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1. Introduction

Let M be some nonempty set. By a quasi-order over M we shall understand
any relation (≤) on this set which is reflexive (x ≤ x,∀x ∈ M) and transitive
(x ≤ y and y ≤ z imply x ≤ z). Assume that we fixed such an object; and
let x ` ϕ(x) be some function from M to R+ = [0,∞[. Call the point z ∈ M ,
(≤, ϕ)- maximal when

w ∈ M and z ≤ w imply ϕ(z) = ϕ(w). (1.1)

A basic result involving such points is the 1976 Brezis-Browder principle [4]:

Theorem 1. Suppose that

M is sequentially inductive (modulo (≤))
(each ascending sequence in M has an upper bound)

(1.2)

ϕ is (≤)-decreasing (x ≤ y =⇒ ϕ(x) ≥ ϕ(y)). (1.3)

Then, for each u ∈ M there exists a (≤, ϕ)-maximal v ∈ M with u ≤ v.
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In particular, when (1.3) is taken in the stronger sense

ϕ is strictly (≤)-decreasing (x ≤ y, x 6= y ⇒ ϕ(x) > ϕ(y)) (1.4)

the concept in (1.1) means

w ∈ M, z ≤ w ⇒ z = w (referred to as: z is (≤)-maximal); (1.5)

and the Brezis-Browder principle includes directly the well known Ekeland’s
[7]. Note that the regularity condition Codom(ϕ) ⊆ R+ is not essential for
the conclusions above. In fact, let x ` ϕ(x) be some function from M to
R̄ = R ∪ {−∞,∞}. Take a certain order isomoprphism t ` χ(t) between R̄

and a bounded subinterval of R+; such as, e.g.,

χ(t) = π/2 + arctg(t), t ∈ R; χ(−∞) = 0, χ(∞) = π.

The composed function ϕ1 = χ◦ϕ fulfills Codom(ϕ1) ⊆ [0, π]. Moreover, (1.3)
(resp., (1.4)) holds for ϕ whenever it holds for ϕ1 (and viceversa). Adding to
this the generic property

(≤, ϕ)-maximal ⇐⇒ (≤, ϕ1)-maximal

shows that if conclusions of Theorem 1 are true for ϕ1 then these are also true
for ϕ. This remark goes back to Carja and Ursescu [6].

Now, Theorem 1 found some useful applications to convex and nonconvex
analysis; we refer to the quoted papers for details. So, it cannot be surprising
that many extensions of Theorem 1 were proposed. Here, we shall concentrate
on the relational way of enlargement. This may be described as a deduction
of maximality results like Theorem 1 when the relation (≤) has not all the
properties of a quasi-order. Two basic situations may occur:

(A). The considered relation is (only) transitive. Results of this type are
implicitly deductible from the variational ones in Kada, Suzuki and Takahashi
[10]. (These will be discussed in Section 2).

(B). The underlying relation is a general (=amorph) one. A specific result
of this kind may be found in Gajek and Zagrodny [8]. (We refer to Section 3
for details). The particular situation of reflexivity being added enters in such
a scheme. For a basic result of this type we refer to Bae, Cho and Yeom [2].
(This will be delineated in Section 4 below).
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As we shall see, all such techniques are non-effective: i.e., they produce
nothing but logical equivalents of Theorem 1. So, genuine extensions of this
result must be based on a different approach; we shall discuss it elsewhere.

2. Transitive relations

Let M be a nonempty set; and /, some transitive relation (x/y, y/z ⇒ x/z)
over it. Denote by (≤) the associated quasi-order

x ≤ y iff either x = y or x / y. (2.1)

Further, take a function ϕ : M → R+. The (/)-decreasing property for it is
that of (1.3) (with (/) in place of (≤)). Note that, by (2.1),

ϕ is (/)-decreasing ⇐⇒ ϕ is (≤)-decreasing. (2.2)

Call the point z ∈ M , (/, ϕ)-maximal, provided

w ∈ M and z / w imply ϕ(z) = ϕ(w). (2.3)

Again by (2.1), the generic relation holds

(/, ϕ)-maximal ⇐⇒ (≤, ϕ)-maximal. (2.4)

This, along with (2.2), shows that maximality results involving the transitive
relation (/) are deductible from the Brezis-Browder principle involving its
associated quasi-order (≤). The key moment of this approach is that of (1.2)
being assured. It would be useful to have expressed this condition in terms of
the initial transitive relation. This necessitates a few conventions and auxiliary
facts. Call the sequence (xn), ascending (modulo (/)) when

xn / xn+1, ∀n (or, equivalently: xn / xm if n < m). (2.5)

Note the generic (sequential) relation

ascending (modulo (/)) =⇒ ascending (modulo (≤)).

The reciprocal is not in general true. For example, the constant sequence
(xn = a;n ∈ N) is ascending (modulo (≤)); but not ascending (modulo (/)),
whenever a / a is false. Further, given the sequence (xn) in M , let us say that
u ∈ M is an upper bound (modulo (/)) of it provided

xn / u,∀n (written as: (xn) / u). (2.6)



114 MIHAI TURINICI

If u is generic in this convention, we say that (xn) is bounded above (modulo
(/)). As before, the relation below is clear

(∀u)[(xn) / u] =⇒ [(xn) ≤ u]; wherefrom
bounded above (modulo (/)) =⇒ bounded above (modulo (≤)).

(The converse is not in general valid). Finally, let the concept of sequential
inductivity modulo (/) be that of (1.2), with (/) in place of (≤).

We may now give an appropriate answer to the posed question.

Theorem 2. Let the transitive relation (/) and the function ϕ : M → R+

be such that M is sequentially inductive modulo (/) and ϕ is (/)-decreasing.
Then, for each u ∈ M there exists a (/, ϕ)-maximal v ∈ M with

either u = v (hence u is (/, ϕ)-maximal) or u / v (2.7)

u / v when, in addition, u / u. (2.8)

Proof. Let (≤) stand for the quasi-order (2.1). We claim that M is se-
quentially inductive modulo (≤). In fact, let (xn) be an ascending (modulo
(≤)) sequence in M

xn ≤ xn+1, ∀n (hence xn ≤ xm whenever n ≤ m).

If this sequence is stationary beyond a certain rank

∃k such that: ∀n > k one has xn = xk

we are done; because (xn) ≤ u(= xk). Otherwise,

∀p, ∃q > p such that xp 6= xq (hence xp / xq).

Consequently, a subsequence (yn = xr(n)) of (xn) may be constructed with

(yn) is ascending (modulo (/)); wherefrom
(yn) / t, for some t ∈ M (cf. the hypothesis).

But then, t acts as an upper bound (modulo (≤)) of (xn); hence the claim.
In addition (cf. (2.2)), ϕ is (≤)-decreasing. By Theorem 1 it follows that, for
the starting point u ∈ M there exists v ∈ M such that

u ≤ v and v is (≤, ϕ)-maximal.
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The latter of these yields v is (/, ϕ)-maximal, if we take (2.4) into account.
And the former one gives (2.7)+(2.8), by the very definition of (≤). The proof
is complete.

Clearly, the Brezis-Browder principle (i.e., Theorem 1) follows from Theo-
rem 2. The reciprocal inclusion also holds, by the argument above. Hence

Theorem 1 ⇐⇒ Theorem 2 (from a logical viewpoint). (2.9)

Nevertheless, a direct use of Theorem 2 is more profitable; because the tran-
sitive relation (/) is ”very similar” to its induced quasi-order (≤).

An interesting completion of Theorem 2 is to be given under the lines of
Section 1. Precisely, after the model of (1.5), we may introduce the concept

w ∈ M, z / w ⇒ z = w (referred to as: z is (/)-maximal). (2.10)

This is a stronger version of the concept (2.3). To get a corresponding form
of Theorem 2 with (2.10) in place of (2.3), we need that (/) be ϕ-sufficient:

x / y, y / z and ϕ(x) = ϕ(y) = ϕ(z) imply y = z (2.11)

Precisely, we have

Theorem 3. Let the conditions of Theorem 2 be in use and (/) be ϕ-
sufficient. Then, for each u ∈ M there exists a (/)-maximal w ∈ M with

either u = w (hence u is (/)-maximal) or u / w (2.12)

u / w if, in addition, u / u. (2.13)

Proof. By Theorem 2, we have promised some (/, ϕ)-maximal v ∈ M with
the properties (2.8)+(2.9). We claim that there exists a (/)-maximal w ∈ M

so that

either v = w (hence v is (/)-maximal) or v / w; (2.14)

and this will complete the argument. The first alternative is clear; so, it
remains to discuss the second one:

v / w (hence ϕ(v) = ϕ(w)), for some w ∈ M \ {v}. (2.15)

We claim that, necessarily, w is (/)-maximal. Assume not:

w / y, for some y ∈ M \ {v}. (2.16)
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Combining with (2.15) yields

v / y; hence ϕ(v) = ϕ(y) (by the choice of v).

Summing up, v / w, w / y and ϕ(v) = ϕ(w) = ϕ(y); wherefrom (cf. (2.11))

w = y; in contradiction with the choice of y.

Hence, (2.16) cannot hold; and our claim follows.

The obtained statement is nothing but a ”transitive” form of the Zorn
maximality principle (cf. Bourbaki [3]) for such structures. A basic particular
case of it may be described under the lines below. Let (M,d) be a complete
metric space; and F : M → R ∪ {∞}, some function with

F is proper (Dom(F ) 6= ∅), bounded below (inf[F (M)] > −∞) (2.17)

F is lsc on M (F (x) ≤ lim inf
n

F (xn), if xn → x). (2.18)

Denote for simplicity

Mu = {x ∈ M ; F (x) ≤ F (u)} where u ∈ Dom(F ) is arbitrary fixed;

and let the function ϕ = ϕ(u, F ) from Mu to R+ be given as

ϕ(x) = F (x)− F∗, x ∈ Mu, where F∗ = inf[F (M)]. (2.19)

The quasi-order (≤) over Mu introduced under

(x, y ∈ Mu): x ≤ y iff d(x, y) ≤ ϕ(x)− ϕ(y)

fulfills (1.2)+(1.4); and then, an application of Theorem 3 to these data yields
the well known Ekeland’s variational principle [7]. For a non-metrical version
of it, one may proceed as follows. By an almost pseudometric over M we
shall mean any map e : M × M → R+. We shall say that this object is a
KST-distance (modulo d) over M provided

e is triangular (e(x, z) ≤ e(x, y) + e(y, z), ∀x, y, z ∈ M) (2.20)

y ` e(x, y) is lsc over M (see above), for each x ∈ M (2.21)

each e-Cauchy sequence is a d-Cauchy sequence too (2.22)

e is transitively sufficient (e(x, y) = e(x, z) = 0 imply y = z). (2.23)

The following variational result is then available.
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Theorem 4. Let the function F : M → R ∪ {∞} be taken as in
(2.17)+(2.18); and e : M × M → R+ be some KST-distance (modulo d).
Then, for each u ∈ Dom(F ) there exists w ∈ Dom(F ) with

e(w, x) > F (w)− F (x), for each x ∈ M \ {w}
(referred to as: w is (e, F )-variational)

(2.24)

in such a way that

either u = w (u is (e, F )-variational) or e(u,w) ≤ F (u)− F (w) (2.25)

e(u,w) ≤ F (u)− F (w) if, in addition, e(u, u) = 0. (2.26)

Proof. Let (Mu, ϕ) be introduced as before. Clearly, Mu 6= ∅ (since it
contains u); moreover, by (2.18), Mu is closed (hence complete) in M . Let (/)
stand for the transitive relation (over Mu)

(x, y ∈ Mu): x / y iff e(x, y) ≤ ϕ(x)− ϕ(y). (2.27)

We claim that conditions of Theorem 3 hold for the pair (/, ϕ) over Mu.
Clearly, ϕ is (/)-decreasing on Mu; so, it remains to establish that Mu is
sequentially inductive modulo (/). Let (xn) be an ascending (modulo (/))
sequence in Mu:

e(xn, xm) ≤ ϕ(xn)− ϕ(xm)(=F (xn)− F (xm)), if n < m. (2.28)

The sequence (ϕ(xn)) is descending in R+; hence a Cauchy sequence; and
lim
n

ϕ(xn) = inf
n

ϕ(xn) exists. This, along with (2.28), tells us that (xn) is an

e-Cauchy sequence; wherefrom (by (2.22)), a d-Cauchy one. By completeness
and (2.18), there must be some y ∈ M with

xn → y and lim
n

F (xn) ≥ F (y) (hence lim
n

ϕ(xn) ≥ ϕ(y)). (2.29)

This firstly gives F (y) ≤ F (u) (hence y ∈ Mu); because (xn) ⊆ Mu. Secondly,
fix a certain rank n. By (2.28)+(2.29)

e(xn, xm) ≤ ϕ(xn)− ϕ(y), for all m > n.

Passing to limit upon m yields (via (2.21))

e(xn, y) ≤ ϕ(xn)− ϕ(y) (i.e., xn / y).

As n was arbitrarily, it results that y is an upper bound (modulo (/)) of
(xn); hence the claim. By Theorem 3, we get a (/)-maximal w ∈ Mu so that
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(2.12)+(2.13) be retainable. This is our desired element for the conclusions in
the statement. The proof is thereby complete.

Let again e : M ×M → R+ stand for an almost pseudometric over M ; we
term it a w-distance provided (2.20)+(2.21) hold, as well as

e is strongly transitively d-sufficient
(∀ε > 0, ∃δ > 0 such that e(x, y), e(x, z) ≤ δ ⇒ d(y, z) ≤ ε).

(2.30)

Clearly, this last condition gives (2.22)+(2.23); hence this object is a KST-
distance. As a consequence, Theorem 4 is applicable to w-distances. This
tells us that Theorem 4 includes the variational principle in Kada, Suzuki and
Takahashi [10]. In addition, the proposed argument shows that the recursion
to the nonconvex minimization principle in Takahashi [14] is not necessary.
On the other hand, our statement includes the variational principle (involving
τ -distances) due to Suzuki [12]; we do not give details. Finally, when e : M ×
M → R+ is a pseudometric (e(x, x) = 0,∀x ∈ M) Theorem 4 is comparable
with the variational statement in Tataru [15]; see also Turinici [16]. In fact,
an almost pseudometric version of the quoted statement is available so as to
cover all these; we shall develop such facts elsewhere.

3. General case

The next objective of the program sketched in Section 1 is to give appro-
priate versions of Theorem 1 when the ambient relation has no regularity
properties at all. As we shall see, the natural approach consists in reducing
this case to the transitive one.

Let M be a nonempy set; and (⊥), some general(=amorph) relation over
it. Denote by (/) the transitive relation on M attached to (⊥)

x / y iff x = u1 ⊥ ... ⊥ uk = y (i.e.: ui ⊥ ui+1,∀i ∈ {1, ..., k − 1})
for some k ≥ 2 and certain points u1, ..., uk ∈ M .

(3.1)

Further, take a function ϕ : M → R+. The (⊥)-decreasing property for it is
that of (1.3) (with (⊥) in place of (≤)). Note that, by (3.1) above

ϕ is (⊥)-decreasing =⇒ ϕ is (/)-decreasing. (3.2)

Call the point z ∈ M , (⊥, ϕ)-maximal, in case

w ∈ M and z ⊥ w imply ϕ(z) = ϕ(w). (3.3)
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The following simple fact is evident

z is (/, ϕ)-maximal =⇒ z is (⊥, ϕ)-maximal; (3.4)

the converse relation is not in general valid. This, along with (3.2), shows that
maximality results involving the general relation (⊥) are deductible from the
ones in Section 2 concerning its associated transitive relation (/). As before,
it would be desirable to have expressed these ”transitive” conditions in terms
of our initial ”amorph” relation. Call the sequence (xn), ascending (modulo
(⊥)) when

xn ⊥ xn+1, for all ranks n. (3.5)

Note the generic (sequential) relation

ascending (modulo (⊥)) =⇒ ascending (modulo (/));

the reciprocal is not in general true. Further, given the sequence (xn) in M , let
us say that u ∈ M is an asymptotic upper bound of it (written as: (xn) ⊥⊥ u)
provided

∀n, ∃m ≥ n such that xm ⊥ u; or, equivalently:
there exists a subsequence (yn = xp(n)) of (xn) with
yn ⊥ u,∀n (written as: (yn) ⊥ u).

(3.6)

When u is generic, we say that (xn) is asymptotic bounded above (modulo (⊥)).
The relation below is clear, for ascending (modulo (⊥)) sequences

(∀u)[(xn) ⊥⊥ u implies (xn) / u]; wherefrom
asymptotic bd. above (modulo (⊥)) ⇒ bd. above (modulo (/)).

(3.7)

(The converse implication is false, in general). Finally, call the ambient set
M , sequentially inductive (modulo (⊥)) when

each ascending (modulo (⊥)) sequence in M is
asymptotic bounded above (modulo (⊥)).

(3.8)

We are now in position to give an appropriate answer to the posed question.

Theorem 5. Let the amorph structure (M,⊥) and the function ϕ : M →
R+ be such that M is sequentially inductive (modulo (⊥)) and ϕ is (⊥)-
decreasing. Then, for each u ∈ M there exists a (⊥, ϕ)-maximal v ∈ M

in such a way that

either u = v (hence u is (⊥, ϕ)-maximal) or u / v. (3.9)
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u / v when, in addition, u ⊥ u. (3.10)

Proof. By (3.2)+(3.7), it is clear that Theorem 2 applies to our data,
where (/) is that of (3.1). This, along with (3.4), ends the reasoning.

Clearly, Theorem 5 includes Theorem 2, to which it reduces when (⊥) is
transitive. The reciprocal inclusion is also true, by the argument above; hence

Theorem 5 ⇐⇒ Theorem 2 (from a logical viewpoint). (3.11)

This, along with (2.9), shows that Theorem 5 is also logical equivalent with
the Brezis-Browder principle (subsumed to Theorem 1).

The following variant of this result is to be noted. Let again M be a
momempty set; and (>), some general (=amorph) relation over it. Denote by
(∇) the associated transitive relation

x∇y iff x = v1>...>vk = y, for some k ≥ 2 and v1, ..., vk ∈ M . (3.12)

Further, let ϕ : M → R+ be a function. Call the point z ∈ M , (>, ϕ)-Maximal
if

w ∈ M , z>w imply ϕ(z) ≤ ϕ(w). (3.13)

An interesting statement involving such points is the one due to Gajek and
Zagrodny [8]:

Theorem 6. Suppose that

for each sequence (xn) ⊆ M with [xn>xn+1, ϕ(xn) ≥ ϕ(xn+1),∀n]
there exist a subsequence (yn = xp(n)) of it and a point z ∈ M

in such a way that [yn>z, ϕ(yn) ≥ ϕ(z), ∀n].
(3.14)

Then, for each u ∈ M there exists a (>, ϕ)-Maximal v ∈ M with

either u = v (hence u is (>, ϕ)-Maximal) or u∇v, ϕ(u) ≥ ϕ(v) (3.15)

u∇v, ϕ(u) ≥ ϕ(v) when, in addition, u>u. (3.16)

[As a matter of fact, the original result is with Codom(ϕ) ⊆ R. This, however,
is not a restriction if we remember the arguments in Section 1].

For the moment, it is clear that Theorem 5 is reductible to this principle. In
fact, let the amorph structure (M,>) and the function ϕ : M → R+ be such
that M is sequentially inductive modulo (>) and ϕ is (>)-decreasing. Then,
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evidently, (3.14) holds; i.e., Theorem 6 is applicable to our data. This, added
to the generic relation

(>, ϕ)-Maximal ⇐⇒ (>, ϕ)-maximal when ϕ is (>)-decreasing (3.17)

gives, via (3.15)+(3.16), the conclusion we need. The reverse is also true:

Theorem 5 =⇒ Theorem 6 (from a logical viewpoint). (3.18)

This will follow from the

Proof of Theorem 6. Let (⊥) stand for the amorph relation over M

x ⊥ y iff x>y and ϕ(x) ≥ ϕ(y). (3.19)

Denote also by (/) the transitive relation over M attached to (⊥), under the
model of (3.1). By (3.14), M is sequentially inductive modulo (⊥); and, by
(3.19), ϕ is (⊥)-decreasing. Summing up, Theorem 5 applies to the precised
data. And this, in conjunction with the generic relation

(⊥, ϕ)-maximal ⇐⇒ (>, ϕ)-Maximal (3.20)

gives the desired conclusion.

As a consequence, such statements are logical equivalents of the Brezis-
Browder principle. Some ”abstract” counterparts of these may be found in
Sonntag and Zalinescu [11]; see also Hazen and Morrin [9].

4. Reflexive relations

A basic particular case of these developments corresponds to the underlying
relation being in addition reflexive. As we shall see, the motivation of treating
it separately is practical in nature.

Let M be a nonempty set; and (⊥), some reflexive relation (x ⊥ x,∀x ∈ M)
over it. Let (≤) stand for the transitive relation associated to (⊥) under (3.1);
note that, by the admitted hypothesis, (≤) is reflexive too; hence a quasi-order.
Furher, let ϕ : M → R+ be a function. The remaining concepts and auxiliary
facts are the ones in Section 3. As a direct consequence, the following version
of Theorem 5 is available.

Theorem 7. Let the reflexive relation (⊥) and the function ϕ be such that
M is sequentially inductive (modulo (⊥)) and ϕ is (⊥)-decreasing. Then, for
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each u ∈ M there exists a (⊥, ϕ)-maximal v ∈ M with

u ≤ v [u = x1 ⊥ ... ⊥ xk = v, for some k ≥ 2 and x1, ..., xk ∈ M ]. (4.1)

For the moment, the Brezis-Browder principle follows from Theorem 7;
because the sequential inductivity (modulo (⊥)) becomes the one of (1.2)
when (⊥) is, in addition, transitive (hence a quasi-order). On the other hand,
the reciprocal inclusion is also true, by the developments in Section 3. Hence

Theorem 1 ⇐⇒ Theorem 7 (from a logical viewpoint). (4.2)

In particular, suppose that the (⊥)-decreasing property of ϕ is to be substi-
tuted by its stronger counterpart

ϕ is strongly (⊥)-decreasing (x ⊥ y, x 6= y imply ϕ(x) > ϕ(y)). (4.3)

Then, the point v ∈ M assured by Theorem 7 fulfils the (stronger than (⊥, ϕ)-
maximal) property

z ∈ M,v ⊥ z ⇒ v = z (referred to as: v is (⊥)-maximal). (4.4)

Hence, this variant of Theorem 7 incorporates the basic ordering principle in
Bae, Cho and Yeom [2] obtained via similar methods.

By the above developments it results that, in all maximality principles based
on Theorem 7, an alternate use of Theorem 1 is always possible. In fact, this
is the most profitable approach; because the ambient (reflexive) relation (⊥)
is ”very distinct” from its induced quasi-order. The following example will
illustrate our claim. But, prior to this, we need some preliminaries.

Let c : R+ → R+ be some function; we call it right locally bounded above at
r ∈ R+ if

there exists δ > 0 such that sup c([r, r + δ]) < ∞. (4.5)

If r is generic in this convention, then t ` c(t) will be referred to as right
locally bounded above on R+. A basic situation when this property holds may
be described as below. Call the function c : R+ → R+, right usc at r ∈ R+

provided

lim sup
n

c(tn) ≤ c(r), whenever tn → r+. (4.6)
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(Here, tn → r+ means: tn → r and tn > r,∀n). If r is generic in this
convention, then t ` c(t) will be termed right usc on R+. We now have

(∀r): c is right usc at r =⇒ c is right locally bounded above at r;
c is right usc on R+ =⇒ c is right locally bounded above on R+.

(The reciprocals are not in general true).

Let in the following (M, d) stand for a complete metric space. Take some
lsc function ϕ : M → R+ (in the sense of (2.18)); and let the function c :
R+ → R+ be right locally bounded above on R+. Finally, take a function
H : R2

+ → R+ with the property of being locally bounded; i.e.:

the image of each bounded part in R2
+ is bounded (in R). (4.7)

The following variational principle involving our data may be formulated:

Theorem 8. Let u ∈ M be arbitrary fixed. There exists then v = v(u) ∈ M

such that ϕ(u) ≥ ϕ(v) and

d(v, x) > H(c(ϕ(v)), c(ϕ(x)))[ϕ(v)− ϕ(x)], ∀x ∈ M \ {v}. (4.8)

As already precised, a ”direct” approach for getting this result is possible
(via Theorem 7) by starting from the reflexive (over M) relation

(x, y ∈ M): x ⊥ y iff d(x, y) ≤ H(c(ϕ(x)), c(ϕ(y)))[ϕ(x)− ϕ(y)]. (4.9)

However, such developments are technically complicated. So, we shall use an
”indirect” approach (by a reduction to Theorem 1).

Proof of Theorem 8. Denote for simplicity

M [u] = {x ∈ M ;ϕ(x) ≤ ϕ(u)}; r = inf[ϕ(M)](= inf[ϕ(M [u])]).

Clearly, M [u] is nonempty (since it contains u); moreover, as ϕ is lsc on M , it
results that M [u] is closed (hence complete) in M . If r = ϕ(u), we are done
(with v = u); so, without loss, one may assume r < ϕ(u). Since c : R+ → R+

is right locally bounded above at r, there must be some δ in ]0, ϕ(u)− r[ such
that µ := sup{c(t); r ≤ t ≤ r + δ} < ∞. Given this µ there exists, by the local
boundedness of (t, s) ` H(t, s), some ν > 0 such that

H(τ, σ) ≤ ν, whenever 0 ≤ τ, σ ≤ µ.

Finally, take some u∗ ∈ M with the property

r ≤ ϕ(u∗) < r + δ < ϕ(u) (hence u∗ ∈ M [u]);
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this is evidently possible, by the definition of r. Put N = M [u∗]; and let (≤)
stand for the quasi-order (on M)

(x, y ∈ M): x ≤ y iff d(x, y) ≤ ν[ϕ(x)− ϕ(y)].

It is not hard to see that (1.2)+(1.3) holds for the pair (≤, ϕ) over N . So, for
the starting point u∗ ∈ N there exists v ∈ N such that

u∗ ≤ v and v is (≤, ϕ)-maximal (relative to N).

The former of these gives ϕ(u∗) ≥ ϕ(v) (by the very definition of (≤)); hence
ϕ(u) ≥ ϕ(v). And the latter one yields

x ∈ N, d(v, x) ≤ ν[ϕ(v)− ϕ(x)] ⇒ ϕ(v) = ϕ(x) (hence v = x).

But, from this, (4.8) follows at once (by contradiction) if we note that

x, y ∈ M and x ⊥ y imply ϕ(x) ≥ ϕ(y).

The proof is thereby complete.

In particular, when c = 1, Theorem 8 becomes the variational Ekeland’s
principle [7] (in short: EVP). Moreover, the argument above shows that the
converse inclusion holds too; hence Theorem 8 is logically equivalent with EVP.
This may have a theoretical impact upon it; but, from a practical perspective,
the situation may be reversed.

Now, by the well known Bourbaki methodological scheme [3], Theorem 8
may be written as a fixed point statement. In fact, let the general conditions
above be in use.

Theorem 9. Let the selfmap T of X be such that

d(x, Tx) ≤ H(c(ϕ(x)), c(ϕ(Tx)))[ϕ(x)− ϕ(Tx)], ∀x ∈ M ; (4.10)

and let u ∈ M be arbitrary fixed. There exists then a fixed point (relative to
T ) v = v(u) ∈ M such that conclusions of Theorem 8 be retainable.

In particular, a sufficient condition for the right locally bounded above prop-
erty of c : R+ → R+ is (by a preceding remark) the right usc property of the
same. This shows that Theorem 9 incorporates the statement in Suzuki [13];
as well as (under H(t, s) = max{t, s}) the one due to Bae, Cho and Yeom [op.
cit.]. But, these results extend in a direct way the Caristi-Kirk fixed point the-
orem [5] (in short: CK-FPT); hence, so does Theorem 9. On the other hand,
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the involved argument shows that the converse inclusion also holds; wherefrom
Theorem 9 is logically equivalent with CK-FPT. Although non-effective (from
a theoretical viewpoint) these extensions have useful applications in practice.
For example, Theorems 8 and 9 are handy tools in deriving fixed point the-
orems for weakly contractive multivalued maps; and, moreover, the obtained
statements extend a related one in Bae [1]. We shall discuss these in a separate
paper.
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