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1. Introduction

Let A : X → X be an operator. Then A0 := 1X , A1 := A, . . . , An+1 =
A ◦ An, n ∈ N denote the iterate operators of A. By I(A) we will denote the
set of all nonempty invariant subsets of A, i. e. I(A) := {Y ⊂ X|A(Y ) ⊆ Y },
while FA := {x ∈ X| x = A(x)} will denote the fixed point set of the operator
A. Also, by Graf(A) := {(x, y) ∈ X ×X|A(x) = y} we will denote the graph
of A and by (AB)A(x∗) the attraction basin of x∗ ∈ X with respect to A, i.
e. (AB)A(x∗) := {x ∈ X|An(x) → x∗, as n → +∞}.

Let X be a nonempty set. Denote s(X) := {(xn)n∈N |xn ∈ X, n ∈ N}.
Let c(X) ⊂ s(X) a subset of s(X) and Lim : c(X) → X an operator. By

definition the triple (X, c(X), Lim) is called an L-space (Fréchet [16]) if the
following conditions are satisfied:

(i) If xn = x, ∀ n ∈ N , then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
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(ii) If (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences,
(xni)i∈N , of (xn)n∈N we have that (xni)i∈N ∈ c(X) and Lim(xni)i∈N = x.

By definition an element of c(X) is a convergent sequence, x := Lim(xn)n∈N

is the limit of this sequence and we also write xn → x as n → +∞.

In what follow we denote an L-space by (X,→).
Recall now the following important concept.
Definition 1.1. (I.A. Rus [45]) Let (X,→) be an L-space. An operator

A : X → X is, by definition, a Picard operator (briefly PO) if:
(i) FA = {x∗};
(ii) (An(x))n∈N → x∗ as n →∞, for all x ∈ X.
In terms of the Picard operators, some classical results in metrical fixed

point theory have the following form ([32], [44]).
Example 1.2. (Contraction principle) Let (X, d) be a complete metric

space and A : X → X an a-contraction, i. e. a ∈]0, 1[ and d(A(x), A(y)) ≤
a · d(x, y), for each x, y ∈ X. Then A is a PO.

Example 1.3. (Nemytzki and Edelstein) Let (X, d) be a compact met-
ric space and A : X → X satisfying d(A(x), A(y)) < d(x, y), for all x, y ∈
X with x 6= y. Then A is a PO.

Example 1.4. (Perov) Let (X, d) be a complete generalized metric space
(d(x, y) ∈ Rm

+ ) and S ∈ Mmm(R+), such that, Sn → 0 as n →∞. If A : X →
X is an A-contraction, i. e., d(A(x), A(y)) ≤ S · d(x, y), for all x, y ∈ X,

then A is a PO.
Example 1.5. (Sehgal and Bharucha-Reid, [19]) Let (X,F, min) be a com-

plete probabilistic metric space. Let A : X → X be a continuous operator
for which there exists a ∈ [0, 1[ such that FA(x),A(y)(aλ) ≥ Fx,y(λ), for each
x, y ∈ X and each λ > 0. Then A is a PO.

Another important concept is:
Definition 1.6. Let (X,→) be an L-space. By definition, A : X → X

is called a weakly Picard operator (briefly WPO) if the sequence (An(x))n∈N

converges for all x ∈ X and the limit (which may depend on x) is a fixed point
of A.

Example 1.7. Let (X, d) be a complete metric space and A : X → X be a
closed operator such that there is a ∈]0, 1[ with the property d(A(x), A2(x)) ≤
a · d(x,A(x)), for each x ∈ X. Then A is a WPO.
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Example 1.8. Let (X, d) be a complete metric space, A : X → X be
a closed operator and ϕ : X → R+. We suppose that A satisfies the Caristi
condition with respect to ϕ, i. e, d(x,A(x)) ≤ ϕ(x)−ϕ(A(x)), for each x ∈ X.
Then A is a WPO.

In I. A. Rus [45] the basic theory of Picard and weakly Picard operators is
presented. For the multivalued case see A. Petruşel [39], as well as, A. Petruşel
and I. A. Rus [40]. For both settings see also [48].

2. K-metrics generated by K-functionals

Let B be an ordered linear L-space with the cone K. Let X be a nonempty
set. A function d : X × X → K is called a K-metric on X if the following
properties hold:

a) d(x1, x2) = 0 if and only if x1 = x2

b) d(x1, x2) = d(x2, x1), for each x1, x2 ∈ X

c) d(x1, x2) ≤ d(x1, x3) + d(x3, x2), for each x1, x2, x3 ∈ X.
The pair (X, d), where X is a nonempty set and d is a K-metric on X is

said to be a K- metric space.
One of the most important class of K-metric spaces is the class of K-normed

linear space. For more details on convergence structures and K-metrics see P.
P. Zabreiko [54] and E. De Pascale, G. Marino and P. Pietromala [13].

Let X be a nonempty set and (Y,+,R, ‖ ·‖,≤) be an ordered Banach space.
Let K := {y ∈ Y |y ≥ 0} the cone of the positive elements of Y . Let ψ : X → K

be a functional and Zψ := {x ∈ X|ψ(x) = 0}.
We have:
Lemma 2.1. If card(Zψ) ≤ 1 then the functional dψ : X ×X → K defined

by

dψ(x, y) =

{
0, if x = y

ψ(x) + ψ(y), if x 6= y.

is a K-metric on X.
If in addition, card(Zψ) = 1 then dψ is a complete K-metric on X.
Proof. It is easy to see that dψ satisfy all the properties of a K-metric.

We will prove now that dψ is complete. For this purpose, let (xn)n∈N be such
that dψ(xn, xm) → 0, as n,m → +∞.
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If (xn)n∈N contains a constant subsequence xni := x̃, for i ∈ N then
dψ(xi, xni) = dψ(xi, x̃) → 0, as i → +∞ and hence (xn)n∈N converges.

If there exists a subsequence (xni)i∈N with distinct elements, then for i 6= j

we have: d(xni , xnj ) = ψ(xni) + ψ(xnj ) → 0, as i, j → +∞. As consequence,
ψ(xni) → 0, as i → +∞. Let Zψ = {y}. Then dψ(xi, y) ≤ dψ(xi, xni) +
dψ(xni , y) = dψ(xi, xni) + ψ(xni) → 0, as i → +∞. So (xn)n∈N converges
again. ¤

Remark 2.1. For the particular case K = R+ see J. S. Wong [53], K.
Deimling [14] and J. Jachymski [25].

Lemma 2.2. Let X =
⋃

i∈I

Xi be a partition of X and e ∈ K, e > 0 be

arbitrary. Let ψ : X → K be such that card(Zψ
⋂

Xi) = 1, for each i ∈ I.
Then the functional dψ : X ×X → K defined by

dψ(x, y) =





0, if x = y

ψ(x) + ψ(y), if x, y ∈ Xi, i ∈ I

ψ(x) + ψ(y) + e, if x ∈ Xi, y ∈ Xj , i 6= j, i, j ∈ I.

is a complete K-metric on X.
Proof. We will prove again that dψ is complete. Let (xn)n∈N be such that

dψ(xn, xm) → 0, as n,m → +∞. From the definition of dψ it follows that
there exists n0 ∈ N and i ∈ I such that xn ∈ Xi, for n ≥ n0. The proof follows
now from Lemma 2.1. ¤

Remark 2.2. For the particular case K = R+, see I. A. Rus [43] and J.
Jachymski [25].

3. Schröder’s pair

Let X be a nonempty set, (Y, +,R, ‖ · ‖,≤) be an ordered Banach space
with the generating and regular cone K (see Krasnoselskii [33] and Eisenfeld-
Lakchmikantham [15]). Let A : X → X and ψ : X → K be operators.

Definition 3.1. The pair (A,ψ) is called a Schröder’s pair if there exists a
linear increasing operator Q : K → K such that:

(a) the Neumann series
+∞∑

n=0

Qn(y) converges for all y ∈ Y ;

(b) the pair (A,ψ) is a solution of the Schröder’s inequation:

ψ(A(x)) ≤ Q(ψ(x)), for each x ∈ X.
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Remark 3.1. If (A,ψ) is a Schröder’s pair then (An, ψ) is a Schröder’s
pair too, for all n ∈ N∗.

Lemma 3.1. Let X =
⋃

i∈I

Xi be a partition of X and ψ : X → K such that

card(Zψ
⋂

Xi) = 1, for each i ∈ I. Let A : X → X be an operator such that
A(Xi) ⊂ Xi, for all i ∈ I and (A,ψ) is a Schröder’s pair. Then:

(1) FA = FAn = Zψ, for all n ∈ N
(2) dψ(A2(x), A(x)) ≤ Q(dψ(A(x), x)), for each x ∈ X

(3) A is a WPO on (X, dψ).
Proof. (1) From Definition 3.1. (b) we have that:

a) If x ∈ Zψ and x ∈ Xi then ψ(A(x)) = 0 and A(x) ∈ Xi. Since
card(Zψ

⋂
Xi) = 1, for each i ∈ I we obtain x ∈ FA.

b) If x ∈ FA and x ∈ Xi then ψ(x) ≤ Q(ψ(x)) ≤ · · · ≤ Qn(ψ(x)) → 0, as
n → +∞. Hence ψ(x) = 0 and so x ∈ Zψ. The first conclusion follows now
from Remark 3.2.

(2) Let x ∈ X. Then there exists i ∈ I such that x ∈ Xi. Hence
A(x), A2(x) ∈ Xi.

Suppose A(x) 6= A2(x). Then:

dψ(A2(x), A(x)) = ψ(A2(x)) + ψ(A(x)) ≤ Q(ψ(A(x)) + ψ(x))

= Q(dψ(A(x), x)). ¤

(3) The conclusion follows from (2), the definition of the Schröder’s pair
and the same approach as in Example 1.7.

Remark 3.2. For B. Schröder’s equations and inequalities see I. N. Baker
[6], M. Kuczma [34], J. S. Wong [53], K. Deimling [14] and J. Jachymski [24],
[25].

4. Caristi operators on K-metric spaces

Let B be an ordered Banach space with the generating and regular cone K.
We recall that a K-metric space X is said to be sequentially complete

in Weierstrass sense (see [54]) if each sequence (xn)n∈N in X such that
+∞∑

n=0

d(xn, xn+1) < +∞ is convergent in X. Let us remark that the above

inequality means that the series is convergent in the space B.



8 IOAN A. RUS, ADRIAN PETRUŞEL and MARCEL ADRIAN ŞERBAN

Theorem 4.1. Let (X, d) be a sequentially complete (in Weierstrass’ sense)
K-metric space, A : X → X be a closed operator. Suppose that there exists a
functional ϕ : X → K such that:

d(x,A(x)) ≤ ϕ(x)− ϕ(A(x)), for each x ∈ X.

Then A is a WPO.
Proof. Denote by xn := An(x), for n ∈ N and x ∈ X. Then:

+∞∑

n=0

d(xn, xn+1) =
+∞∑

n=0

d(An(x), An+1(x)), for each x ∈ X.

We will prove that the series
+∞∑

n=0

d(An(x), An+1(x)) is convergent in the

ordered Banach space B. For this purpose we need to show that the sequence

of its partial sums is convergent in B. Denote by sn :=
n∑

k=0

d(Ak(x), Ak+1(x)).

Then sn+1 − sn = d(An+1(x), An+2(x)) ≥ 0, for each n ∈ N. Moreover sn =
n∑

k=0

d(Ak(x), Ak+1(x)) ≤ ϕ(x). Hence (sn)n∈N is upper bounded and increasing

in B. Then the sequence (sn)n∈N is convergent in the ordered Banach space
B.

It follows that the sequence (xn)n∈N is Cauchy and, from the sequentially
completeness of the space, convergent to a certain element x∗ ∈ X. The
conclusion follows from the fact that A is closed. ¤

Remark 4.1. For Caristi operators in the particular case K = R see A.
Brøndsted [8], [9], F. E. Browder [10], J. Caristi [11], J. Jachymski [24]-[26],
W. A. Kirk and L. M. Saliga [30], [31] and M. Turinici [50]-[52].

5. Invariant subsets

Let X be a nonempty set and A : X → X be an operator. Then, by
definition, a subset Y of X is said to be:

(i) an invariant subset for A if A(Y ) ⊂ Y

(ii) a fixed subset for A if A(Y ) = Y

(iii) an invariant subset for A−1 if A−1(Y ) ⊂ Y

(iv) a fixed subset for A−1 if A−1(Y ) = Y
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(v) a completely invariant subset for A if A(Y ) ⊂ Y = A−1(Y ), i. e. Y

is invariant for A and fixed for A−1.
We have:
Lemma 5.1. If X =

⋃

i∈I

Xi is a partition of X and Xi, i ∈ I are invariant

subsets for the operator A : X → X, then Xi (i ∈ I) are completely invariant
subsets for A.

Lemma 5.2. Let (X,→) be an L-space and A : X → X be a WPO.
Then for x ∈ FA, the attraction basin, (AB)A(x), of x with respect to A is a
completely invariant subset of A.

Proof. It is obvious that (AB)A(x) is an invariant subset of A. Let y ∈
A−1((AB)A(x)) be arbitrary. This means that there exists u ∈ (AB)A(x)
such that y ∈ A−1(u). Hence A(y) = u and An(u) → x, as n → +∞. As
consequence, An+1(y) = An(y) → x , as n → +∞. Hence y ∈ (AB)A(x). ¤

Remark 5.1. Obviously X =
⋃

x∈FA

(AB)A(x).

Lemma 5.3. (S. Leader [35]) Let X be a compact metric space and A :
X → X be a continuous operator. Then

⋂

n∈N
An(X) is a fixed set for A.

6. Some suggestive results

Let (X, d) be a complete K-metric space, where K is a generating and
normal cone of an ordered Banach space Y. Let Q : Y → Y be a linear
positive operator. Then A : X → X is said to be a Q-contraction if ‖Q‖ < 1
and d(A(x1), A(x2)) ≤ Q(d(x1, x2)), for each x1, x2 ∈ X.

The first result of this section is:
Theorem 6.1. Let (X, d) be a complete K-metric space, where K is a

generating and regular cone. Let A : X → X be a Q-contraction. Then we
have:

(i) FA = FAn = {x∗}, for n ∈ N∗
(ii) If (X, d) is bounded then

⋂

n∈N
An(X) = {x∗}

(iii) If we consider ψ : X → K, ψ(x) := d(x, x∗) then the pair (A,ψ) is
a Schröder pair

(iv) An(x) → x∗, as n → +∞, for each x ∈ X



10 IOAN A. RUS, ADRIAN PETRUŞEL and MARCEL ADRIAN ŞERBAN

(v) d(An(x), x∗) ≤ (I −Q)−1 ·Qn · d(x,A(x)), for each n ∈ N∗ and each
x ∈ X.

(vi) d(An(x), x∗) ≤ Qn · d(x, x∗), for each n ∈ N∗ and each x ∈ X.
(vii) d(An(x), x∗) ≤ (I −Q)−1 · d(An(x), An+1(x)), for each n ∈ N∗ and

each x ∈ X.
(viii) d(x, x∗) ≤ (I −Q)−1 · d(x,A(x)), for each x ∈ X

(ix)
+∞∑

n=0

d(An(x), An+1(x)) ≤ (I −Q)−1 · d(x,A(x)), for each x ∈ X

(x) there exists a neighborhood U of x∗ such that An(U) → {x∗}, as
n → +∞.

Proof. The proof is essentially the same as that given in [12], [32] and [44],
in the case K = R+. ¤

Remark 6.1. By definition, an operator which satisfies (i) in the above
theorem is said to be a Bessaga operator ([44]).

An operator A : X → X is said to be a Q-graph contraction if the Q-
contraction condition holds for each (x1, x2) ∈ GrafA.

In a similar way to the case K = Rm
+ and K = R+ (see [44], [45], [5], [13],

[54]) one can prove the following:
Theorem 6.2. Let (X, d) be a complete K-metric space and A : X → X be

a closed Q-graph contraction. Then we have:
(i) FA = FAn 6= ∅, for n ∈ N∗
(ii) An(x) → A∞(x), as n → +∞, for each x ∈ X

(iii) d(An(x), A∞(x)) ≤ (I −Q)−1 ·Qn · d(x,A(x)), for each n ∈ N∗ and
each x ∈ X.

(iv) d(x,A∞(x)) ≤ (I −Q)−1 · d(x,A(x)), for each x ∈ X.

(v)
+∞∑

n=0

d(An(x), An+1(x)) ≤ (I −Q)−1 · d(x,A(x)), for each x ∈ X

(vi) there exists a partition X =
⋃

i∈I

Xi of X such that:

(a) A(Xi) ⊂ Xi, for i ∈ I

(b) A|Xi : Xi → Xi is a PO, for each i ∈ I.

7. Picard operators

The result of this section is the following:
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Theorem 7.1. Let X be a nonempty set and A : X → X be an operator.
Then the following statements are equivalent:

(P1) there exists an L-space structure on the set X, denoted by →, such
that A : (X,→) → (X,→) is PO;

(P2) the operator A is Bessaga;
(P3) there exist α ∈]0, 1[ and χ : X → R+ such that:

(i) card(Zχ) = 1
(ii) χ(A(x)) ≤ α · χ(x), for each x ∈ X;

(P4) there exist α ∈]0, 1[ and a complete metric d on X such that A :
(X, d) → (X, d) is an α-contraction;

(P5) there exist x∗ ∈ FA, α ∈]0, 1[ and a metric d on X such that
d(A(x), x∗) ≤ α · d(x, x∗), for each x ∈ X;

(P6) there exist x∗ ∈ FA and a Hausdorff topology on X such that if
Y ∈ Icl(A) then x∗ ∈ Y ;

(P7) there exists n0 ∈ N∗ such that An0 : (X, d) → (X, d) is a Bessaga
operator;

(P8) there exist n0 ∈ N∗, α ∈]0, 1[ and a complete metric d on X such
that An0 : (X, d) → (X, d) is an α-contraction;

(P9) there exist n0 ∈ N∗ and an L-space structure on X, denoted by →,
such that An0 : (X,→) → (X,→) is PO.

Proof.
(P1) ⇒ (P2) Let FA = {x∗} and y∗ ∈ FAm . Then An(y∗) → x∗, as

n → +∞. Since Akm(y∗) = y∗, for k ∈ N we have x∗ = y∗.
(P2) ⇒ (P3) This implication is a theorem by J. Jachymski [25].
(P3) ⇒ (P4) Let Zχ = {x∗}. We define d(x, y) := χ(x) + χ(y).
(P4) ⇒ (P5) Let (X, d) be a complete metric space and A : X → X be

an α-contraction. Then FA = {x∗} and d(A(x), x∗) ≤ α · d(x, x∗), for each
x ∈ X.

(P5) ⇒ (P6) We consider on X the topology defined by the metric d. Let
Y ∈ Icl(A) andx ∈ Y . We have An(x) ∈ Y and d(An(x), x∗) ≤ αn · d(x, x∗),
for each N. Hence An(x) → x∗, as n → +∞ and x∗ ∈ Y .

(P6) ⇒ (P7) Let us remark first that FA = {x∗}. Indeed, if there exists
y∗ ∈ FA with x∗ 6= y∗ then taking Y := {y∗} and using (P6) we get x∗ = y∗.
Further let y∗ ∈ FAn with n > 1 and x∗ 6= y∗. Then if we choose Y :=
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{y∗, A(y∗), A2(y∗), · · · , An−1(y∗)} we obtain again x∗ = y∗. Hence An is a
Bessaga operator.

(P7) ⇒ (P8) This implication follows from Bessaga’s theorem.
(P8) ⇒ (P9) Define →:= d→. From the contraction principle the operator

An0 : (X, d) → (X, d) is Picard.
(P9) ⇒ (P2) Fn0

A = {x∗}. We have An0(x) → x∗, as n → +∞, for each
x ∈ X. Obviously x∗ ∈ FA. Since FA ⊂ FAn0 and FAn ⊂ FAnn0 we get that A

is Bessaga.
(P4) ⇒ (P1) Let us define →:= d→. Then the proof follows from the

contraction principle. ¤
Remark 7.1. For other equivalent statements of PO definition see V. G.

Angelov [3], [4], B. Fuchssteiner [17], O. Hadžić, E. Pap and V. Radu [18], O.
Hadžić and E. Pap [19], J. Jachymski [24], L. Janos [28], P. R. Meyers [37], V.
I. Opoizev [38], V. Radu [41], I. A. Rus [47], [44], B. Schweizer, H. Sherwood
and R. M. Tardiff [49].

8. Weakly Picard operators

For weakly Picard operator we have:
Theorem 8.1 Let X be a nonempty set and A : X → X an operator. Then

the following statements are equivalent:
(WP1) there exists an L-space structure on the set X, denoted by →, such

that A : (X,→) → (X,→) is WPO
(WP2) FA = FAn 6= ∅, for each n ∈ N∗
(WP3) there exists a partial ordering, let say ≤, such that the set of all

maximal elements of X, denoted by Max(X), is nonempty and A : (X,≤) →
(X,≤) is progressive

(WP4) there exists a complete metric d on X and a number α ∈]0, 1[ such
that:

(i) A : (X, d) → (X, d) is closed
(ii) d(A2(x), A(x)) ≤ α · d(A(x), x), for each x ∈ X

(WP5) there exist a complete metric d on X and a lower semicontinuous
functional ϕ : X → R+ such that d(x,A(x)) ≤ ϕ(x)−ϕ(A(x)), for each x ∈ X

(WP6) there exist a complete metric d on X and a functional ϕ : X → R+

such that
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(i) A is closed
(ii) d(x,A(x)) ≤ ϕ(x)− ϕ(A(x)), for each x ∈ X

(WP7) there exists a partition X =
⋃

i∈I

Xi of X such that A(Xi) ⊂ Xi

and A|Xi : Xi → Xi is a Bessaga operator for all i ∈ I

(WP8) there exists a partition X =
⋃

i∈I

Xi of X such that A(Xi) ⊂ Xi

and A|Xi : Xi → Xi satisfies (P3) in Theorem 7.1.
(WP9) there exists a complete metric d on X and a number α ∈]0, 1[

such that:
(i) A : (X, d) → (X, d) is continuous
(ii) d(A2(x), A(x)) ≤ α · d(A(x), x), for each x ∈ X

(WP10) there exists a complete metric d on X such that:
(i) A : (X, d) → (X, d) is continuous
(ii)

∑

n∈N
d(An(x), An+1(x) < +∞, for each x ∈ X

(WP11) there exists a complete metric d on X such that:
(i) A : (X, d) → (X, d) is closed
(ii)

∑

n∈N
d(An(x), An+1(x) < +∞, for each x ∈ X

(WP12) there exist a complete metric d on X and a functional ϕ : X →
R+ such that

(i) A is continuous
(ii) d(x,A(x)) ≤ ϕ(x)− ϕ(A(x)), for each x ∈ X

Proof. (WP1) ⇒ (WP2). The definition of weakly Picard operator implies
that FA 6= ∅. The convergence of all sequences of successive approximation
with the limits in FA, implies that FA = FAn , for all n ∈ N.

(WP2) ⇒ (WP4) Since FA = FAn , for all n ∈ N, then there exist a
partition of X, X =

⋃
i∈I

Xi such that Xi ∈ I (A), card (FA ∩Xi) = 1 and

A |Xi is a Bessaga mapping (see Rus [49]). From theorem of Bessaga there
exists a complete metric di on Xi such that A |Xi is an α−contraction for all
i ∈ I. We define a complete metric on X. Let x∗i ∈ Xi ∩ FA, i ∈ I, we take

d : X ×X → X

d (x, y) =

{
di (x, y) , if x, y ∈ Xi

di (x, x∗i ) + dj

(
y, x∗j

)
+ 1, if x ∈ Xi, y ∈ Xj , i 6= j
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The completeness of (X, d) follows from the following remark:

d (x, y) < 1 ⇒ ∃i ∈ I, x, y ∈ Xi.

If x ∈ Xi then A (x) , A2 (x) , ..., An (x) ∈ Xi since Xi ∈ I (A) and

d
(
A2 (x) , A (x)

)
= di

(
A2 (x) , A (x)

) ≤ α · di (A (x) , x) = α · d (A (x) , x) .

The conclusion (i) follows from remark that A |Xi is continuous.
(WP4) ⇒ (WP6) We define ϕ : X → R+, ϕ(x) = 1

1−α · d(x, A(x)).
(WP6) ⇒ (WP3) See J. Jachymski [26].
(WP3) ⇒ (WP2) See J. Jachymski [26].
(WP4) ⇒ (WP1) We take on X, →:= d→.The proof follows from condition

(ii) and (i).
(WP4) ⇒ (WP5) We take ϕ : X → R+, ϕ(x) = 1

1−α · d(x,A(x)).
(WP5) ⇒ (WP1) Follows from Caristi’s theorem [11] and a remark of A.

Brøndsted [8].
(WP1) ⇒ (WP7) see Rus [49].
(WP7) ⇒ (WP8). The condition (WP7) implies (WP2) and thus we

obtain (WP4). Now we define

χ : X → R+

χ (x) = d (x,A (x))

It is obvious to see that A |Xi satisfies the condition (P3) from Theorem 7.1.
(WP8) ⇒ (WP1). It is obvious.
(WP7) ⇒ (WP9). We know that (WP7) implies (WP2). The proof is

similar to (WP2) ⇒ (WP4), but we will additionally prove that the operator
A is nonexpansive with respect to d. Since A |Xi is an α−contraction for all
i ∈ I, hence nonexpansive, it suffices to consider the case for x ∈ Xi and
y ∈ Xj , i 6= j. Since x ∈ Xi and y ∈ Xj then A (x) ∈ Xi and A (y) ∈ Xj ,
hence

d (A (x) , A (y)) = di (A (x) , x∗i ) + dj

(
A (y) , x∗j

)
+ 1 ≤

≤ α · di (x, x∗i ) + α · dj

(
y, x∗j

)
+ 1 ≤

≤ di (x, x∗i ) + dj

(
y, x∗j

)
+ 1 =

= d (x, y)

thus the operator A is continuous.
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(WP9) ⇒ (WP8) It is obvious, since A is continuous then A is closed.
(WP9) ⇒ (WP10) Condition (ii) from (WP9) implies

∑

n∈N
d

(
An (x) , An+1 (x)

) ≤ 1
1− α

· d (x,A (x)) , ∀x ∈ X

which proves (WP10).
(WP10) ⇒ (WP11) It is obvious.
(WP11) ⇒ (WP1) Condition (ii) from (WP11) implies that every succes-

sive approximation sequence is Cauchy, therefore convergent to x∗ ∈ X. From
the condition that operator A is closed we deduce that x∗ ∈ FA which implies
that operator A is WPO. The L−space structure is generated by the metric
d.

(WP9) ⇒ (WP12) The proof is the same as in (WP4) ⇒ (WP6).
(WP12) ⇒ (WP11) From condition (ii) of (WP12) we obtain

∑

n∈N
d

(
An (x) , An+1 (x)

) ≤ ϕ (x) < ∞, ∀x ∈ X

and thus the proof is complete. ¤

9. Weakly Picard operators on compact metric spaces

For Picard operators on compact metric spaces we have the following:
Theorem 9.1. (S. Leader [35], I. A. Rus [44] pp. 49) Let (X, d) be a

compact metric space and A : X → X be a continuous operator. Then the
following statements are equivalent:

(i) A is a Janos operator, i. e.
⋂

n∈N
An(X) = {x∗}

(ii) there exists n0 ∈ N such that An0 is an Janos operator
(iii) A is a Picard operator and An u→ A∞, as n → +∞, where u→ stands

for uniform convergence
(iv) A is a contraction with respect to some metric equivalent to d

(v) A is contractive with respect to some metric equivalent to d

(vi) the sequence (d(An(x), An(y)))n∈N converges to 0, uniformly on X×
X.

(vii) there exist α ∈]0, 1[ and ρ an equivalent metric with d such that
ρ(A(x), x∗) ≤ αρ(x, x∗).

Proof. The proof is organized as follows:
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(ii) ⇒ (i) Let
⋂

n∈N
An(X) = {x∗} and n0 ∈ N. We have X ⊃ A(X) ⊃

· · · ⊃ An(X) ⊃ · · · ⊃ {x∗}. Hence
⋂

k∈N
An0k(X) = {x∗}.

(ii) ⇒ (i) This implication is Janos theorem, [27].
(iv) ⇒ (ii) Let ρ be an equivalent metric with d such that A is an α-

contraction with respect to ρ. Then FA = {x∗} and δ(An0(X)) ≤ αn0n·δ(X) →
0, as n → +∞, for n0 ∈ N.

(iv) → (v) This is obvious.
(v) → (iii) The implication is Nemytzki-Edelstein theorem, see [32], [35].
(iii) → (vi) Let FA = {x∗}. Then An(x) d→ x∗, as n → +∞,

uniformly on X and d : X × X → R+ is uniformly continuous. Hence
(d(An(x), An(y)))n∈N → d(x∗, x∗) = 0, uniformly on X ×X.

(vi) → (iv) There exists a sequence (αn)n∈N → 0, as n → +∞, such
that d(An(x), An(y)) ≤ αn, for each x, y ∈ X and n ∈ N. It follows that
δ(An(X)) → 0, as n → +∞. So (vi) ⇒ (i) and (i) ⇒ (iv).

(iv) → (vi) is obviously.
(vi) → (iv) From ρ(An(x), {x∗}) → 0, as n → +∞ we have, taking the

supremum and making n → +∞, that H(An(X), {x∗}) → 0. ¤

Remark 9.1. For other considerations on Janos operators see L. Janos
[27]- [29], I. A. Rus [44] and A. Iwanik, L. Janos, F. A. Smith [23].

10. Sequences of iterates and fixed points

In this section we will consider the following open question:
Open question 1. Use the above equivalent statements for the study of

the sequence of iterates of an operator.

As an example, we will consider the iterates of some linear operators on the
space of continuous functions.

Let Ω ⊆ Rm be a bounded domain, D be a nonempty closed subset of Ω and
(X, +,R, ‖ · ‖) be a Banach space. Let (C(Ω, X), ‖ · ‖C) be the Banach space
of continuous functions f : Ω → X endowed with the Chebysev supremum
norm, i. e. ‖x‖C := max

t∈Ω
|x(t)|.

We have:
Theorem 10.1. Let A : C(Ω, X) → C(Ω, X) be an operator such that:
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(i) A is linear
(ii) A(x)|D = x|D, for each x ∈ C(Ω, X)
(iii) there exists α ∈]0, 1[ such that ‖A(x)‖C ≤ α · ‖x‖C , for all x ∈

C(Ω, X), with x|D = 0.
Then A is a WPO.
Proof. Consider on C(Ω, X) the following equivalence relation:

x ∼ y ⇔ x|D = y|D.

As usually, this equivalence relation induces on C(Ω, X) a partition, let say
C(Ω, X) =

⋃

λ∈C(Ω,X)

Xλ. From (ii) we have that A(Xλ) ⊂ Xλ, for all λ ∈

C(D, X). From (iii) and (i) it follows that the operator A is an α-contraction
on Xλ, for all λ ∈ C(D,X). On the other hand, Xλ is a closed subset of
C(Ω, X). From the Banach contraction principle we obtain that FA ∩ Xλ =
{x∗λ} and An(x) → x∗λ as n → +∞, for all x ∈ Xλ and all λ ∈ C(D, X). Hence
A is a WPO. ¤

Remark 10.1. It is obviously that the hypothesis of the above result imply

‖A2(x)−A(x)‖C ≤ α · ‖x−A(x)‖C , for all x ∈ C(Ω, X).

Remark 10.2. If we consider X = R, Ω = [0, 1], D = {0, 1} and A =
Bn, n ∈ N∗ (where Bn is the Bernstein operator), then we obtain the result in
[46].

If in the above result X = Rp, then we obtain the following improvement
of Theorem 10.1.

Theorem 10.2. Let A = (A1, A2, · · · , An) : C(Ω,Rp) → C(Ω,Rp) be an
operator such that:

(i) A is linear
(ii) A(x)|D = x|D, for each X ∈ C(Ω,Rp)
(iii) there exists a matrix S ∈Mp(R+) such that:

(a) Sn → 0, as n →∞
(b)



‖A1(x)‖C

· · ·
‖Ap(x)‖C


 ≤ S ·



‖x1‖C

· · ·
‖xp‖C


 , for each x ∈ C(Ω,Rp), with x|D = 0.

Then A is a WPO.
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Proof. The approach is similar to that of Theorem 10.1. with the men-
tion that one apply Perov’s fixed point theorem (see [44]) instead of Banach
contraction principle. ¤

Example 10.1. X = R, Ω = [0, a] × [0, b] ∈ R2 and D = ([0, a] × {0} ∪
({0} × [0, b]). Consider on C(Ω) the Bielecki norm ‖x‖B := max

t∈Ω
(|x(t)| · e−τt).

Let A : C(Ω) → C(Ω) be defined by:

A(x)(t1, t2) := x(t1, 0) + x(0, t2)− x(0, 0)

+
∫ t1

0

∫ t2

0
K(t1, t2, s1, s2) · x(s1, s2)ds1ds2,

where K ∈ C(Ω × Ω). We may remark that ‖A(x)‖B ≤ MK · τ−1‖x‖, for all
x ∈ C(Ω) with x|D = 0, where MK > 0 is such that |K(t, s) ≤ MK , on Ω×Ω.
Taking τ > 0 such that MK · τ−1 < 1 we are in the conditions of Theorem
10.1. and so the conclusion follows. ¤

Remark 10.3. For other results concerning this open question see I. A.
Rus [44], Agratini-Rus [1], [2], I. A. Rus-A. Petruşel-G. Petruşel [48] (pp. 45-
49, V. Dincuţă B[1], pp. 169, V. Mureşan R[5] pp. 263, M. A. Şerban B[1]
pp. 211, I. A. Rus R[1] pp. 274, etc.)

11. Converses of the fixed point principles in K-metric spaces

The considerations in section 2 give rise to the following problems:
Open question 2A. Let X be a nonempty set and A : X → X be such

that FA = FAn = {x∗}, for each n ∈ N∗.
Construct a K-metric d on X such that A : (X, d) → (X, d) is a contraction.

For a better understanding of this problem (as well as the following one)
we present:

Example 11.1. Let (A,ψ) be a Schröder pair. Consider the K-metric dψ

in Lemma 2.1. In this case A : (X, dψ) → (X, dψ) is a Q-contraction. Hence,
the problem is to construct an operator ψ : X → K such that (A,ψ) to be a
Schröder pair.

Example 11.2. Let (X, d) be a complete K-metric space, Q; K → K and
A; X → X. Suppose that:

(i) Q is bijective;
(ii) Qn → 0, as n → +∞;
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(iii) there exists n0 ∈ N∗ such that An0 is a Qn0-contraction.
Then

ρ(x, y) := d(x, y) + S−1d(A(x), A(y)) + · · ·+ S1−n0d(An0−1(x), An0−1(y))

is a K-metric equivalent with d and A : (X, ρ) → (X, ρ) is a Q-contraction.
References: V. G. Angelov [3], [4], C. Bessaga [7], P. Hitzler and A. K.

Seda [21], J. Jachymski [25], V. I. Opoizev [38], I. Rosenholtz [42], J. S. Wong
[53].

Open question 2B. Let X be a nonempty set and A : X → X be such
that FA = FAn 6= ∅, for each n ∈ N∗.

Construct a K-metric d on X such that:
(i) A : (X, d) → (X, d) is orbitally continuous
(ii) there exists a linear positive operator S : K → K, with Sn → 0, as

n →∞ such that d(A2(x), A(x)) ≤ S · d(A(x), x), for each x ∈ X.
References: T. L. Hicks and B. E. Rhoades [20], T. T. Hsieh and K. K.

Tan [22], I. A. Rus [45], [44].

Open question 2C. Let (X, d) be a compact K-metric space and A : X →
X be a continuous operator such that

⋂

n∈N
An(X) = {x∗}.

Construct a K-metric ρ on X such that:
(i) d and ρ are topologically equivalent
(ii) A : (X, d) → (X, d) is a contraction.

References: L. Janos [27], [29], I Rosenholtz [42].

Open question 2D. Let (X, d) be a compact K-metric space and A : X →
X be a continuous operator such that

⋂

n∈N
An(X) = FA.

Construct a K-metric ρ on X such that:
(i) d and ρ are topologically equivalent
(ii) there exists a linear positive operator S : K → K, with Sn → 0, as

n →∞ such that d(A2(x), A(x)) ≤ S · d(A(x), x), for each x ∈ X.
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