ]× [0, T ] → R+ and F : C ([0, T ] ; K) → C ([0, T ] ; K) is an oper-
ator. In that follows, we extend this result to the nonlinear integral equation

U (t) = g (t) +
∫ T

0
k (t, s) F (U) (s) ds, t ∈ [0, T ] (1.1)

where g : [0, T ] → K, k : [0, T ] × [0, T ] → R+ and F : C ([0, T ] ; K) →
C ([0, T ] ; K) is an operator.

Theorem 1.2. Let (X, |·|) be a real Banach space and let K ⊂ X be a cone
of X. Assume that the norm |·| is monotone with respect to K and that the
following conditions are satisfied:
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(H1) For each t ∈ [0, T ], kt = k (t, ·) ∈ L1 (0, T ; R+) and the map t 7→ kt is
continuous from [0, T ] to L1 (0, T );

(H2) There exists µ ∈ (0, 1), κ ∈ L1 (0, T ) and an interval [a, b] ⊂ [0, T ],
a < b, such that

k (t, s) ≤ κ (s) , t ∈ [0, T ] , a.e s ∈ [0, T ]

and

µκ (s) ≤ k (t, s) t ∈ [a, b] , a.e s ∈ [0, T ] ;

(H3) The map g : [0, T ] → K is continuous and satisfies the inequality

µg (t) ≤ g
(
t′
)
, t ∈ [0, T ] , t′ ∈ [a, b] (1.2)

(H4) There exists Φ : K → K such that

Φ (x) ≤ F (U) (t) , t ∈ [a, b] ; (1.3)

whenever U ∈ C ([0, T ] ; K) , x ∈ K and x ≤ U (t) for all t ∈ [a, b];
(H5) There exists α > 0 such that

|F (U) (t)| ≤
α− |g|∞

sup
t∈[0,T ]

∫ T
0 k (t, s) ds

(1.4)

for all t ∈ [0, T ] and U ∈ C ([0, T ] ; K) with |U | = α;
(H6) There exists β > 0, β 6= α and t∗ ∈ [0, T ] such that

inf {|Φ (x)| : x ∈ K, |x| = µβ} ·
∫ b

a
k (t∗, s) ds ≥ β + |g (t∗)| ; (1.5)

(H7) The operator N0 defined by

N0 (U) (t) =
∫ T

0
k (t, s) F (U) (s) ds

is completely continuous from C ([0, T ] ; K) to C ([0, T ] ; X).

Then (1.1) has at least one solution U ∈ C ([0, T ] ; K) such that

µU (t) ≤ U
(
t′
)

for t ∈ [0, T ] , t′ ∈ [a, b] (1.6)

and 0 < min{α, β} ≤ |U |∞ ≤ max{α, β}.
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Proof. To apply Krasnoselskii’s theorem, let E = C ([0, T ] ; X) be endowed
with the norm |U |∞ = max

t∈[0,T ]
|U (t)| and and let us consider the cone

C =
{
U ∈ C ([0, T ] ; K) : µU (t) ≤ U

(
t′
)

for t ∈ [0, T ] , t′ ∈ [a, b]
}

.

We make the notations r1 = min{α, β} and r2 = max{α, β} and we denote

Ω1 = {U ∈ C ([0, T ] ; X) : |U |∞ < r1}

Ω2 = {U ∈ C ([0, T ] ; X) : |U |∞ < r2} .

Consider the operator

N (U) (t) = g (t) +
∫ T

0
k (t, s) F (U) (s) ds, t ∈ [0, T ] .

From (H1) − (H3) and (H7) we have that N : C → C and N is completely
continuous.

Let U ∈ C and |U |∞ = α. Using (H5) we deduce that

|N (U) (t)| ≤ |g (t)|+
∫ T

0
k (t, s) |F (U) (s)| ds ≤ α

for all t ∈ [0, T ]. Hence |N (U)|∞ ≤ |U |∞.
Let U ∈ C, |U |∞ = β and we can consider that µU (t0) ≤ U (t′) for all t′ ∈

[a, b] and t0 ∈ [0, T ] with |U (t0)| = β. Now (H4) implies that Φ (µU (t0)) ≤
F (U) (s) for s ∈ [a, b]. Then

N (U) (t∗) = g (t∗) +
∫ T

0
k (t∗, s) F (U) (s) ds

≥ g (t∗) + Φ (µU (t0))
∫ T

0
k (t∗, s) ds.

So, |N (U) (t∗)| ≥ |Φ (µU (t0))|
∫ T
0 k (t∗, s) ds− |g (t∗)| for t∗ ∈ [0, T ] and from

(H6) it follows that |N (U)|∞ ≥ |U |∞.
Therefore, Krasnoselskii’s Theorem applies. �

In many applications we are interested in multiple solutions. Under similar
conditions to (H5) and (H6) we obtain the following result:

Theorem 1.3. Assume that (H1)− (H4) , (H7) hold and

(M1) for some n ∈ N\ {0} there exist αi > 0, i = 1, n such that (H5) is satisfied
with α = αi for every i ∈ {1, . . . , n}
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(M2) for some m ∈ N\ {0} there exist βj > 0 and t∗j ∈ [0, T ] , j = 1,m such
that (H6) is satisfied with β = βj and t∗ = t∗j for every j ∈ {1, . . . ,m}

Then

(I) If m = n + 1 and 0 < β1 < α1 < . . . < βn < αn < βn+1, then (1.1) has
at least 2n nonnegative solutions U1, . . . , U2n ∈ C ([0, T ] ; K) such that

0 < β1 < |U1|∞ < α1 < . . . < αn < |U2n|∞ < βn+1

(II) If m = n and 0 < β1 < α1 < . . . < βn < αn, then (1.1) has at least
2n− 1 nonnegative solutions U1, . . . , U2n−1 ∈ C ([0, T ] ; K) such that

0 < β1 < |U1|∞ < α1 < . . . < βn < |U2n−1|∞ < αn

(III) If n = m + 1 and 0 < α1 < β1 < . . . < αm < βm < αm+1, then (1.1)
has at least 2m nonnegative solutions U0, . . . , U2m ∈ C ([0, T ] ; K) such
that

0 < α1 < |U1|∞ < β1 < . . . < βm < |U2m|∞ < αm+1

(IV ) If n = m and 0 < α1 < β1 < . . . < βn < αm < βm, then (1.1) has at
least 2m − 1 nonnegative solutions U0, . . . , U2m−1 ∈ C ([0, T ] ; K) such
that

0 < α1 < |U1|∞ < β1 < . . . < αm < |U2m−1|∞ < βm.

2. Application

In this section, we apply Theorem 1.2 to localize positive solutions for the
nonlinear fourth-order boundary value problem

u(4) (t) = f (u (t)) , t ∈ [0, 1] (2.7)

u (0) = u (1) = A,

u′′ (0) = u′′ (1) = −B

where f : R+ → R+ is continuous and A, B are nonnegative real numbers.

Theorem 2.4. Let ε ∈
(
0, 1

2

)
, µ ∈

(
0, 1

2 − ε
]
, σm = min {A,B} and

σM = max {A,B}. Suppose that the function f : R+ → R+ is continuous
and

(T1) there is a map Φ : R2
+ → R2

+, Φ = (Φ1,Φ2) such that

(0, 0) ≤ (x1, x2) ≤ (y1, y2) implies Φ (x1, x2) ≤ (y2, f (y1)) (2.8)
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(T2) there exists α > 0 such that

max {f (y1) , y2} < 8 (α− σM ) , (2.9)

for any (y1, y2) ∈ R2
+ with max {y1, y2} = α;

(T3) there exists β > 0, β 6= α and t∗ ∈ [0, 1] such that

Σ · g (t∗) < β + σm, (2.10)

where

Σ = inf {max {Φ1 (x1, x2) ,Φ2 (x1, x2)} : x1, x2 ∈ R+,max {x1, x2} = µβ}

and

g (t) =


εt if t ∈

[
0, 1

2 − ε
]

t−t2

2 − 1
8 + ε−ε2

2 if t ∈
(

1
2 − ε, 1

2 + ε
)

ε (1− t) if t ∈
[

1
2 + ε, 1

] .

Then (2.7) has at least one solution u ∈ C ([0, 1] ; R+) such that

µu (t) ≤ u
(
t′
)

and µu′′ (t) ≥ u′′
(
t′
)

for t ∈ [0, 1], t′ ∈
[

1
2 − ε, 1

2 + ε
]

and

0 < min {α, β} ≤ max
t∈[0,1]

{
u (t) ,−u′′ (t)

}
≤ max {α, β} .

Proof. Let C ([0, 1] ; R+) be the set of all continuous functions from [0, 1] to
R+ = [0,∞). We make the notation K = C ([0, 1] ; R+) × C ([0, 1] ; R+). For
any U = (u1, u2) ∈ K we consider

‖U‖ = max
t∈[0,1]

max {u1 (t) , u2 (t)} .

Letting u1 = u and u2 = −u′′ we see that problem (2.7) is equivalent to the
system 

u′′1 = −u2

u1 (0) = u1 (1) = A

u′′2 = −f (u1 (t))
u2 (0) = u2 (1) = B.

(2.11)

The Green function associated to the operator −u′′ and the boundary con-
ditions u (0) = u (1) = 0 is G : [0, 1]× [0, 1] → R,

G (t, s) =

{
s (1− t) , 0 ≤ s ≤ t ≤ 1
t (1− s) , 0 ≤ t ≤ s ≤ 1.

(2.12)
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Hence, (2.7) is equivalent to the nonlinear integral equation

U (t) = g (t) +
∫ 1

0
G (t, s) F (U (s)) ds, t ∈ [0, 1] , (2.13)

where U = (u1, u2) ∈ C
(
[0, 1] ; R2

+

)
∩ C2

(
[0, 1] ; R2

+

)
, the function g : [0, 1] →

R2
+ is given by

g (t) = (A,B) , t ∈ [0, 1]

and the operator F : K → K is defined by

F (U) = F (u1, u2) = (u2, f (u1)) .

In what it follows, we show that all conditions of Theorem 1.2 are satisfied.
Consider κ : [0, 1] → R+, κ (s) = s (1− s) and 0 < ε < 1

2 . We have µκ (s) ≤
G (t, s) for t ∈

[
1
2 − ε, 1

2 + ε
]

and all s ∈ [0, 1]. Here µ ∈
(
0, 1

2 − ε
]
. On the

other hand, G (t, s) ≤ κ (s), for all t, s ∈ [0, 1]. The proof of these inequalities
may be found in [8]. Hence, condition (H2) is satisfied.

Let X = R2 and K = R2
+ be the positive cone of R2. For x = (x1, x2) and

y = (y1, y2), we have (x1, x2) ≤ (y1, y2) if and only if x1 ≤ y1 and x2 ≤ y2.
Inequality (1.2) is equivalent to µ · (A,B) ≤ (A,B) and is satisfied for any

µ ≤ 1.
Let (x1, x2) ∈ R2

+ and U = (u1, u2) ∈ C
(
[0, 1] ; R2

+

)
∩ C2

(
[0, 1] ; R2

+

)
with

(x1, x2) ≤ U (t), for every t ∈
[

1
2 − ε, 1

2 + ε
]
. From hypothesis (T1) we obtain

Φ (x1, x2) ≤ (u2 (t) , f (u1 (t))) = F (U) (t) , t ∈
[
1
2
− ε,

1
2

+ ε

]
.

Hence, (T1) implies (H4).
We have (see [3, 8])

sup
t∈[0,1]

∫ 1

0
G (t, s) ds =

1
8
.

Therefore, (1.4) is equivalent to (2.9).
A simple computation shows∫ 1

2
+ε

1
2
−ε

G (t, s) ds = g (t) , t ∈ [0, 1] .

Then (T3) is necessary for (H6). Hypothesis (H7) is implied by the continuity
of g,G and f . �
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Remark 2.1. For f : R+ → R+ a nondecreasing map, we can take Φ : R2
+ →

R2
+ given by

Φ (x1, x2) = (x2, f (x1)) .

Remark 2.2. For t∗ = 1
2 , inequality (2.10) can be replaced by

Σ >
2 (β + σm)
ε (1− ε)

,

see [3, 8] for details.

Remark 2.3. Theorem 2.4 can be extended to the nonlinear 2n-order boundary
value problem

u(2n) (t) = f (u (t)) , t ∈ [a, b]
u (a) = u (b) = A1

u′′ (a) = u′′ (b) = A2

u(4) (a) = u(4) (b) = A3

. . .

u(2n−2) (a) = u(2n−2) (b) = An

and some similar results can be established for non autonomous equations.

3. Multiple solutions result

This part was inspired by [3] where a three symmetric positive solution
result is established.

Consider the fourth order Lidstone boundary value problem{
u(4)(t) = f(u(t)), 0 < t < 1
u (0) = u (1) = u′′(0) = u′′(1) = 0.

(3.14)

where f : R+ → R+ is continuous. Here A = B = 0. To obtaining three
positive solutions we have the next results:

Theorem 3.5. Let ε ∈
(
0, 1

2

)
, µ ∈

(
0, 1

2 − ε
]

and f : R+ → R+ is continuous.
Suppose that there exist 0 < β1 < α1 < β2 < α2 such that

(M1) there exists a map Φ : R2
+ → R2

+ such that

(x1, x2) ≤ (y1, y2) implies Φ (x1, x2) ≤ (y2, f (y1))

(M2) for all yi = (yi1, yi2) ∈ R2
+ with max {yi1, yi2} = αi, i ∈ {1, 2}, we have

max {f (yi1) , yi2} < 8αi, i ∈ {1, 2}
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(M3) there exist t∗1, t
∗
2 ∈ [0, 1] such that

Σi · g (t∗i ) < βi, i ∈ {1, 2} .

where Σi = inf {|Φ (x1, x2)| : x1, x2 ∈ R+,max {x1, x2} = µβi} and

g (t) =


εt if t ∈

[
0, 1

2 − ε
]

t−t2

2 − 1
8 + ε−ε2

2 if t ∈
(

1
2 − ε, 1

2 + ε
)

ε (1− t) if t ∈
[

1
2 + ε, 1

] .

Then the problem (3.14) has at least three positive solutions u1, u2, u3 such
that

0 < β1 < max
t∈[0,1]

|u1 (t)| < α1 < max
t∈[0,1]

|u2 (t)| < β2 < max
t∈[0,1]

|u3 (t)| < α2

with
µui (t) ≤ ui

(
t′i

)
and µu′′i (t) ≥ u′′i

(
t′i

)
, i ∈ {1, 2, 3}

for t ∈ [0, 1], t′i ∈
[

1
2 − ε, 1

2 + ε
]
, i ∈ {1, 2, 3}.

Proof. The conclusions follow from Theorem 1.3 for n = m = 2. �
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