RELATIONAL BREZIS-BROWDER PRINCIPLES

MIHAI TURINICI
"A. Myller" Math. Seminar
"A. I. Cuza" University, 11, Copou Boulevard, 700506 Iaşi, Romania
E-mail: mturi@uaic.ro

Abstract

The relational type versions of the (quasi-order) Brezis-Browder principle are logical equivalent with it. Some applications of these facts to maximality principles are also discussed. Key Words and Phrases: Quasi-order, maximal element, ascending sequence, monotone function, Brezis-Browder principle, reflexive/transitive relation, lsc/usc property, right locally bounded function.

2000 Mathematics Subject Classification: 49J53, 47J30.

1. Introduction

Let M be some nonempty set. By a quasi-order over M we shall understand any relation (\leq) on this set which is reflexive $(x \leq x, \forall x \in M)$ and transitive $(x \leq y$ and $y \leq z$ imply $x \leq z)$. Assume that we fixed such an object; and let $x \vdash \varphi(x)$ be some function from M to $R_{+}=[0, \infty[$. Call the point $z \in M$, (\leq, φ) - maximal when

$$
\begin{equation*}
w \in M \text { and } z \leq w \text { imply } \varphi(z)=\varphi(w) \tag{1.1}
\end{equation*}
$$

A basic result involving such points is the 1976 Brezis-Browder principle [4]:
Theorem 1. Suppose that

$$
\begin{align*}
& M \text { is sequentially inductive }(\text { modulo }(\leq)) \\
& \text { (each ascending sequence in } M \text { has an upper bound) } \tag{1.2}\\
& \qquad \varphi \text { is }(\leq) \text {-decreasing }(x \leq y \Longrightarrow \varphi(x) \geq \varphi(y)) . \tag{1.3}
\end{align*}
$$

Then, for each $u \in M$ there exists $a(\leq, \varphi)$-maximal $v \in M$ with $u \leq v$.

In particular, when (1.3) is taken in the stronger sense

$$
\begin{equation*}
\varphi \text { is strictly }(\leq) \text {-decreasing }(x \leq y, x \neq y \Rightarrow \varphi(x)>\varphi(y)) \tag{1.4}
\end{equation*}
$$

the concept in (1.1) means

$$
\begin{equation*}
w \in M, z \leq w \Rightarrow z=w \text { (referred to as: } z \text { is (} \leq \text {)-maximal) } \tag{1.5}
\end{equation*}
$$

and the Brezis-Browder principle includes directly the well known Ekeland's [7]. Note that the regularity condition $\operatorname{Codom}(\varphi) \subseteq R_{+}$is not essential for the conclusions above. In fact, let $x \vdash \varphi(x)$ be some function from M to $\bar{R}=R \cup\{-\infty, \infty\}$. Take a certain order isomoprphism $t \vdash \chi(t)$ between \bar{R} and a bounded subinterval of R_{+}; such as, e.g.,

$$
\chi(t)=\pi / 2+\operatorname{arctg}(t), t \in R ; \quad \chi(-\infty)=0, \chi(\infty)=\pi
$$

The composed function $\varphi_{1}=\chi \circ \varphi$ fulfills $\operatorname{Codom}\left(\varphi_{1}\right) \subseteq[0, \pi]$. Moreover, (1.3) (resp., (1.4)) holds for φ whenever it holds for φ_{1} (and viceversa). Adding to this the generic property

$$
(\leq, \varphi) \text {-maximal } \Longleftrightarrow\left(\leq, \varphi_{1}\right) \text {-maximal }
$$

shows that if conclusions of Theorem 1 are true for φ_{1} then these are also true for φ. This remark goes back to Carja and Ursescu [6].

Now, Theorem 1 found some useful applications to convex and nonconvex analysis; we refer to the quoted papers for details. So, it cannot be surprising that many extensions of Theorem 1 were proposed. Here, we shall concentrate on the relational way of enlargement. This may be described as a deduction of maximality results like Theorem 1 when the relation (\leq) has not all the properties of a quasi-order. Two basic situations may occur:
(A). The considered relation is (only) transitive. Results of this type are implicitly deductible from the variational ones in Kada, Suzuki and Takahashi [10]. (These will be discussed in Section 2).
(B). The underlying relation is a general (=amorph) one. A specific result of this kind may be found in Gajek and Zagrodny [8]. (We refer to Section 3 for details). The particular situation of reflexivity being added enters in such a scheme. For a basic result of this type we refer to Bae, Cho and Yeom [2]. (This will be delineated in Section 4 below).

As we shall see, all such techniques are non-effective: i.e., they produce nothing but logical equivalents of Theorem 1. So, genuine extensions of this result must be based on a different approach; we shall discuss it elsewhere.

2. Transitive relations

Let M be a nonempty set; and \triangleleft, some transitive relation $(x \triangleleft y, y \triangleleft z \Rightarrow x \triangleleft z)$ over it. Denote by (\leq) the associated quasi-order

$$
\begin{equation*}
x \leq y \text { iff either } x=y \text { or } x \triangleleft y . \tag{2.1}
\end{equation*}
$$

Further, take a function $\varphi: M \rightarrow R_{+}$. The (\triangleleft)-decreasing property for it is that of (1.3) (with (\triangleleft) in place of (\leq)). Note that, by (2.1),

$$
\begin{equation*}
\varphi \text { is }(\triangleleft) \text {-decreasing } \Longleftrightarrow \varphi \text { is }(\leq) \text {-decreasing. } \tag{2.2}
\end{equation*}
$$

Call the point $z \in M,(\triangleleft, \varphi)$-maximal, provided

$$
\begin{equation*}
w \in M \text { and } z \triangleleft w \text { imply } \varphi(z)=\varphi(w) . \tag{2.3}
\end{equation*}
$$

Again by (2.1), the generic relation holds

$$
\begin{equation*}
(\triangleleft, \varphi) \text {-maximal } \Longleftrightarrow(\leq, \varphi) \text {-maximal. } \tag{2.4}
\end{equation*}
$$

This, along with (2.2), shows that maximality results involving the transitive relation (\triangleleft) are deductible from the Brezis-Browder principle involving its associated quasi-order (\leq). The key moment of this approach is that of (1.2) being assured. It would be useful to have expressed this condition in terms of the initial transitive relation. This necessitates a few conventions and auxiliary facts. Call the sequence $\left(x_{n}\right)$, ascending (modulo (\triangleleft)) when

$$
\begin{equation*}
x_{n} \triangleleft x_{n+1}, \forall n \text { (or, equivalently: } x_{n} \triangleleft x_{m} \text { if } n<m \text {). } \tag{2.5}
\end{equation*}
$$

Note the generic (sequential) relation

$$
\text { ascending }(\operatorname{modulo}(\triangleleft)) \Longrightarrow \text { ascending }(\operatorname{modulo}(\leq)) .
$$

The reciprocal is not in general true. For example, the constant sequence $\left(x_{n}=a ; n \in N\right)$ is ascending (modulo (\leq)); but not ascending (modulo (\triangleleft)), whenever $a \triangleleft a$ is false. Further, given the sequence $\left(x_{n}\right)$ in M, let us say that $u \in M$ is an upper bound (modulo (\triangleleft)) of it provided

$$
\begin{equation*}
\left.x_{n} \triangleleft u, \forall n \text { (written as: }\left(x_{n}\right) \triangleleft u\right) \text {. } \tag{2.6}
\end{equation*}
$$

If u is generic in this convention, we say that $\left(x_{n}\right)$ is bounded above (modulo $(\triangleleft))$. As before, the relation below is clear

$$
(\forall u)\left[\left(x_{n}\right) \triangleleft u\right] \Longrightarrow\left[\left(x_{n}\right) \leq u\right] ; \quad \text { wherefrom }
$$

bounded above (modulo $(\triangleleft)) \Longrightarrow$ bounded above (modulo (\leq)).
(The converse is not in general valid). Finally, let the concept of sequential inductivity modulo (\triangleleft) be that of (1.2), with (\triangleleft) in place of (\leq).

We may now give an appropriate answer to the posed question.
Theorem 2. Let the transitive relation (\triangleleft) and the function $\varphi: M \rightarrow R_{+}$ be such that M is sequentially inductive modulo (\triangleleft) and φ is (\triangleleft)-decreasing. Then, for each $u \in M$ there exists a (\triangleleft, φ)-maximal $v \in M$ with

$$
\begin{gather*}
\text { either } u=v(\text { hence } u \text { is }(\triangleleft, \varphi) \text {-maximal) or } u \triangleleft v \tag{2.7}\\
\qquad u \triangleleft v \quad \text { when, in addition, } u \triangleleft u . \tag{2.8}
\end{gather*}
$$

Proof. Let (\leq) stand for the quasi-order (2.1). We claim that M is sequentially inductive modulo (\leq). In fact, let $\left(x_{n}\right)$ be an ascending (modulo $(\leq))$ sequence in M

$$
x_{n} \leq x_{n+1}, \forall n \quad\left(\text { hence } x_{n} \leq x_{m} \text { whenever } n \leq m\right)
$$

If this sequence is stationary beyond a certain rank

$$
\exists k \text { such that: } \forall n>k \text { one has } x_{n}=x_{k}
$$

we are done; because $\left(x_{n}\right) \leq u\left(=x_{k}\right)$. Otherwise,

$$
\forall p, \exists q>p \text { such that } x_{p} \neq x_{q} \quad \text { (hence } x_{p} \triangleleft x_{q} \text {). }
$$

Consequently, a subsequence $\left(y_{n}=x_{r(n)}\right)$ of $\left(x_{n}\right)$ may be constructed with

$$
\begin{aligned}
& \left.\left(y_{n}\right) \text { is ascending (modulo }(\triangleleft)\right) ; \quad \text { wherefrom } \\
& \left(y_{n}\right) \triangleleft t, \text { for some } t \in M \quad(c f . \text { the hypothesis). }
\end{aligned}
$$

But then, t acts as an upper bound (modulo $(\leq))$ of $\left(x_{n}\right)$; hence the claim. In addition (cf. (2.2)), φ is (\leq)-decreasing. By Theorem 1 it follows that, for the starting point $u \in M$ there exists $v \in M$ such that

$$
u \leq v \text { and } v \text { is }(\leq, \varphi) \text {-maximal. }
$$

The latter of these yields v is (\triangleleft, φ)-maximal, if we take (2.4) into account. And the former one gives $(2.7)+(2.8)$, by the very definition of (\leq). The proof is complete.

Clearly, the Brezis-Browder principle (i.e., Theorem 1) follows from Theorem 2. The reciprocal inclusion also holds, by the argument above. Hence

$$
\begin{equation*}
\text { Theorem } 1 \Longleftrightarrow \text { Theorem } 2 \text { (from a logical viewpoint). } \tag{2.9}
\end{equation*}
$$

Nevertheless, a direct use of Theorem 2 is more profitable; because the transitive relation (\triangleleft) is "very similar" to its induced quasi-order (\leq).

An interesting completion of Theorem 2 is to be given under the lines of Section 1. Precisely, after the model of (1.5), we may introduce the concept

$$
\begin{equation*}
w \in M, z \triangleleft w \Rightarrow z=w \quad(\text { referred to as: } z \text { is }(\triangleleft) \text {-maximal). } \tag{2.10}
\end{equation*}
$$

This is a stronger version of the concept (2.3). To get a corresponding form of Theorem 2 with (2.10) in place of (2.3), we need that (\triangleleft) be φ-sufficient:

$$
\begin{equation*}
x \triangleleft y, y \triangleleft z \text { and } \varphi(x)=\varphi(y)=\varphi(z) \text { imply } y=z \tag{2.11}
\end{equation*}
$$

Precisely, we have
Theorem 3. Let the conditions of Theorem 2 be in use and (\triangleleft) be φ sufficient. Then, for each $u \in M$ there exists $a(\triangleleft)$-maximal $w \in M$ with

$$
\begin{gather*}
\text { either } u=w(\text { hence } u \text { is }(\triangleleft) \text {-maximal) or } u \triangleleft w \tag{2.12}\\
u \triangleleft w \text { if, in addition, } u \triangleleft u . \tag{2.13}
\end{gather*}
$$

Proof. By Theorem 2, we have promised some (\triangleleft, φ)-maximal $v \in M$ with the properties $(2.8)+(2.9)$. We claim that there exists a (\triangleleft)-maximal $w \in M$ so that

$$
\begin{equation*}
\text { either } v=w \text { (hence } v \text { is }(\triangleleft) \text {-maximal) or } v \triangleleft w \text {; } \tag{2.14}
\end{equation*}
$$

and this will complete the argument. The first alternative is clear; so, it remains to discuss the second one:

$$
\begin{equation*}
v \triangleleft w(\text { hence } \varphi(v)=\varphi(w)) \text {, for some } w \in M \backslash\{v\} . \tag{2.15}
\end{equation*}
$$

We claim that, necessarily, w is (\triangleleft)-maximal. Assume not:

$$
\begin{equation*}
w \triangleleft y, \quad \text { for some } y \in M \backslash\{v\} . \tag{2.16}
\end{equation*}
$$

Combining with (2.15) yields

$$
v \triangleleft y ; \quad \text { hence } \varphi(v)=\varphi(y) \text { (by the choice of } v \text {). }
$$

Summing up, $v \triangleleft w, w \triangleleft y$ and $\varphi(v)=\varphi(w)=\varphi(y)$; wherefrom (cf. (2.11))
$w=y ; \quad$ in contradiction with the choice of y.
Hence, (2.16) cannot hold; and our claim follows.
The obtained statement is nothing but a "transitive" form of the Zorn maximality principle (cf. Bourbaki [3]) for such structures. A basic particular case of it may be described under the lines below. Let (M, d) be a complete metric space; and $F: M \rightarrow R \cup\{\infty\}$, some function with

$$
\begin{align*}
& F \text { is proper }(\operatorname{Dom}(F) \neq \emptyset) \text {, bounded below }(\inf [F(M)]>-\infty) \tag{2.17}\\
& \qquad F \text { is lsc on } M\left(F(x) \leq \liminf _{n} F\left(x_{n}\right) \text {, if } x_{n} \rightarrow x\right) \tag{2.18}
\end{align*}
$$

Denote for simplicity

$$
M_{u}=\{x \in M ; F(x) \leq F(u)\} \text { where } u \in \operatorname{Dom}(F) \text { is arbitrary fixed; }
$$

and let the function $\varphi=\varphi(u, F)$ from M_{u} to R_{+}be given as

$$
\begin{equation*}
\varphi(x)=F(x)-F_{*}, x \in M_{u}, \quad \text { where } F_{*}=\inf [F(M)] \tag{2.19}
\end{equation*}
$$

The quasi-order (\leq) over M_{u} introduced under

$$
\left(x, y \in M_{u}\right): x \leq y \text { iff } d(x, y) \leq \varphi(x)-\varphi(y)
$$

fulfills (1.2)+(1.4); and then, an application of Theorem 3 to these data yields the well known Ekeland's variational principle [7]. For a non-metrical version of it, one may proceed as follows. By an almost pseudometric over M we shall mean any map $e: M \times M \rightarrow R_{+}$. We shall say that this object is a KST-distance (modulo d) over M provided

$$
\begin{align*}
& e \text { is triangular }(e(x, z) \leq e(x, y)+e(y, z), \forall x, y, z \in M) \tag{2.20}\\
& y \vdash e(x, y) \text { is lsc over } M \text { (see above), for each } x \in M \tag{2.21}\\
& \quad \text { each } e \text {-Cauchy sequence is a } d \text {-Cauchy sequence too } \tag{2.22}
\end{align*}
$$

The following variational result is then available.

Theorem 4. Let the function $F: M \rightarrow R \cup\{\infty\}$ be taken as in (2.17) + (2.18); and $e: M \times M \rightarrow R_{+}$be some KST-distance (modulo d). Then, for each $u \in \operatorname{Dom}(F)$ there exists $w \in \operatorname{Dom}(F)$ with

$$
\begin{align*}
& e(w, x)>F(w)-F(x), \text { for each } x \in M \backslash\{w\} \tag{2.24}\\
& (\text { referred to as: } w \text { is }(e, F) \text {-variational })
\end{align*}
$$

in such a way that

$$
\begin{gather*}
\text { either } u=w(u \text { is }(e, F) \text {-variational }) \text { or } e(u, w) \leq F(u)-F(w) \tag{2.25}\\
e(u, w) \leq F(u)-F(w) \quad \text { if, in addition, } e(u, u)=0 . \tag{2.26}
\end{gather*}
$$

Proof. Let $\left(M_{u}, \varphi\right)$ be introduced as before. Clearly, $M_{u} \neq \emptyset$ (since it contains u); moreover, by (2.18), M_{u} is closed (hence complete) in M. Let (\triangleleft) stand for the transitive relation (over M_{u})

$$
\begin{equation*}
\left(x, y \in M_{u}\right): x \triangleleft y \text { iff } e(x, y) \leq \varphi(x)-\varphi(y) \tag{2.27}
\end{equation*}
$$

We claim that conditions of Theorem 3 hold for the pair (\triangleleft, φ) over M_{u}. Clearly, φ is (\triangleleft)-decreasing on M_{u}; so, it remains to establish that M_{u} is sequentially inductive modulo (\triangleleft). Let $\left(x_{n}\right)$ be an ascending (modulo (\triangleleft)) sequence in M_{u} :

$$
\begin{equation*}
e\left(x_{n}, x_{m}\right) \leq \varphi\left(x_{n}\right)-\varphi\left(x_{m}\right)\left(=F\left(x_{n}\right)-F\left(x_{m}\right)\right), \text { if } n<m . \tag{2.28}
\end{equation*}
$$

The sequence $\left(\varphi\left(x_{n}\right)\right)$ is descending in R_{+}; hence a Cauchy sequence; and $\lim _{n} \varphi\left(x_{n}\right)=\inf _{n} \varphi\left(x_{n}\right)$ exists. This, along with (2.28), tells us that $\left(x_{n}\right)$ is an e-Cauchy sequence; wherefrom (by (2.22)), a d-Cauchy one. By completeness and (2.18), there must be some $y \in M$ with

$$
\begin{equation*}
\left.x_{n} \rightarrow y \text { and } \lim _{n} F\left(x_{n}\right) \geq F(y) \text { (hence } \lim _{n} \varphi\left(x_{n}\right) \geq \varphi(y)\right) . \tag{2.29}
\end{equation*}
$$

This firstly gives $F(y) \leq F(u)$ (hence $y \in M_{u}$; because $\left(x_{n}\right) \subseteq M_{u}$. Secondly, fix a certain rank n. By $(2.28)+(2.29)$

$$
e\left(x_{n}, x_{m}\right) \leq \varphi\left(x_{n}\right)-\varphi(y), \quad \text { for all } m>n
$$

Passing to limit upon m yields (via (2.21))

$$
e\left(x_{n}, y\right) \leq \varphi\left(x_{n}\right)-\varphi(y) \quad\left(\text { i.e., } x_{n} \triangleleft y\right)
$$

As n was arbitrarily, it results that y is an upper bound (modulo (\triangleleft)) of $\left(x_{n}\right)$; hence the claim. By Theorem 3, we get a (\triangleleft)-maximal $w \in M_{u}$ so that
$(2.12)+(2.13)$ be retainable. This is our desired element for the conclusions in the statement. The proof is thereby complete.

Let again $e: M \times M \rightarrow R_{+}$stand for an almost pseudometric over M; we term it a w-distance provided $(2.20)+(2.21)$ hold, as well as

$$
\begin{align*}
& e \text { is strongly transitively } d \text {-sufficient } \\
& (\forall \varepsilon>0, \exists \delta>0 \text { such that } e(x, y), e(x, z) \leq \delta \Rightarrow d(y, z) \leq \varepsilon) \tag{2.30}
\end{align*}
$$

Clearly, this last condition gives $(2.22)+(2.23)$; hence this object is a KSTdistance. As a consequence, Theorem 4 is applicable to w-distances. This tells us that Theorem 4 includes the variational principle in Kada, Suzuki and Takahashi [10]. In addition, the proposed argument shows that the recursion to the nonconvex minimization principle in Takahashi [14] is not necessary. On the other hand, our statement includes the variational principle (involving τ-distances) due to Suzuki [12]; we do not give details. Finally, when $e: M \times$ $M \rightarrow R_{+}$is a pseudometric $(e(x, x)=0, \forall x \in M)$ Theorem 4 is comparable with the variational statement in Tataru [15]; see also Turinici [16]. In fact, an almost pseudometric version of the quoted statement is available so as to cover all these; we shall develop such facts elsewhere.

3. General case

The next objective of the program sketched in Section 1 is to give appropriate versions of Theorem 1 when the ambient relation has no regularity properties at all. As we shall see, the natural approach consists in reducing this case to the transitive one.

Let M be a nonempy set; and (\perp), some general(=amorph) relation over it. Denote by (\triangleleft) the transitive relation on M attached to (\perp)

$$
\begin{align*}
& x \triangleleft y \text { iff } x=u_{1} \perp \ldots \perp u_{k}=y \text { (i.e.: } u_{i} \perp u_{i+1}, \forall i \in\{1, \ldots, k-1\} \text {) } \\
& \text { for some } k \geq 2 \text { and certain points } u_{1}, \ldots, u_{k} \in M . \tag{3.1}
\end{align*}
$$

Further, take a function $\varphi: M \rightarrow R_{+}$. The (\perp)-decreasing property for it is that of (1.3) (with (\perp) in place of (\leq)). Note that, by (3.1) above

$$
\begin{equation*}
\varphi \text { is }(\perp) \text {-decreasing } \Longrightarrow \varphi \text { is }(\triangleleft) \text {-decreasing. } \tag{3.2}
\end{equation*}
$$

Call the point $z \in M,(\perp, \varphi)$-maximal, in case

$$
\begin{equation*}
w \in M \text { and } z \perp w \text { imply } \varphi(z)=\varphi(w) \tag{3.3}
\end{equation*}
$$

The following simple fact is evident

$$
\begin{equation*}
z \text { is }(\triangleleft, \varphi) \text {-maximal } \Longrightarrow z \text { is }(\perp, \varphi) \text {-maximal; } \tag{3.4}
\end{equation*}
$$

the converse relation is not in general valid. This, along with (3.2), shows that maximality results involving the general relation (\perp) are deductible from the ones in Section 2 concerning its associated transitive relation ($\triangleleft)$. As before, it would be desirable to have expressed these "transitive" conditions in terms of our initial "amorph" relation. Call the sequence $\left(x_{n}\right)$, ascending (modulo (\perp)) when

$$
\begin{equation*}
x_{n} \perp x_{n+1}, \quad \text { for all ranks } n \text {. } \tag{3.5}
\end{equation*}
$$

Note the generic (sequential) relation

$$
\text { ascending }(\text { modulo }(\perp)) \Longrightarrow \text { ascending (modulo }(\triangleleft)) ;
$$

the reciprocal is not in general true. Further, given the sequence $\left(x_{n}\right)$ in M, let us say that $u \in M$ is an asymptotic upper bound of it (written as: $\left(x_{n}\right) \perp \perp u$) provided

$$
\begin{align*}
& \forall n, \exists m \geq n \text { such that } x_{m} \perp u \text {; or, equivalently: } \\
& \text { there exists a subsequence }\left(y_{n}=x_{p(n)}\right) \text { of }\left(x_{n}\right) \text { with } \tag{3.6}\\
& \left.y_{n} \perp u, \forall n \text { (written as: }\left(y_{n}\right) \perp u\right) .
\end{align*}
$$

When u is generic, we say that $\left(x_{n}\right)$ is asymptotic bounded above (modulo (\perp)). The relation below is clear, for ascending (modulo (\perp)) sequences
$(\forall u)\left[\left(x_{n}\right) \perp \perp u\right.$ implies $\left.\left(x_{n}\right) \triangleleft u\right]$; wherefrom
asymptotic bd. above (modulo $(\perp)) \Rightarrow$ bd. above (modulo ($\triangleleft)$).
(The converse implication is false, in general). Finally, call the ambient set M, sequentially inductive (modulo (\perp)) when
each ascending (modulo (\perp)) sequence in M is asymptotic bounded above (modulo (\perp)).
We are now in position to give an appropriate answer to the posed question.
Theorem 5. Let the amorph structure (M, \perp) and the function $\varphi: M \rightarrow$ R_{+}be such that M is sequentially inductive (modulo (\perp)) and φ is (\perp)decreasing. Then, for each $u \in M$ there exists $a(\perp, \varphi)$-maximal $v \in M$ in such a way that

$$
\begin{equation*}
\text { either } u=v(\text { hence } u \text { is }(\perp, \varphi) \text {-maximal) or } u \triangleleft v \text {. } \tag{3.9}
\end{equation*}
$$

$$
\begin{equation*}
u \triangleleft v \quad \text { when, in addition, } u \perp u \text {. } \tag{3.10}
\end{equation*}
$$

Proof. By $(3.2)+(3.7)$, it is clear that Theorem 2 applies to our data, where (\triangleleft) is that of (3.1). This, along with (3.4), ends the reasoning.

Clearly, Theorem 5 includes Theorem 2, to which it reduces when (\perp) is transitive. The reciprocal inclusion is also true, by the argument above; hence

$$
\begin{equation*}
\text { Theorem } 5 \Longleftrightarrow \text { Theorem } 2 \text { (from a logical viewpoint). } \tag{3.1.1}
\end{equation*}
$$

This, along with (2.9), shows that Theorem 5 is also logical equivalent with the Brezis-Browder principle (subsumed to Theorem 1).
The following variant of this result is to be noted. Let again M be a momempty set; and (T), some general (=amorph) relation over it. Denote by (∇) the associated transitive relation

$$
\begin{equation*}
x \nabla y \text { iff } x=v_{1} \top \ldots \top v_{k}=y, \text { for some } k \geq 2 \text { and } v_{1}, \ldots, v_{k} \in M . \tag{3.12}
\end{equation*}
$$

Further, let $\varphi: M \rightarrow R_{+}$be a function. Call the point $z \in M,(\top, \varphi)$-Maximal if

$$
\begin{equation*}
w \in M, z \top w \quad \text { imply } \quad \varphi(z) \leq \varphi(w) . \tag{3.13}
\end{equation*}
$$

An interesting statement involving such points is the one due to Gajek and Zagrodny [8]:

Theorem 6. Suppose that
for each sequence $\left(x_{n}\right) \subseteq M$ with $\left[x_{n} \top x_{n+1}, \varphi\left(x_{n}\right) \geq \varphi\left(x_{n+1}\right), \forall n\right]$ there exist a subsequence $\left(y_{n}=x_{p(n)}\right)$ of it and a point $z \in M$ in such a way that $\left[y_{n} \top z, \varphi\left(y_{n}\right) \geq \varphi(z), \forall n\right]$.

Then, for each $u \in M$ there exists $a(T, \varphi)$-Maximal $v \in M$ with

$$
\begin{gather*}
\text { either } u=v \text { (hence } u \text { is }(\top, \varphi) \text {-Maximal) or } u \nabla v, \varphi(u) \geq \varphi(v) \tag{3.15}\\
u \nabla v, \varphi(u) \geq \varphi(v) \quad \text { when, in addition, } u \top u . \tag{3.16}
\end{gather*}
$$

[As a matter of fact, the original result is with $\operatorname{Codom}(\varphi) \subseteq R$. This, however, is not a restriction if we remember the arguments in Section 1].

For the moment, it is clear that Theorem 5 is reductible to this principle. In fact, let the amorph structure ($M, \mathrm{~T}$) and the function $\varphi: M \rightarrow R_{+}$be such that M is sequentially inductive modulo (T) and φ is ((T)-decreasing. Then,
evidently, (3.14) holds; i.e., Theorem 6 is applicable to our data. This, added to the generic relation

$$
\begin{equation*}
(\top, \varphi) \text {-Maximal } \Longleftrightarrow(\top, \varphi) \text {-maximal when } \varphi \text { is }(\top) \text {-decreasing } \tag{3.17}
\end{equation*}
$$

gives, via $(3.15)+(3.16)$, the conclusion we need. The reverse is also true:
Theorem $5 \Longrightarrow$ Theorem 6 (from a logical viewpoint).
This will follow from the
Proof of Theorem 6. Let (\perp) stand for the amorph relation over M

$$
\begin{equation*}
x \perp y \text { iff } x \top y \text { and } \varphi(x) \geq \varphi(y) \tag{3.19}
\end{equation*}
$$

Denote also by (\triangleleft) the transitive relation over M attached to (\perp), under the model of (3.1). By (3.14), M is sequentially inductive modulo (\perp); and, by (3.19), φ is (\perp)-decreasing. Summing up, Theorem 5 applies to the precised data. And this, in conjunction with the generic relation

$$
\begin{equation*}
(\perp, \varphi) \text {-maximal } \Longleftrightarrow(\top, \varphi) \text {-Maximal } \tag{3.20}
\end{equation*}
$$

gives the desired conclusion.
As a consequence, such statements are logical equivalents of the BrezisBrowder principle. Some "abstract" counterparts of these may be found in Sonntag and Zalinescu [11]; see also Hazen and Morrin [9].

4. Reflexive Relations

A basic particular case of these developments corresponds to the underlying relation being in addition reflexive. As we shall see, the motivation of treating it separately is practical in nature.

Let M be a nonempty set; and (\perp), some reflexive relation $(x \perp x, \forall x \in M)$ over it. Let (\leq) stand for the transitive relation associated to (\perp) under (3.1); note that, by the admitted hypothesis, (\leq) is reflexive too; hence a quasi-order. Furher, let $\varphi: M \rightarrow R_{+}$be a function. The remaining concepts and auxiliary facts are the ones in Section 3. As a direct consequence, the following version of Theorem 5 is available.

Theorem 7. Let the reflexive relation (\perp) and the function φ be such that M is sequentially inductive (modulo $(\perp))$ and φ is (\perp)-decreasing. Then, for
each $u \in M$ there exists $a(\perp, \varphi)$-maximal $v \in M$ with

$$
\begin{equation*}
u \leq v\left[u=x_{1} \perp \ldots \perp x_{k}=v, \text { for some } k \geq 2 \text { and } x_{1}, \ldots, x_{k} \in M\right] \tag{4.1}
\end{equation*}
$$

For the moment, the Brezis-Browder principle follows from Theorem 7; because the sequential inductivity (modulo (\perp)) becomes the one of (1.2) when (\perp) is, in addition, transitive (hence a quasi-order). On the other hand, the reciprocal inclusion is also true, by the developments in Section 3. Hence

$$
\begin{equation*}
\text { Theorem } 1 \Longleftrightarrow \text { Theorem } 7 \text { (from a logical viewpoint). } \tag{4.2}
\end{equation*}
$$

In particular, suppose that the (\perp)-decreasing property of φ is to be substituted by its stronger counterpart

$$
\begin{equation*}
\varphi \text { is strongly }(\perp) \text {-decreasing }(x \perp y, x \neq y \text { imply } \varphi(x)>\varphi(y)) \tag{4.3}
\end{equation*}
$$

Then, the point $v \in M$ assured by Theorem 7 fulfils the (stronger than (\perp, φ) maximal) property

$$
\begin{equation*}
z \in M, v \perp z \Rightarrow v=z(\text { referred to as: } v \text { is }(\perp) \text {-maximal }) . \tag{4.4}
\end{equation*}
$$

Hence, this variant of Theorem 7 incorporates the basic ordering principle in Bae, Cho and Yeom [2] obtained via similar methods.

By the above developments it results that, in all maximality principles based on Theorem 7, an alternate use of Theorem 1 is always possible. In fact, this is the most profitable approach; because the ambient (reflexive) relation (\perp) is "very distinct" from its induced quasi-order. The following example will illustrate our claim. But, prior to this, we need some preliminaries.

Let $c: R_{+} \rightarrow R_{+}$be some function; we call it right locally bounded above at $r \in R_{+}$if

$$
\begin{equation*}
\text { there exists } \delta>0 \text { such that } \sup c([r, r+\delta])<\infty \tag{4.5}
\end{equation*}
$$

If r is generic in this convention, then $t \vdash c(t)$ will be referred to as right locally bounded above on R_{+}. A basic situation when this property holds may be described as below. Call the function $c: R_{+} \rightarrow R_{+}$, right usc at $r \in R_{+}$ provided

$$
\begin{equation*}
\limsup _{n} c\left(t_{n}\right) \leq c(r), \text { whenever } t_{n} \rightarrow r+ \tag{4.6}
\end{equation*}
$$

(Here, $t_{n} \rightarrow r+$ means: $t_{n} \rightarrow r$ and $t_{n}>r, \forall n$). If r is generic in this convention, then $t \vdash c(t)$ will be termed right usc on R_{+}. We now have
$(\forall r): c$ is right usc at $r \Longrightarrow c$ is right locally bounded above at r; c is right usc on $R_{+} \Longrightarrow c$ is right locally bounded above on R_{+}. (The reciprocals are not in general true).

Let in the following (M, d) stand for a complete metric space. Take some lsc function $\varphi: M \rightarrow R_{+}$(in the sense of (2.18)); and let the function $c:$ $R_{+} \rightarrow R_{+}$be right locally bounded above on R_{+}. Finally, take a function $H: R_{+}^{2} \rightarrow R_{+}$with the property of being locally bounded; i.e.:

$$
\begin{equation*}
\text { the image of each bounded part in } R_{+}^{2} \text { is bounded (in } R \text {). } \tag{4.7}
\end{equation*}
$$

The following variational principle involving our data may be formulated:
Theorem 8. Let $u \in M$ be arbitrary fixed. There exists then $v=v(u) \in M$ such that $\varphi(u) \geq \varphi(v)$ and

$$
\begin{equation*}
d(v, x)>H(c(\varphi(v)), c(\varphi(x)))[\varphi(v)-\varphi(x)], \forall x \in M \backslash\{v\} . \tag{4.8}
\end{equation*}
$$

As already precised, a "direct" approach for getting this result is possible (via Theorem 7) by starting from the reflexive (over M) relation

$$
\begin{equation*}
(x, y \in M): x \perp y \text { iff } d(x, y) \leq H(c(\varphi(x)), c(\varphi(y)))[\varphi(x)-\varphi(y)] . \tag{4.9}
\end{equation*}
$$

However, such developments are technically complicated. So, we shall use an "indirect" approach (by a reduction to Theorem 1).

Proof of Theorem 8. Denote for simplicity

$$
M[u]=\{x \in M ; \varphi(x) \leq \varphi(u)\} ; \quad r=\inf [\varphi(M)](=\inf [\varphi(M[u])]) .
$$

Clearly, $M[u]$ is nonempty (since it contains u); moreover, as φ is lsc on M, it results that $M[u]$ is closed (hence complete) in M. If $r=\varphi(u)$, we are done (with $v=u$); so, without loss, one may assume $r<\varphi(u)$. Since $c: R_{+} \rightarrow R_{+}$ is right locally bounded above at r, there must be some δ in $] 0, \varphi(u)-r$ [such that $\mu:=\sup \{c(t) ; r \leq t \leq r+\delta\}<\infty$. Given this μ there exists, by the local boundedness of $(t, s) \vdash H(t, s)$, some $\nu>0$ such that

$$
H(\tau, \sigma) \leq \nu, \quad \text { whenever } 0 \leq \tau, \sigma \leq \mu .
$$

Finally, take some $u^{*} \in M$ with the property

$$
\left.r \leq \varphi\left(u^{*}\right)<r+\delta<\varphi(u) \quad \text { (hence } u^{*} \in M[u]\right) ;
$$

this is evidently possible, by the definition of r. Put $N=M\left[u^{*}\right]$; and let (\leq) stand for the quasi-order (on M)

$$
(x, y \in M): x \leq y \text { iff } d(x, y) \leq \nu[\varphi(x)-\varphi(y)]
$$

It is not hard to see that $(1.2)+(1.3)$ holds for the pair (\leq, φ) over N. So, for the starting point $u^{*} \in N$ there exists $v \in N$ such that

$$
\left.u^{*} \leq v \text { and } v \text { is }(\leq, \varphi) \text {-maximal (relative to } N\right)
$$

The former of these gives $\varphi\left(u^{*}\right) \geq \varphi(v)$ (by the very definition of (\leq)); hence $\varphi(u) \geq \varphi(v)$. And the latter one yields

$$
x \in N, d(v, x) \leq \nu[\varphi(v)-\varphi(x)] \Rightarrow \varphi(v)=\varphi(x) \text { (hence } v=x)
$$

But, from this, (4.8) follows at once (by contradiction) if we note that

$$
x, y \in M \text { and } x \perp y \text { imply } \varphi(x) \geq \varphi(y)
$$

The proof is thereby complete.
In particular, when $c=1$, Theorem 8 becomes the variational Ekeland's principle [7] (in short: EVP). Moreover, the argument above shows that the converse inclusion holds too; hence Theorem 8 is logically equivalent with EVP. This may have a theoretical impact upon it; but, from a practical perspective, the situation may be reversed.

Now, by the well known Bourbaki methodological scheme [3], Theorem 8 may be written as a fixed point statement. In fact, let the general conditions above be in use.

Theorem 9. Let the selfmap T of X be such that

$$
\begin{equation*}
d(x, T x) \leq H(c(\varphi(x)), c(\varphi(T x)))[\varphi(x)-\varphi(T x)], \quad \forall x \in M \tag{4.10}
\end{equation*}
$$

and let $u \in M$ be arbitrary fixed. There exists then a fixed point (relative to $T) v=v(u) \in M$ such that conclusions of Theorem 8 be retainable.

In particular, a sufficient condition for the right locally bounded above property of $c: R_{+} \rightarrow R_{+}$is (by a preceding remark) the right usc property of the same. This shows that Theorem 9 incorporates the statement in Suzuki [13]; as well as (under $H(t, s)=\max \{t, s\}$) the one due to Bae, Cho and Yeom [op. cit.]. But, these results extend in a direct way the Caristi-Kirk fixed point theorem [5] (in short: CK-FPT); hence, so does Theorem 9. On the other hand,
the involved argument shows that the converse inclusion also holds; wherefrom Theorem 9 is logically equivalent with CK-FPT. Although non-effective (from a theoretical viewpoint) these extensions have useful applications in practice. For example, Theorems 8 and 9 are handy tools in deriving fixed point theorems for weakly contractive multivalued maps; and, moreover, the obtained statements extend a related one in Bae [1]. We shall discuss these in a separate paper.

References

[1] J. S. Bae, Fixed point theorems for weakly contractive multivalued maps, J. Math. Anal. Appl., 284(2003), 690-697.
[2] J. S. Bae, E. W. Cho and S. H. Yeom, A generalization of the Caristi-Kirk fixed point theorem and its application to mapping theorems, J. Korean Math. Soc., 31(1994), 29-48.
[3] N. Bourbaki, Sur le theoreme de Zorn, Archiv der Math., 2(1949/1950), 434-437.
[4] H. Brezis, F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math., 21(1976), 355-364.
[5] J. Caristi, W. A. Kirk, Geometric fixed point theory and inwardness conditions, in "The Geometry of Metric and Linear Spaces (Michigan State Univ., 1974)", pp. 74-83, Lecture Notes Math. vol. 490, Springer, Berlin, 1975.
[6] O. Carja, C. Ursescu, The characteristics method for a first order partial differential equation, An. St. Univ. "A. I. Cuza" Iasi (S. I-a, Mat.), 39, 367-396, (1993).
[7] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. (New Series), 1(1979), 443-474.
[8] L. Gajek, D. Zagrodny, Countably orderable sets and their application in optimization, Optimization, 26(1992), 287-301.
[9] G. B. Hazen, T. L. Morrin, Optimality conditons in nonconical multiple objective programming, J. Optim. Th. Appl., 40(1983), 25-60.
[10] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Mathematica Japonica, 44(1996), 381-391.
[11] Y. Sonntag, C. Zalinescu, Comparison of existence results for efficient points, J. Optim. Th. Appl., 105(2000), 161-188.
[12] T. Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., 253(2001), 440-458.
[13] T. Suzuki, Generalized Caristi's fixed point theorems by Bae and others, J. Math. Anal. Appl., 302(2005), 502-508.
[14] W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings, in "Fixed Point Theory and Applications (J. B. Baillon ed.)", pp. 397-406, Pitman Res. Notes in Math., vol. 252, Longman Sci. Tech., Harlow, 1991.
[15] D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl., 163(1992), 345-392.
[16] M. Turinici, Pseudometric extensions of the Caristi-Kirk fixed point theorems, Fixed Point Theory, 5(2004), 147-161.

Received 21.05.2005; Revised 18.11.2005.

