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Abstract. We prove that a multivalued operator which satisfies a contraction type condition

of Latif-Beg type has a selection which is a Caristi type operator. Another purpose of this

paper is to give a common fixed point theorem for two multivalued mappings defined on

a closed ball of a complete metric space with values in the set of all nonempty and closed

subsets of this space, mappings which satisfy a contraction type condition of Latif-Beg type.
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1. Introduction

Let X be a nonempty set. We denote by P (X) the set of all nonempty
subsets of X, i. e. P (X) := { Y | ∅ 6= Y ⊆ X }. Let T : X → P (X)
be a multivalued operator. We denote by FT the fixed points set of T , i. e.
FT := { x ∈ X | x ∈ T (x) }.
An operator t : X → X, with the property that t(x) ∈ T (x), for each x ∈ X,
is called a selection of T .

Let (X, d) be a metric space, x0 ∈ X and r > 0. Further on we shall use
the notations B(x0, r) := { x ∈ X | d(x0, x) ≤ r } and Pcl(X) := { Y ∈
P (X) | Y is a closed set }. We also need the functional D : P (X)× P (X) →
R+, defined by D(A,B) = inf { d(a, b) | a ∈ A, b ∈ B }, for each A,B ∈ P (X).
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J. R. Jachymski established in [6] that a multivalued contraction admits a
selection, which is a Caristi type operator. A. Petruşel and A. Ŝıntămărian
proved in [11] and [12] two selection theorems for multivalued operators which
satisfy Reich type conditions. Two selection theorems for multivalued opera-
tors which satisfy more general conditions than those given in [6], [11] and [12]
are proved in [16].
In Section 2 of this paper we give a selection theorem for a multivalued operator
which satisfies a contraction type condition of Latif-Beg type.

Assuming that (X, d) is complete, M. Frigon and A. Granas proved in [5]
a fixed point theorem for a multivalued contraction T : B(x0, r) → Pcl(X),
which does not displace the center of the ball too far. A. Petruşel estab-
lished in [9] fixed point theorems for multivalued non-self mappings which
satisfy Reich type conditions. A fixed point theorem for a multivalued map-
ping T : B(x0, r) → Pcl(X), which satisfies a more general contraction type
condition, was proved by R. P. Agarwal and D. O’Regan in [1]. A common
fixed point theorem for two multivalued mappings T1, T2 : B(x0, r) → Pcl(X),
which satisfy a contraction type condition and at least one of them does not
displace the center of the ball too far, is proved in [16]. The corresponding
fixed point theorem is also presented in [16]. We remark that fixed point and
common fixed point theorems for singlevalued and multivalued non-self map-
pings on other spaces (Banach spaces or complete and convex metric spaces)
are presented in Lj. B. Ćirić’s monograph [3].
In Section 3 of the paper we give a common fixed point theorem for two
multivalued mappings T1, T2 : B(x0, r) → Pcl(X), which satisfy a contraction
type condition of Latif-Beg type and at least one of them does not displace the
center of the ball too far. The corresponding fixed point theorem is presented
in the same section.

2. A selection theorem

Theorem 2.1. Let (X, d) be a metric space and T : X → Pcl(X) a multivalued
operator with the property that there exist a1, . . . , a5 ∈ R+, with a1 +a2 +a3 +
2a4 < 1 such that for each x ∈ X, any ux ∈ T (x) and for all y ∈ X, there
exists uy ∈ T (y) so that

d(ux, uy) ≤ a1 d(x, y) + a2 d(x, ux) + a3 d(y, uy) + a4 d(x, uy) + a5 d(y, ux).
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Then there exist t : X → X a selection of T and a functional ϕ : X → R+

so that
d(x, t(x)) ≤ ϕ(x)− ϕ(t(x)),

for each x ∈ X.

Proof. Let ε > 0 be such that a1 + a2 + a4 < ε < 1 − (a3 + a4). We denote
Ux = { y ∈ T (x) | ε d(x, y) ≤ [1 − (a3 + a4)]D(x, T (x)) }, for each x ∈ X.
Obviously, for each x ∈ X, the set Ux is nonempty (otherwise, if x ∈ X\FT and
we suppose that for each y ∈ T (x) we have ε d(x, y) > [1−(a3+a4)]D(x, T (x)),
then we reach the contradiction ε D(x, T (x)) ≥ [1 − (a3 + a4)]D(x, T (x)); if
x ∈ FT , then clearly x ∈ Ux).

So, we can define the singlevalued operator t : X → X such that t(x) ∈ Ux,
for each x ∈ X, i. e. t(x) ∈ T (x) and ε d(x, t(x)) ≤ [1− (a3 + a4)]D(x, T (x)),
for each x ∈ X.

For x ∈ X, taking into account that t(x) ∈ T (x) and the metric condition
from the hypothesis of the theorem, we have that there exists ut(x) ∈ T (t(x))
such that

d(t(x), ut(x)) ≤ a1 d(x, t(x)) + a2 d(x, t(x)) + a3 d(t(x), ut(x))+

+a4 d(x, ut(x)) + a5 d(t(x), t(x)) =

= (a1 + a2) d(x, t(x)) + a3 d(t(x), ut(x)) + a4 d(x, ut(x)) ≤
≤ (a1 + a2 + a4) d(x, t(x)) + (a3 + a4) d(t(x), ut(x))

and hence

[1− (a3 + a4)]D(t(x), T (t(x))) ≤ [1− (a3 + a4)] d(t(x), ut(x))

≤ (a1 + a2 + a4) d(x, t(x)).

Now we are able to write that

d(x, t(x)) = [ε− (a1 + a2 + a4)]−1 [ε d(x, t(x))− (a1 + a2 + a4) d(x, t(x))]

≤ [ε−(a1+a2+a4)]−1 {[1−(a3+a4)]D(x, T (x))−[1−(a3+a4)]D(t(x), T (t(x)))}
= [1− (a3 + a4)]/[ε− (a1 + a2 + a4)] [D(x, T (x))−D(t(x), T (t(x)))],

for each x ∈ X.
We define ϕ : X → R+ by

ϕ(x) := [1− (a3 + a4)]/[ε− (a1 + a2 + a4)]D(x, T (x)),
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for each x ∈ X, and we get

d(x, t(x)) ≤ ϕ(x)− ϕ(t(x)),

for each x ∈ X. ¤

Remark 2.1. If the multivalued operator T : X → Pcl(X) from Theorem 2.1
is upper semicontinuous, then the functional ϕ : X → R+ is lower semicon-
tinuous.

3. A common fixed point theorem for two multivalued mappings

defined on closed balls

Theorem 3.1. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and
T1, T2 : B(x0, r) → Pcl(X) two multivalued mappings. We suppose that :

(i1) there exist a11, . . . , a15 ∈ R+, with a11 + a12 + a13 + 2a14 < 1 such that
for each x ∈ B(x0, r), any ux ∈ T1(x) and for all y ∈ B(x0, r), there
exists uy ∈ T2(y) so that

d(ux, uy) ≤ a11 d(x, y)+a12 d(x, ux)+a13 d(y, uy)+a14 d(x, uy)+a15 d(y, ux);

(i2) there exist a21, . . . , a25 ∈ R+, with a21 + a22 + a23 + 2a24 < 1 such that
for each x ∈ B(x0, r), any ux ∈ T2(x) and for all y ∈ B(x0, r), there
exists uy ∈ T1(y) so that

d(ux, uy) ≤ a21 d(x, y)+a22 d(x, ux)+a23 d(y, uy)+a24 d(x, uy)+a25 d(y, ux);

(ii) there exists y0 ∈ T1(x0) ∪ T2(x0) such that

d(x0, y0) ≤
(

1−max
{

a11 + a12 + a14

1− (a13 + a14)
,
a21 + a22 + a24

1− (a23 + a24)

})
r.

Then FT1 = FT2 ∈ Pcl(X).

Proof. By an easy calculation we get that FT1 = FT2 .
We put l := max

{
a11+a12+a14
1−(a13+a14) ,

a21+a22+a24
1−(a23+a24)

}
< 1 and we suppose, for exam-

ple, that there exists x1 = y0 ∈ T1(x0) such that d(x0, x1) ≤ (1− l)r.
It is clear that x1 ∈ B(x0, r).
Taking into account the condition (i1) we have that there exists x2 ∈ T2(x1)

such that

d(x1, x2) ≤ a11 d(x0, x1) + a12 d(x0, x1) + a13 d(x1, x2) + a14 d(x0, x2) ≤
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≤ (a11 + a12 + a14) d(x0, x1) + (a13 + a14) d(x1, x2).

From this we get that

d(x1, x2) ≤ a11 + a12 + a14

1− (a13 + a14)
d(x0, x1) ≤ l d(x0, x1) ≤ l(1− l)r.

Using the triangle inequality we obtain

d(x0, x2) ≤ d(x0, x1) + d(x1, x2) ≤ (1− l)r + l(1− l)r = (1− l2)r ≤ r,

hence x2 ∈ B(x0, r).
Now, taking into account the condition (i2), we have that there exists x3 ∈

T1(x2) such that

d(x2, x3) ≤ a21 d(x1, x2) + a22 d(x1, x2) + a23 d(x2, x3) + a24 d(x1, x3) ≤
≤ (a21 + a22 + a24) d(x1, x2) + (a23 + a24) d(x2, x3).

From this we get that

d(x2, x3) ≤ a21 + a22 + a24

1− (a23 + a24)
d(x1, x2) ≤ l d(x1, x2) ≤ l2(1− l)r.

Because

d(x0, x3) ≤ d(x0, x2) + d(x2, x3) ≤ (1 + l)(1− l)r + l2(1− l)r = (1− l3)r ≤ r,

we have that x3 ∈ B(x0, r).
By induction, we obtain that there exists a sequence (xn)n∈N with the fol-

lowing properties:
x2n−1 ∈ T1(x2n−2), x2n ∈ T2(x2n−1),
d(xn−1, xn) ≤ ln−1(1− l)r,
d(x0, xn) ≤ (1− ln)r, which means that xn ∈ B(x0, r),

for each n ∈ N∗.
The inequality d(xn−1, xn) ≤ ln−1(1 − l)r, which holds for each n ∈ N∗,

implies that (xn)n∈N is a convergent sequence, because l < 1 and (X, d) is a
complete metric space. Let x∗ = lim

n→∞xn. Obviously x∗ ∈ B(x0, r).
We shall prove that x∗ is a fixed point of T1, for example. From x2n ∈

T2(x2n−1) we have that there exists un ∈ T1(x∗) such that

d(x2n, un) ≤ a21 d(x2n−1, x
∗) + a22 d(x2n−1, x2n) + a23 d(x∗, un)+

+a24 d(x2n−1, un) + a25 d(x∗, x2n),

for each n ∈ N∗.
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Using the triangle inequality we get

d(x∗, un) ≤ [1− (a23 + a24)]−1[(1 + a25) d(x∗, x2n)+

+(a21 + a24) d(x∗, x2n−1) + a22 d(x2n−1, x2n)],

for each n ∈ N∗.
This implies that d(x∗, un) → 0, as n → ∞. Since un ∈ T1(x∗), for all n ∈

N∗ and T1(x∗) is a closed set, it follows that x∗ ∈ T1(x∗). So x∗ ∈ FT1 = FT2 .
Let us prove now that FT1 = FT2 is a closed set. For this purpose let

yn ∈ FT1 = FT2 , for each n ∈ N∗, such that yn → y∗, as n → ∞. Clearly
y∗ ∈ B(x0, r). For example, from yn ∈ T1(yn) we have that there exists
vn ∈ T2(y∗) so that

d(yn, vn) ≤ a11 d(yn, y∗) + a13 d(y∗, vn) + a14 d(yn, vn) + a15 d(y∗, yn),

for each n ∈ N∗.
Using the triangle inequality we obtain

d(y∗, vn) ≤ (1 + a11 + a14 + a15)/[1− (a13 + a14)] d(y∗, yn),

for all n ∈ N∗.
This implies that d(y∗, vn) → 0, as n → ∞. Since vn ∈ T2(y∗), for each

n ∈ N∗ and T2(y∗) is a closed set, it follows that y∗ ∈ T2(y∗). Therefore
FT1 = FT2 is a closed set. ¤

The following fixed point theorem for a multivalued mapping defined on a
closed ball can be proved.

Theorem 3.2. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and
T : B(x0, r) → Pcl(X) a multivalued mapping for which there exist a1, . . . , a5 ∈
R+, with a1 + a2 + a3 + 2a4 < 1 such that :

(i) for each x ∈ B(x0, r), any ux ∈ T (x) and for all y ∈ B(x0, r), there
exists uy ∈ T (y) so that

d(ux, uy) ≤ a1 d(x, y) + a2 d(x, ux) + a3 d(y, uy) + a4 d(x, uy) + a5 d(y, ux);

(ii) there exists y0 ∈ T (x0) such that d(x0, y0) ≤
[
1− a1+a2+a4

1−(a3+a4)

]
r.

Then FT ∈ Pcl(X).



SELECTIONS AND COMMON FIXED POINTS 109

Proof. We put l := a1+a2+a4
1−(a3+a4) < 1. Using a similar argument as in the proof

of Theorem 3.1, we obtain a sequence (xn)n∈N with the following properties:
xn ∈ T (xn−1),
d(xn−1, xn) ≤ ln−1(1− l)r,
d(x0, xn) ≤ (1− ln)r, which means that xn ∈ B(x0, r),

for each n ∈ N∗.
The sequence (xn)n∈N is convergent and its limit is a fixed point of T . Also,

it can be shown that FT is a closed set. ¤

Remark 3.1. If in Theorem 3.2 we take a4 = a5 = 0, then the fact that
FT 6= ∅ is a result mentioned in [9], but there the condition (ii) is

D(x0, T (x0)) <

(
1− a1 + a2

1− a3

)
r.
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[12] A. Petruşel, A. Ŝıntămărian, Single-valued and multi-valued Caristi type operators, Publ.

Math. Debrecen, 60(2002), 167-177.

[13] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-

Napoca, 2001.
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