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Abstract. In [W.A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl.

277 (2003) 645-650], W.A. Kirk proved a fixed point theorem for asymptotic contractions

f : X → X on complete metric spaces (X, d). In the theorem it is assumed that some Picard

iteration sequence (fn(x0)) is bounded. Here we prove that for an asymptotic contraction

f : X → X on a metric space (X, d) any Picard iteration sequence is bounded, thus making

the above mentioned assumption of the theorem superfluous. We also provide, given an

asymptotic contraction f : X → X on a complete metric space (X, d), an explicit rate of

convergence for a Picard iteration sequence (fn(x0)) which does not depend on a bound

on the iteration sequence, but which instead depends on (strictly positive) upper and lower

bounds on d(x0, f(x0)). This is thus in a sense an improvement on the results in [E.M.

Briseid, A rate of convergence for asymptotic contractions, J. Math. Anal. Appl., 330 (2007)

364-376], where the rate of convergence depends on a bound on the iteration sequence. In

both cases the rate of convergence also depends on some moduli for the mapping appearing

as parameters, but is again in both cases otherwise fully uniform. We can also easily adapt

to the situation where the space is not complete.
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1. Introduction

In [6], W.A. Kirk introduced asymptotic contractions and proved a fixed
point theorem for these. We give for reference the definition and the theorem.
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Definition 1.1. ([6]) A function f : X → X on a metric space (X, d) is called
an asymptotic contraction in the sense of Kirk with moduli φ, φn : [0,∞) →
[0,∞) if φ, φn are continuous, φ(s) < s for all s > 0 and for all x, y ∈ X

d(fn(x), fn(y)) ≤ φn(d(x, y)),

and moreover φn → φ uniformly on the range of d.

Theorem 1.2. ([6]) Let (X, d) be a complete metric space, and let f : X → X

be a continuous asymptotic contraction in the sense of Kirk. If for some x ∈ X

the Picard iteration sequence (fn(x)) is bounded, then f has a unique fixed
point z ∈ X and for every starting point x ∈ X the iteration sequence (fn(x))
converges to z.

(Note that, as remarked in e.g. [1], [5], in the statement of the theorem in [6]
the assumption that the mapping must be continuous was inadvertently left
out. Note also that in [6] the mappings in Definition 1.1 are called just as-
ymptotic contractions.) We prove here that the assumption that one iteration
sequence is bounded can be dropped. To this end we consider the modified
definition of an asymptotic contraction given in [2]. Our work makes use of the
analysis of Kirk’s theorem on asymptotic contractions given by P. Gerhardy
in [4]. In [4], Gerhardy uses techniques from the program of proof mining as
developed by U. Kohlenbach (see e.g. [7], [8]) to develop a quantitative version
of Kirk’s theorem and give an elementary proof of the theorem.

See also I.D. Arandelović ([1]), Y.-Z. Chen ([3]), J. Jachymski and I. Jóźwik
([5]), and K. W lodarczyk, D. Klim and R. Plebaniak ([9]) for further work
concerning versions of asymptotic contractions. See [2] for some comments on
these (except [9], which appeared quite recently). In [3] and [5] conditions are
given which allow one to remove the requirement that some iteration sequence
is bounded from the corresponding theorems, but this removal is obtained only
by introducing further limit requirements on the relevant moduli. We need
here no such extra conditions.

The following definition is a modification of Gerhardy’s definition of asymp-
totic contractions, i.e. Definition 2 in [4].

Definition 1.3. ([2]) A function f : X → X on a metric space (X, d) is
called a (generalized) asymptotic contraction if for each b > 0 there exist
moduli ηb : (0, b] → (0, 1) and βb : (0, b]× (0,∞) → N and the following hold:
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(1) There exists a sequence of functions φb
n : (0,∞) → (0,∞) such that

for each 0 < l ≤ b the function βb
l := βb(l, ·) is a modulus of uniform

convergence for (φb
n)n∈N on [l, b], i.e.

∀ε > 0∀s ∈ [l, b]∀m,n ≥ βb
l (ε)(|φb

m(s)− φb
n(s)| ≤ ε).

Furthermore, if ε < ε′ then βb
l (ε) ≥ βb

l (ε′).
(2) For all x, y ∈ X, for all b ≥ ε > 0 and for all n ∈ N such that

βb
ε(1) ≤ n, we have:

b ≥ d(x, y) ≥ ε gives d(fn(x), fn(y)) ≤ φb
n(ε)d(x, y).

(3) Define φb := limn→∞ φb
n. Then for each 0 < ε ≤ b we have

φb(s) + ηb(ε) ≤ 1

for each s ∈ [ε, b].

If f is an asymptotic contraction in the sense of Definition 1.1, then f is
also an asymptotic contraction in the sense of Definition 1.3. (See Proposition
9 in [4] and the comment following Definition 2.2 in [2].) We will for short
refer to the mappings f : X → X fulfilling Definition 1.3 as just asymptotic
contractions. When there is no risk of ambiguity we will often drop the su-
perscripts from ηb and βb. Unless otherwise specified we will, given a metric
space (X, d), a mapping f : X → X and an x0 ∈ X, let (xn) be the sequence
defined by xn+1 := f(xn).

The above definition is in fact, as the following simple example shows,
strictly more general than Definition 2 in [4], and therefore also strictly more
general than Definition 1.1. Consider f : [0,∞) → [0,∞) defined by

f(x) :=

{
1/x if 0 < x < 1,
0 otherwise.

Then f is an asymptotic contraction in our extended sense, with for all b > 0
φb

n(t) := 0, φb(t) := 0 and βb
l (t) := 2 for t ∈ (0,∞), and with ηb(t) := 1/2 for

t ∈ (0, b]. But f is not an asymptotic contraction in the sense of Gerhardy,
i.e. in the sense of Definition 2 in [4]. For, since 1/2 ≥ d(ε, 1/2 + ε) ≥ 1/2 for
0 < ε < 1/2, we should then have

d(f(ε), f(1/2 + ε)) ≤ φ
1/2
1 (1/2) · d(ε, 1/2 + ε) =

φ
1/2
1 (1/2)

2
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for all such ε, where φ
1/2
1 is as in Definition 2 in [4]. But

{d(f(ε), f(1/2 + ε)) : 0 < ε < 1/2}

is unbounded.
We will make use of the following two results from [4], which we in [2]

note hold also for asymptotic contractions in our sense (i.e. in the sense of
Definition 1.3).

Proposition 1.4. ([4]) Let (X, d) be a metric space, let f : X → X be an
asymptotic contraction and let b > 0 and ηb, βb be given. For b ≥ ε > 0 we
let K(ηb, βb, ε) := βb

ε(ηb(ε)/2). With ηb, βb fixed we write Kε for K(ηb, βb, ε).
Then for all b ≥ ε > 0 we have for all k ≥ Kε that if b ≥ d(x, y) ≥ ε, then

d(fk(x), fk(y)) ≤
(

1− ηb(ε)
2

)
· d(x, y).

Lemma 1.5. ([4]) Let (X, d) be a metric space, let f : X → X be an as-
ymptotic contraction and let b > 0 and η, β be given. For b ≥ ε > 0 let
Kε := βε(η(ε)/2) and δ := η(ε) ·ε/4. Then for every b ≥ ε > 0, for all n ≥ Kε

and all x, y ∈ X with d(x, y) ≤ b, if

d(x, fn(x)), d(y, fn(y)) ≤ δ,

then d(x, y) ≤ ε.

2. Main results

We need the following lemma, which draws heavily on Lemma 11 in [4].

Lemma 2.1. Let (X, d) be a metric space, let f : X → X be an asymptotic
contraction and let b > 0 and η, β be given. For b ≥ δ > 0 let Kδ := βδ(η(δ)/2)
and

Mδ := Kδ ·

⌈
lg(δ)− lg(b)

lg(1− η(δ)
2 )

⌉
.

Then for all x0, y0 ∈ X such that for all n ≥ 0 we have d(xn, yn) ≤ b there
exists an m ≤ Mδ such that

d(xm, ym) ≤ δ.
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Proof. Let Kδ := βδ(η(δ)/2). Assume for some M and all m < M we have
d(xmKδ

, ymKδ
) ≥ δ. Then repeatedly using Proposition 1.4 we have

d(xMKδ
, yMKδ

) ≤
(

1− η(δ)
2

)M

· d(x0, y0) ≤
(

1− η(δ)
2

)M

· b.

Solving the inequality (1 − η(δ)/2)M · b ≤ δ with respect to M gives the
described upper bound Mδ = Kδ ·M on an m such that d(xm, ym) ≤ δ. �

Now we can prove our theorem.

Theorem 2.2. Let (X, d) be a metric space and let f : X → X be an as-
ymptotic contraction. Let x0 ∈ X. Then the Picard iteration sequence (xn) is
bounded.

Proof. Assume d(x0, f(x0)) > 0, for else there is nothing to prove. Let
b := d(x0, f(x0)), and let η, β be the associated moduli of f from Definition 1.3.
We first prove that limn→∞ d(xn, f(xn)) = 0. So let b ≥ ε > 0. Since b ≥
d(x0, f(x0)) ≥ b we can conclude by Proposition 1.4 that

d(xn, f(xn)) ≤
(

1− ηb(b)
2

)
· b

for n ≥ Kb, where Kb = βb
b(ηb(b)/2). Then by considering xKb

and xKb+1

as the starting points x′0 and y′0 of two Picard iteration sequences (x′n) and
(y′n) with the property that d(x′n, y′n) < b for n ≥ 0, we know by Lemma 2.1
that there exists m ≤ Kb + Mε such that d(xm, f(xm)) ≤ ε. Here Mε is as
in Lemma 2.1. Let c := d(xm, f(xm)) for some particular such m. If c = 0,
then xm is a fixed point, and (xn) is bounded. So assume c > 0. Then
Proposition 1.4 gives that

d(xn, f(xn)) ≤
(

1− ηb(c)
2

)
· c ≤

(
1− ηb(c)

2

)
· ε < ε,

for n ≥ Kb + Mε + Kc, with Kc = βb
c(ηb(c)/2). So limn→∞ d(xn, f(xn)) = 0.

Let now N := β1
1/2(η1(1/2)/2) and δ := η1(1/2) · 1/8. Let furthermore M

be so large that for n ≥ M we have

d(xn, f(xn)) < 1/2

and

d(xn, fN (xn)) ≤ δ.
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Then Lemma 1.5 yields that for m,n ≥ M we have

d(xm, xn) > 1

or

d(xm, xn) ≤ 1/2.

So in particular, for n ≥ M we have d(xM , xn) > 1 or d(xM , xn) ≤ 1/2. If for
all n ≥ M we have d(xM , xn) ≤ 1/2, then (xn) is bounded. So suppose there
exists n ≥ M such that d(xM , xn) > 1. Let n′ > M be the first such n ∈ N.
Then

d(xn′−1, xn′) + d(xn′−1, xM ) ≥ d(xn′ , xM ) > 1,

so d(xn′−1, xM ) ≤ 1/2 gives d(xn′−1, xn′) > 1/2. But

d(xn′−1, xn′) = d(xn′−1, f(xn′−1)) < 1/2,

which thus contradicts our choice of M and n′. Thus d(xM , xn) ≤ 1/2 for all
n ≥ M , and hence (xn) is bounded. �

Corollary 2.3. Let (X, d) be a nonempty, complete metric space, and let
f : X → X be a continuous asymptotic contraction in the sense of Kirk. Then
f has a unique fixed point z ∈ X, and for every starting point x ∈ X the
iteration sequence (fn(x)) converges to z.

Proof. Since f : X → X is an asymptotic contraction in the sense of
Kirk f is also an asymptotic contraction in the sense of Definition 1.3. Hence
Theorem 2.2 yields that all Picard iteration sequences are bounded. The rest
follows from Theorem 1.2. �

Similarly we can improve the results in [2]. As an instance of this we give
the following improvement of Theorem 3.3 in [2].

Corollary 2.4. Let (X, d) be a metric space, and let f : X → X be an
asymptotic contraction with moduli ηb and βb for each b > 0. Then all Picard
iteration sequences are Cauchy. Assume that for some x0 ∈ X the limit z :=
limn→∞ xn exists. Then for any x0 ∈ X the iteration sequence (xn) converges
to z, irrespective of whether z is a fixed point or not. If (xn) is bounded by b > 0
then (xn) converges to z with the rate of convergence specified in Theorem 3.1
in [2].
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Proof. Immediate from Theorem 2.2 and from Theorem 3.3 in [2]. �

In [9], K. W lodarczyk, D. Klim and R. Plebaniak introduce set-valued as-
ymptotic contractions and prove a theorem for these which is reminiscent of
Kirk’s theorem for asymptotic contractions. This theorem contains a condi-
tion of boundedness much like in Kirk’s original theorem. Our results here
lead us to conjecture that the boundedness condition can be removed also
from Theorem 2.1 in [9].

Conjecture 2.5. Let (X, d) be a complete metric space and let the mapping
T : X → 2X be closed and a set-valued asymptotic contraction. Then T has a
unique endpoint v in X. Furthermore, for each w1 ∈ X and for each sequence
(wn) which is a generalized sequence of iterations with respect to T and w1,
we have that (wn) converges to v.

For details, see [9].

The rate of convergence in Corollary 2.4 depends on a bound b on the
iteration sequence in question, and also on the moduli ηb, βb. We will in
the following denote this rate of convergence by Φ, so that given a metric
space (X, d), an asymptotic contraction f : X → X with moduli η and β, an
x0 ∈ X such that limn→∞ xn = z and such that (xn) is bounded by b > 0,
and also a real number b ≥ ε > 0, then n ≥ Φ(b, ηb, βb, ε) gives d(xn, z) ≤ ε.

We now give a rate of convergence which does not depend on a bound on the
iteration sequence, but which instead depends on (strictly positive) upper and
lower bounds on d(x0, f(x0)), and also on the moduli η, β (for some specific
values b). Specifically, we have the following.

Proposition 2.6. Let (X, d) be a metric space, and let f : X → X be an
asymptotic contraction with moduli ηb and βb for each b > 0. Assume that
for some x0 ∈ X the limit z := limn→∞ xn exists. Let b ≥ c > 0 and let
x0 ∈ X be such that b ≥ d(x0, f(x0)) ≥ c. Then (xn) has the following rate
of convergence. Let ε > 0. Let Φ be the rate of convergence in Corollary 2.4,
and let

Kc := βb
c(ηb(c)/2),

N := βb
b/2(ηb(b/2)/2),

α := ηb(b/2) · b/8,



24 E.M. BRISEID

K ′ :=
⌈

lg(α/N)− lg(b)
lg(1− ηb(α/N)/2)

⌉
,

Kα/N := βb
α/N (ηb(α/N)/2),

b′ := max{ε, K ′ · (5b/2 + b ·Kα/N ) + b}.
Let n ∈ N satisfy n ≥ Φ(b′, ηb′ , βb′ , ε) + Kc. Then

d(xn, z) ≤ ε.

Proof. Let ε > 0. Let x0 ∈ X, and let b, c > 0 be such that
b ≥ d(x0, f(x0)) ≥ c. (If d(x0, f(x0)) = 0 then x0 = z.) Let Kc := βb

c(ηb(c)/2).
Then Proposition 1.4 gives that

d(xn, f(xn)) ≤ (1− ηb(c)/2) · d(x0, f(x0)) ≤ (1− ηb(c)/2) · b

for n ≥ Kc. Let now
N := βb

b/2(ηb(b/2)/2),

α := ηb(b/2) · b/8.

Notice that α/N < b/(2N), since 0 < ηb(b/2) < 1. Assume that for some
integer M ≥ 0 we have d(xn, f(xn)) ≤ α/N for all Kc ≤ n ≤ Kc + M . Let
M = k ·N + m, with k ≥ 0 and with m ≥ 0 an integer strictly smaller than
N . If k < 2 then it follows by the triangle inequality that d(xn, xn′) < b for
Kc ≤ n, n′ ≤ Kc + M + 1, since α/N < b/(2N). If k = 2 then likewise

d(xn, xn′) <
3b

2
for Kc ≤ n, n′ ≤ Kc +M +1. Assume k > 2, and assume that for some integer
k′ > 0 such that k ≥ k′ + 2 we have

d(xKc , xKc+k′N ) ≤ b

2
.

(Notice that this holds for k′ = 1.) Then

d(xKc+k′N , xKc+(k′+1)N ) ≤ b

2
,

and so
d(xKc , xKc+(k′+1)N ) ≤ b.

We also have
d(xKc , xKc+N ) ≤ α
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and

d(xKc+(k′+1)N , xKc+(k′+2)N ) ≤ α,

and thus Lemma 1.5 gives that

d(xKc , xKc+(k′+1)N ) ≤ b

2
.

Thus we have d(xn, xn′) ≤ 3b/2 for Kc ≤ n, n′ ≤ Kc + (k − 1)N , and hence
d(xn, xn′) < 5b/2 for Kc ≤ n, n′ ≤ Kc + M + 1. If d(xn, f(xn)) ≤ α/N for
all n ≥ Kc, then we get that d(xn, xn′) ≤ b for all n, n′ ≥ Kc. Namely, if we
assume

d(xKc , xKc+kN ) ≤ b

2
for some k ∈ N (notice that this holds for k = 1), then

d(xKc , xKc+(k+1)N ) ≤ b,

and also

d(xKc , xKc+N ) ≤ α

and

d(xKc+(k+1)N , xKc+(k+2)N ) ≤ α.

So by Lemma 1.5 we have

d(xKc , xKc+(k+1)N ) ≤ b

2
,

and hence d(xn, xn′) ≤ b for all n, n′ ≥ Kc. (Then d(xn, xn+N ) ≤ α and
d(xn′ , xn′+N ) ≤ α in fact implies d(xn, xn′) ≤ b/2 for all n, n′ ≥ Kc.)

Thus by letting x′0 := xKc we can conclude that either (x′n) is bounded by
b or else we have

α/N ≤ d(x′m, f(x′m)) ≤ (1− ηb(c)/2) · b

for an m such that (x′n)n≤m is bounded by 5b/2. So by Proposition 1.4 we get
an N1 ∈ N such that

d(x′n, f(x′n)) ≤ (1− ηb(α/N)/2) · (1− ηb(c)/2) · b < (1− ηb(α/N)/2) · b

for n ≥ N1 and such that (x′n)n≤N1 is bounded by 5b/2 + b · Kα/N . (Where
Kα/N = βb

α/N (ηb(α/N)/2).) By considering x′N1
as the starting point of a

Picard iteration sequence (x′′n) with the property that d(x′′m, f(x′′m)) < (1 −
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ηb(α/N)/2) · b for all m ≥ 0, we get by the above argument that either (x′′n) is
bounded by b or else we get an N2 ∈ N such that

d(x′′m, f(x′′m)) < (1− ηb(α/N)/2)2 · b

for m ≥ N2 and such that (x′′n)n≤N2 is bounded by 5b/2 + b · Kα/N . Thus
either (x′n) is bounded by 5b/2 + b ·Kα/N + b or else we have that

d(x′m, f(x′m)) < (1− ηb(α/N)/2)2 · b

for m ≥ N1 +N2, and furthermore that (x′n)n≤N1+N2 is bounded by 2 · (5b/2+
b ·Kα/N ). Solving the inequality

(1− ηb(α/N)/2)k · b ≤ α/N

with respect to k leads us to consider

K ′ :=
⌈

lg(α/N)− lg(b)
lg(1− ηb(α/N)/2)

⌉
.

We get that either (x′n) is bounded by (K ′ − 1) · (5b/2 + b ·Kα/N ) + b, or else
we get an N ′ ∈ N such that

d(x′m, f(x′m)) < (1− ηb(α/N)/2)K′ · b ≤ α/N

for m ≥ N ′, and furthermore such that (x′n)n≤N ′ is bounded by K ′ · (5b/2 +
b · Kα/N ). Hence (x′n) is bounded by K ′ · (5b/2 + b · Kα/N ) + b. Let b′ :=
max{ε, K ′ · (5b/2 + b ·Kα/N ) + b}. Then Corollary 2.4 gives that d(x′n, z) ≤ ε

for n ≥ Φ(b′, ηb′ , βb′ , ε), so d(xn, z) ≤ ε for n ≥ Φ(b′, ηb′ , βb′ , ε) + Kc. (Here Φ
is as in the remarks preceding Proposition 2.6.) �

We remark that in the above proposition there is room for some numerical
improvement. We can also easily adapt the proposition to cover the case
where limn→∞ xn does not exist, as explained in the remarks following
Theorem 3.2 in [2].
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