A NOTE ON DIRECTIONALLY NON-EXPANSIVE MAPPINGS

A. AROCKIASAMY* AND A. ANTHONY ELDRED**
*Department of Mathematics
St. Xavier's College
Palayamkottai, Tirunelveli-627 002, India
${ }^{* *}$ Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India
E-mail: arock_sj@rediffmail.com

Abstract

In this paper, we establish a fixed point theorem for a strongly directionally non-expansive mapping on a non-empty closed convex subset of a Banach space. Key Words and Phrases: strongly directionally non-expansive, ray, fixed point. 2000 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

The notion of directionally non-expansive mapping on a non-empty subset of a Banach space was introduced by W.A.Kirk in [1]. In this paper,we introduce the concept of strongly directionally non-expansive map and use it to prove a fixed point theorem for the map which takes R_{x} into itself where $R_{x}:=$ $\{(1-\lambda) x+\lambda T x: \lambda \in R\}$.

Notations

Let X be a Banach space and K be a non-empty subset of X. Let $T: K \rightarrow K$ be a mapping. Let $[x, y]:=\{(1-\lambda) x+\lambda y: \lambda \in[0,1]\}$ and $(x, y):=\{(1-$ $\lambda) x+\lambda y: \lambda \in(0,1)\}$. For any $x_{1}, x_{2} \in R_{x}$, we say that $x_{1} \leq x_{2}$ when $\lambda_{1} \leq \lambda_{2}$ where $x_{1}=\left(1-\lambda_{1}\right) x+\lambda_{1} T x$ and $x_{2}=\left(1-\lambda_{2}\right) x+\lambda_{2} T x$ for some $\lambda_{1}, \lambda_{2} \in R$.

BASIC DEFINITIONS

Definition 1.1. Let X be a Banach space and K be a non-empty closed bounded convex subset of X. A mapping $T: K \rightarrow K$ is said to be non-expansive if for each pair of elements x and y of K, we have $\|T x-T y\| \leq\|x-y\|$.

Definition 1.2. (W.A. Kirk [1])[Directionally non-expansive mapping] Let X be a Banach space and K be a non-empty subset of X. A mapping $T: K \rightarrow K$ is said to be directionally non-expansive if $\|T x-T y\| \leq\|x-y\|$ for all $x \in K$ and $y \in[x, T x]$.

We now give the following definition:
Definition 1.3. Let X be a Banach space and K be a non-empty closed convex subset of X. A mapping $T: K \rightarrow K$ is said to be strongly directionally nonexpansive if for each $x \in K$, there exist $y_{x}, z_{x} \in X$ such that (i). $\left(y_{x}, z_{x}\right) \bigcap K \supseteq$ $[x, T x]$ and (ii). $\|T x-T m\| \leq\|x-m\|$ for all $m \in\left(y_{x}, z_{x}\right) \bigcap K$.

Remark: Every strongly directionally non-expansive mapping is a directionally non-expansive mapping. But the following simple example tells us that the converse is not true.
Example: Define a map $T:[0,1] \rightarrow[0,1]$ by $T(0)=0$ and $T(x)=1$ for $0<x \leq 1$. We observe that T is directionally non-expansive but not strongly directionally non-expansive.

2. Main Results

Theorem 2.1. Let X be a Banach space and K be a non-empty closed bounded convex subset of X. Suppose $T: K \rightarrow K$ is a strongly directionally nonexpansive mapping such that for every $x \in K, R_{x} \bigcap K$ is invariant under T. Then T has a fixed point.

Proof. Assume $T x \neq x$ for every $x \in K$. Now, it is sufficient to prove that for some $x \in K,[x, T x]$ is invariant under T.
Suppose not, then for every $x_{0} \in[x, T x]$, there exists $x_{1} \in\left[x_{0}, T x_{0}\right]$ such that $T x_{1} \notin\left[x_{0}, T x_{0}\right]$. Let $G_{x_{0}}=R_{x_{0}} \cap K$. Now we can easily prove that $A=\left\{\lambda \in R:(1-\lambda) x_{0}+\lambda T x_{0} \in K\right\}$ is bounded. Let $\alpha=\inf A$ and $\beta=\sup A$.

Let $a=(1-\alpha) x_{o}+\alpha T x_{o}$ and $b=(1-\beta) x_{o}+\beta T x_{o}$. Therefore, there exists a sequence $\left\{\alpha_{n}\right\} \in A$ such that $\left\{\alpha_{n}\right\}$ converges to α. Hence $\left(1-\alpha_{n}\right) x_{o}+\alpha_{n} T x_{o}$ converges to $(1-\alpha) x_{o}+\alpha T x_{o}$. Therefore it is easy to see that $a \in G_{x_{o}}$ and $b \in G_{x_{o}}$. Hence
$G_{x_{o}}=\{(1-\lambda) a+\lambda b: 0 \leq \lambda \leq 1\}$. Let $x_{o}=\left(1-\lambda_{o}\right) a+\lambda_{o} b$ and $T x_{o}=$ $\left(1-\alpha_{o}\right) a+\alpha_{o} b$, where $\alpha \leq \lambda_{o} \leq \beta, \alpha \leq \alpha_{o} \leq \beta$. We first prove that $\lambda_{o}<\alpha_{o}$.

$$
\begin{array}{r}
\left\|b-T x_{o}\right\|=\left\|\left[(1-\beta) x_{o}+\beta T x_{o}\right]-T x_{o}\right\| \\
=\left\|\left[(1-\beta) x_{o}+\beta T x_{o}\right]-T x_{o}\right\| \\
=|1-\beta|\left\|x_{o}-T x_{o}\right\| \\
\left\|b-x_{o}\right\|=\left\|\left[(1-\beta) x_{o}+\beta T x_{o}\right]-x_{o}\right\| \\
=|\beta|\left\|x_{o}-T x_{o}\right\|
\end{array}
$$

Therefore, $\left\|b-T x_{o}\right\| \leq\left\|b-x_{o}\right\|$
That is, $\left\|b-\left[\left(1-\alpha_{o}\right) a+\alpha_{o} b\right]\right\| \leq\left\|b-\left[\left(1-\lambda_{o}\right) a+\lambda_{o} b\right]\right\|$
which implies $\|a-b\|\left(1-\alpha_{o}\right) \leq\|a-b\|\left(1-\lambda_{o}\right)$ and therefore,
$\lambda_{o} \leq \alpha_{o}$. Since $\lambda_{o} \neq \alpha_{o}$, we get $\lambda_{o}<\alpha_{o}$. Let $x_{1}=\left(1-\lambda_{1}\right) a+\lambda_{1} b$ where $\lambda_{0}<\lambda_{1} \leq \alpha_{0}, x_{1} \in\left[x_{0}, T x_{0}\right]$. Let $T x_{1}=\left(1-\alpha_{1}\right) a+\alpha_{1} b$. Now $T x_{1} \notin\left[x_{0}, T x_{0}\right]$ implies either

$$
\begin{equation*}
\alpha_{1}<\lambda_{0} \text { or } \alpha_{0}<\alpha_{1} \tag{2.1}
\end{equation*}
$$

$\left\|T x_{0}-T x_{1}\right\| \leq\left\|x_{0}-x_{1}\right\|$ since T is directionally non-expansive in $(y, z) \supset$ $\left[x_{0}, T x_{0}\right] \ni x_{1}$. This gives,

$$
\begin{equation*}
\left|\alpha_{1}-\alpha_{0}\right| \leq\left(\lambda_{1}-\lambda_{0}\right) \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) we get $\alpha_{0}<\alpha_{1}$. Thus $\lambda_{0}<\lambda_{1}<\alpha_{0}<\alpha_{1}$. Now choose $x_{1} \in\left[x_{0}, T x_{0}\right]$ such that

$$
d\left(T x_{1},\left[x_{0}, T x_{0}\right]\right) \geq \sup _{x \in\left[x_{0}, T x_{0}\right], T x \notin\left[x_{0}, T x_{0}\right]} d\left(T x,\left[x_{0}, T x_{0}\right]\right)-1
$$

Proceeding this way, choose $x_{2} \in\left[x_{1}, T x_{1}\right]$ such that $T x_{2} \notin\left[x_{1}, T x_{1}\right]$ and

$$
d\left(T x_{2},\left[x_{1}, T x_{1}\right]\right) \geq \sup _{x \in\left[x_{1}, T x_{1}\right], T x \notin\left[x_{1}, T x_{1}\right]} d\left(T x,\left[x_{1}, T x_{1}\right]\right)-\frac{1}{2}
$$

Having chosen x_{n} in a similar way, choose

$$
x_{n+1} \in\left[x_{n}, T x_{n}\right]
$$

such that $T x_{n+1} \notin\left[x_{n}, T x_{n}\right]$ and

$$
d\left(T x_{n+1},\left[x_{n}, T x_{n}\right]\right) \geq \sup _{x \in\left[x_{n}, T x_{n}\right], T x \notin\left[x_{n}, T x_{n}\right]} d\left(T x,\left[x_{n}, T x_{n}\right]\right)-\frac{1}{n+1}
$$

Let $x_{n}=\left(1-\lambda_{n}\right) a+\lambda_{n} b$ and $T x_{n}=\left(1-\alpha_{n}\right) a+\alpha_{n} b$
where $\lambda_{n}<\lambda_{n+1}<\alpha_{n}<\alpha_{n+1}$ and λ_{n}, α_{n} being bounded increasing sequences converge to some μ and ν respectively.
Let

$$
u=(1-\mu) a+\mu b
$$

and

$$
v=(1-\nu) a+\nu b
$$

Since $\lambda_{n}<\alpha_{n}$ for every n, we have $\mu \leq \nu$.
Case 1: $\mu<\nu$. There exists a positive integer N such that
$\lambda_{n} \leq \mu<\nu_{n}$, for all $n \geq N$, hence $u \in\left[x_{n}, T x_{n}\right]$, for all $n \geq N$. Therefore $\left\|T u-T x_{n}\right\| \leq\left\|u-x_{n}\right\|$ for all $n \geq N$.
This implies $T x_{n} \rightarrow T u$. Let $w \in[u, T u]$. Then there exists a positive integer N_{0} such that $w \in\left[x_{n}, T x_{n}\right]$, for all $n \geq N_{0}$.
Now $d\left(T w,\left[x_{n}, T x_{n}\right]\right) \leq \sup _{x \in\left[x_{n}, T x_{n}\right]} d\left(T x,\left[x_{n}, T x_{n}\right]\right) \leq d\left(T x_{n+1},\left[x_{n}, T x_{n}\right]\right)+$ $\frac{1}{n+1}$. Taking limit as $n \rightarrow \infty$, we get $d(T w,[u, T u])=0$. Therefore, $T w \in$ $[u, T u]$. This implies $[u, T u]$ is invariant under T, contradicting our assumption.
Case 2: $\mu=\nu$. That is, $u=v$.
There exists a positive integer N_{1} such that $x_{n} \in\left(y_{u}, z_{u}\right)$, for all $n \geq N_{1}$ and $\left\|T x_{n}-T u\right\| \leq\left\|x_{n}-u\right\|$, for all $n \geq N_{1}$.
Therefore, $T x_{n} \rightarrow T u$.
Hence $v=T u=u$, contradicting our assumption. This proves the theorem.

Example 2.2. Let K be a closed bounded convex subset of a strictly convex space X. Let A and B be two disjoint closed convex subsets of K. By Hahn Banach separation theorem, there exists a hyper plane
$\{x \in X: \operatorname{Re} f(x)=\alpha\}$ such that $A \subseteq\{x: \operatorname{Re} f(x) \leq \alpha\}$ and
$B \subseteq\{x: \operatorname{Ref}(x)>\alpha\}$.
Let $A_{1}=\{x: \operatorname{Re} f(x)<\alpha\} \bigcap K, B_{1}=\{x: \operatorname{Re} f(x)>\alpha\} \bigcap K$ and $C_{1}=\{x:$ $\operatorname{Ref}(x)=\alpha\} \bigcap K$.
Define $T: K \longrightarrow K$ by $T(x)=P_{A}(x)$, for all $x \in A_{1}, T(x)=P_{B}(x)$, for all
$x \in B_{1}, T(x)=I(x)$, for all $x \in C_{1}$, where $P_{A}(x)$ is the unique nearest point in A to x. Then T is a strongly directionally non-expansive mapping which is also discontinuous.

Acknowledgement

The authors would like to thank the Referee for his/her valuable suggestions. Moreover, the authors are indebted to Dr. P. Veeramani, Department of Mathematics, Indian Institute of Technology Madras, Chennai - 600036 (India) and Dr. S. Somasundaram, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli - 627012 (India) for the knowledge they have acquired from the meaningful discussions with them.

References

[1] W. A. Kirk, Nonexpansive mappings and asymptotic regularity, Nonlinear Analysis, 40(2000), 323-332.

Received: March 31, 2006; Accepted: January 9, 2007.

