SEHGAL CONTRACTIONS ON MENDER SPACES

VIOREL RADU

Dedicated to Professor Ioan A. Rus on the occasion of his 70th birthday

Department of Mathematics
West University of Timișoara
Vasile Pârvan 4, 300223, Timișoara
E-mail: radu@math.uvt.ro

Abstract. We present some remarks and comments on four proofs of Sehgal & Bharucha-Reid fixed point principle for probabilistic B-contractions.

Key Words and Phrases: probabilistic metric, Luxemburg metric, probabilistic contraction, fixed point.

2000 Mathematics Subject Classification: 54E70, 47H10.

1. Introduction

A Sehgal-contraction, or a B-contraction, on a probabilistic metric space (S, \mathcal{F}) is a self-mapping A of S such that

$F_{A p A q}(L x) \geq F_{p q}(x), \forall p, q \in S$

for some $L \in (0, 1)$ and every x. As it is well known [1, 2, 4, 10, 11, 12, 19, 20], every B-contraction on a complete Menger space (S, \mathcal{F}, Min) has a unique fixed point, which is globally attractive. Therefore B-contractions on complete Menger spaces (S, \mathcal{F}, Min) belong to the class of Picard operators, extensively studied by I. A. Rus (see [15], [16] and [9]). In fact, the following more general result holds:

Theorem 1.1. Every t-norm of Hadžić-type has the fixed point property for B-contractions.

Indeed, let (S, \mathcal{F}, T) be a complete Menger space such that T is of Hadžić-type and consider a B-contraction $A : S \rightarrow S$. Without loss of generality, we can

315
suppose $L \in (0, \frac{1}{2}]$. Let $p_0 \in S$ and $x \in (0, \infty)$ be fixed. If m is a positive integer, then
\[
F_{p_0,A^mp_0}(2x) \geq T(F_{p_0,Ap_0}(x), F_{Ap_0,A^{m-1}p_0}(2x))
\]
and we can see by induction that
\[
F_{p_0,A^mp_0}(2x) \geq T_m(F_{p_0,Ap_0}(x)), \forall m \geq 1. \tag{1.1}
\]
Thus we have, for all integers n, m:
\[
F_{A^n p_0 A^{n+m} p_0}(2x) \geq F_{p_0,A^mp_0}(2x/L^n) \geq T_m(F_{p_0,Ap_0}(x/L^n)). \tag{1.2}
\]
Since T is of Hadžić-type (that is the iterates $\{T_m\}$ are equicontinuous at $a = 1$) and $F_{p_0,Ap_0} \in D^+$ (so that $\lim_{t \to \infty} F_{p_0,Ap_0}(t) = 1$), then
\[
\lim_{n \to \infty} F_{A^n p_0 A^{n+m} p_0}(2x) = 1, \tag{1.3}
\]
uniformly in m, for each $x \in (0, \infty)$. By definition, this means that $\{A^n p_0\}$ is \mathcal{F}-Cauchy and the conclusion follows.

The proof of the following result of type Sherwood (compare with [20]) is easy to reproduce:

Lemma 1.2. Let T be an lc-t-norm and fix an F in D^+. Let $S = \{1, 2, \ldots\}$ and define a probabilistic metric by
\[
\begin{align*}
F_{mn+m}(x) &= T^m[F(2^n x), F(2^{n+1} x), \ldots, F(2^{n+m} x)], n, m \in S \\
F_{nn} &= \varepsilon_0
\end{align*}
\]
Then (S, \mathcal{F}, T) is a Menger space and the mapping $n \xrightarrow{A} n + 1$ is a $B-$contraction with $L = \frac{1}{2}$.

The following theorem is a partial converse to Theorem 1.1:

Theorem 1.3. If T is a continuous t-norm with the fixed point property for $B-$contractions, then T is of Hadžić-type.

Proof. Suppose that T is not of Hadžić-type. Then there exists $a \in (0, 1)$ such that for each $1 > b > a$ there is $m_b \geq 1$ for which $T_{m_b}(b) < a$. Now let $b_n \in (a, 1)$ be increasing to 1. Then there exists $m_n \geq 1$ such that
\[
T_{m_n}(b_n) < a, n = 1, 2, \ldots \tag{1.5}
\]
Obviously we can suppose that m_n is increasing on n. Let $F \in D^+$ be defined by

$$F(x) = \begin{cases}
0 & \text{if } x \leq 1 \\
b_1 & \text{if } x \in (1, 2^{2+m_1}] \\
b_{n+1} & \text{if } x \in (2^{2n+m_n}, 2^{2n+m_n+1}], \ n \geq 1
\end{cases} \tag{1.6}$$

If we consider the Menger space as in Lemma 1.2 with this F, then we have successively:

$$F_{n+m_n}(1) \leq F_{n+m_n}(2^n) = T^{m_n}[F(2^n), F(2^{2n+1}), \ldots, F(2^{2n+m_n})] \leq$$

$$\leq T^{m_n}[F(2^{2n+m_n}), \ldots, F(2^{2n+m_n})] \leq T_{m_n}(b_n) < a$$

Therefore the sequence $\{A^n\}$ is not Cauchy, so that T does not have the fixed point property for $B-$contractions.

It is worth noting that in [1], G. L. Cain & R. Kasriel proved the Sehgal’s result (for $T = \text{Min}$) by using the Nishiura pseudo-metrics d_λ, defined by

$$d_\lambda(p, q) = \sup\{x \mid F_{pq}(x) \leq 1 - \lambda\}, \ \lambda \in (0, 1), \ p, q \in S.$$

As a matter of fact, the family $\{d_\lambda\}_{\lambda \in (0, 1)}$ generates the $(\varepsilon, \lambda)-$topology on S. Moreover, for every $\lambda \in (0, 1),

$$d_\lambda(Ap, Aq) \leq Ld_\lambda(p, q), \ \forall p, q \in S.$$

For if $d_\lambda(p, q) < r$ then $F_{pq}(r) > 1 - \lambda$ and the contraction condition (BC_L) implies $F_{Ap,Aq}(Lr) > 1 - \lambda$, which shows that $d_\lambda(Ap, Aq) < Lr$. Hence one can apply the Banach contraction principle in the uniform space $(S, \{d_\lambda\}_{\lambda \in (0,1)})$.

As we will see, the result in (Sehgal & Bharucha-Reid, [19]) is also a consequence of the "fixed point alternative" in generalized (Luxemburg) complete metric spaces (see [6] or [13]). Incidentally, this method offers a sort of converse of the fixed point principle in Menger spaces under the t-norm $T_M = \text{Min},$ by giving a suitable family of (generalized) metric topologies on such a space. The method also suggests order theoretic proofs of the contraction principle for probabilistic $B-$contractions.

For terminology and notations, we refer to [2], [4] and [18].
2. SOME GENERALIZED METRICS ON MENERG SPACES

Recall that D^+ denotes the set of the distribution functions of all nonnegative (real) random variables, which then are nondecreasing and left-continuous on $(0, \infty)$ and have limit 1 at ∞. Let we are given a probabilistic metric $\mathcal{F} : S \to D^+$, such that (S, \mathcal{F}, Min) is a Menger space, and consider an element G of D^+ which will be fixed. Recall that $\mathcal{F}(p, q)$ is usually denoted by F_{pq}.

Theorem 2.1. If we define the two-place function d_G by

$$d_G(p, q) = \inf \{a \mid a > 0 \text{ and } F_{pq}(ax) \geq G(x), \forall x \in \mathbb{R}\},$$

then

(i) d_G is a Luxemburg metric on S;

(ii) The d_G-topology is stronger than the (ε, λ)-topology;

(iii) If (S, \mathcal{F}) is complete, then (S, d_G) is complete.

Proof. (i) Clearly d_G is symmetric and $d_G(p, p) = 0$. If $d_G(p, q) = 0$ then, for each $a > 0$, $F_{pq}(ax) \geq G(x)$ for all x. Now, if $y = ax$ is fixed and $x \to +\infty$, then $F_{pq}(y) \geq \lim_{x \to +\infty} G(x) = 1$, that is $p = q$.

Suppose that $d_G(p, r) < \infty$ and $d_G(r, q) < \infty$. If $d_G(p, r) < a' < a$ and $d_G(r, q) < b' < b$, then

$$F_{pq}[(a' + b')x] \geq \text{Min}\{F_{pr}(a'x), F_{rq}(b'x)\} \geq G(x)$$

which shows that $d_G(p, q) \leq a' + b' < a + b$. Therefore $d_G(p, q) \leq d_G(p, r) + d_G(r, q)$, and it follows that d_G is a Luxemburg metric.

(ii) Now, suppose that $\{p_n\}$ is d_G-convergent to p. Let $\varepsilon > 0$ and $\lambda \in (0, 1)$ be given. Since $G \in D^+$, then there exists x_0 such that $G(x_0) > 1 - \lambda$. For $a < \frac{\varepsilon}{x_0}$, we choose n_0 such that $d_G(p_n, p) < a$ for all $n \geq n_0$. Therefore $F_{p_n, p}(\varepsilon) \geq F_{p_n, p}(ax_0) \geq G(x_0) > 1 - \lambda$, and we see that $\{p_n\}$ is \mathcal{F}-convergent to p.

(iii) Suppose that $\{p_n\}$ is d_G-Cauchy and (S, \mathcal{F}) is complete. Then, as above, we obtain that $\{p_n\}$ is \mathcal{F}-Cauchy and thus there exists $p \in S$ such that $\{p_n\}$ is \mathcal{F}-convergent to p. Let $a, \delta > 0$ be given. Then there exists n_0 such that

$$F_{p_n, p}(a + \delta)x \geq G(x) \text{ for all } n > n_0, \text{ all } m \geq 1 \text{ and each } x.$$

Let $n > n_0$ and $x > 0$ be fixed. Since

$$F_{p_n, p}(a + \delta)x \geq \text{Min}\{F_{p_n, p}(ax), F_{p_n, p}(\delta x)\} \geq$$
The proof of the following result is easy to reproduce:

Lemma 3.1. Every Sehgal-contraction on \((S, F)\) is a Banach-contraction on \((S, d_G)\). Namely, if \(A : S \to S\) verifies the condition \((BC_L)\), then
\[
d_G(Ap, Aq) \leq Ld_G(p, q), \forall p, q \in S.
\]
By using this lemma and the alternative of fixed point, we can prove the Sehgal & Bharucha-Reid theorem ([19]).

Theorem 3.2. Let \(A \) be a Sehgal-contraction on the complete Menger space \((S, \mathcal{F}, \text{Min}) \). Then \(A \) has a unique fixed point \(p^* \) and, for each \(p \in S \),
\[
p^* = \lim_{n \to \infty} A^n p \quad \text{in the} \quad (\varepsilon, \lambda)-\text{topology}.
\]

Proof. Let \(p \in S \) and \(G := F_{pAp} \). By Lemma 3.1, \(A \) is \(d_G \)-contractive. Moreover, \(d_G(p, Ap) = 1 < \infty \). By the fixed point alternative (see [6] or [7]), the sequence \(A^n(p) \) converges to a fixed point \(p^* \) of \(A \), in the metric \(d_G \), and so in the \((\varepsilon, \lambda) \)-topology. Clearly \(p^* \) is unique.

Remark 3.3. For \(G \) as in the above proof, \(S_p := \{ q, d_G(p, q) < \infty \} \) is a complete metric space. And \(A^n p \in S_p \) for all \(n \geq 1 \). Therefore \(A \) has a unique fixed point in \(S \), the theorem follows also in this way.

Remark 3.4. Let \((S, \mathcal{F}, \text{Min}) \) be a complete Menger space and suppose that, for some \(G \in D^+ \), the \(d_G \)-topology and the \((\varepsilon, \lambda) \)-topology are identical. Then, for every Sehgal-contraction \(A \) on \(S \), we have:

(i) For every \(p \in S \), \(A^n p \) is convergent to the unique fixed point of \(A \);
(ii) For each \(p \in S \) there exists \(n \geq 0 \) such that
\[
F_{A^{n+1}pA^n p}(x) \geq G(x), \quad \forall x.
\]

Indeed, the first assertion follows from Theorem 3.2. The second assertion follows from the fixed point alternative, since (i) is always true. In fact, this assertions indicate, to a certain extent, the behavior of the values of \(\mathcal{F} \):

Example 3.5. For \(\beta > 0 \), let \(G(x) = \begin{cases} 0, & x \leq 1 \\ 1 - \frac{1}{x^\beta}, & x > 1 \end{cases} \). It is easy to see that \(d_G(p, q) = \sup \alpha^\beta d_\alpha(p, q) \). If \(d_G \) induces the \((\varepsilon, \lambda) \)-topology on \(S \), then for each \(p \in S \) there exists \(m \geq 0 \) such that
\[
F_{A^{n+1}pA^n p}(x) \geq 1 - \frac{1}{x^\beta}, \quad \forall x \geq 1, \quad \forall n \geq m.
\]

Generally, from the fixed point alternative we obtain the following.

Theorem 3.6. If \(A \) is a \(B \)-contraction on a complete Menger space \((S, \mathcal{F}, \text{Min}) \) then, for each \(G \in D^+ \) and each \(p \in S \), either

\((A_1) \ A^n p \) is \(d_G \) convergent to the unique fixed point of \(A \), or
(A2) for each \(n \geq 0 \) and each \(a > 0 \) there exists \(x_{n,a} > 0 \) such that
\[
F_{A^p, A^{n+1}p}(ax_{n,a}) < G(x_{n,a}).
\]

Remark 3.7. Having in mind the above results as well as the methods in [3], [5], [9] and [21], one can introduce the following relation on \(S \times \mathbb{R} \):
\[
(p, \lambda) \leq_G (q, \mu) \iff \lambda \leq \mu \text{ and } F_{pq} \geq (\mu - \lambda) \circ G.
\]
Recall that \(\nu \circ G(x) = G(\xi) \) for \(\nu \neq 0 \) and \(\nu \circ G = \varepsilon_0 \iff \nu = 0. \) Since \((a + b) \circ G = \tau_{M}(a \circ G, b \circ G), \forall a, b \geq 0, \) then \(\leq_G \) is a partial order for every Menger space \((S, \mathcal{F}, M)\) and any \(G \in D^+. \) Now, the method of DeMarr can be applied to the monotone mapping \(B(p, \lambda) := (Ap, L\lambda) \) and we have an alternative proof of Theorem 3.2.

References

Received: August 14, 2006; Accepted: August 28, 2006.