SOME SURJECTIVITY CONDITIONS FOR NONLINEAR ACCRETIVE TYPE SINGLE-VALUED OPERATORS WITH A CLOSED RANGE IN BANACH SPACES

S.N. MISHRA* and A. K. KALINDE**
*Department of Mathematics University of Transkei, Umtata 5117, South Africa
E-mail: mishra@getafix.utr.ac.za
** Department of Mathematics University of Fort Hare, Alice 5700, South Africa

Abstract

Our aim in this paper is to establish some new surjectivity conditions and study the existence of solutions of equation $T x=f$ for operators T in a Banach space X that satisfy a general type of accretive condition.

Key Words and Phrases: Surjectivity conditions, nonlinear, accretive type, single- valued operators, closed range.
2000 Mathematics Subject Classification: $47 \mathrm{H} 06,47 \mathrm{H} 10$.

1. Introduction

The normalized duality mapping J from a general Banach space X into $2^{X^{*}}$ is given by

$$
\begin{equation*}
J(x)=\left\{j \in X^{*}: \operatorname{Re}\langle x, j\rangle=\|x\|^{2}=\|j\|^{2}\right\} \tag{1.1}
\end{equation*}
$$

where X^{*} denotes the dual space of X and $\langle.,$.$\rangle the generalized duality pairing.$
An operator T with domain $D(T)$ and range $R(T)$ in X is said to be $\varphi-$ generalized strongly accretive if there exists a $k \in[0,1]$ and a strictly increasing function $\varphi:[0, \infty) \rightarrow[0 . \infty)$ with $\varphi(0)=0$ such that for all $x, y \in D(T)$, there exists a $j(x-y) \in J(x-y)$ satisfying:

$$
\begin{equation*}
\operatorname{Re}\langle T x-T y, j(x-y)\rangle \geq \varphi(\|x-y\|)\|x-y\|-(1-k)\|x-y\|^{2} \tag{1.2}
\end{equation*}
$$

Remark 1. It is interesting to note that the class of operators satisfying (1.2) includes the class of φ-strongly accretive operators [3] corresponding to
$k=1$, that is, T satisfies the condition:

$$
\operatorname{Re}\langle T x-T y, j(x-y)\rangle \geq \varphi(\|x-y\|)\|x-y\|
$$

for all $x, y \in X$ and φ is as specified above.
The following examples justify the above remark.
Example 1. Let $X=\mathbb{R}$ with the usual norm |.|. Define $T:[0, \infty) \rightarrow$ $[0, \infty)$ by

$$
T x=x^{2}-\frac{1}{2} x+\frac{1}{16}
$$

Then T is φ-generalized strongly accretive operator with $\varphi(s)=s^{2}$ and $k=\frac{1}{2}$ such that for every $f \in[0, \infty)$ the equation $T x=f$ has at least one solution. In particular, T has two fixed points (namely, $\frac{3-2 \sqrt{2}}{4}$ and $\frac{3+2 \sqrt{2}}{4}$). However, it can be easily verified that T is not φ-strongly accretive.

Thus the class of φ-strongly accretive operators is a proper subset of the class of φ-generalized strongly accretive operators.

Example 2. Let $X=\mathbb{R}$ with the usual norm $|$.$| and define T:[0, \infty) \rightarrow$ $[0, \infty)$ by

$$
T x=x^{2}-\frac{1}{2} x+2
$$

Then it can be easily verified that T is φ-generalized strongly accretive with $\varphi(s)=s^{2}$ and $k=\frac{1}{2}$ but T is not φ-strongly accretive. In addition, the equation $T x=x$ has no real solution for any $x \in[0, \infty)$. Thus, in general, the equation $T x=f(f \in X)$ does not have a solution in X.

Remark 2. (i) For any non-negative real number λ with $\lambda \geq 1-k$, the operator $T+\lambda I$ (where I denotes the identity operator on X) is a bijection when T is continuous [4, Lemma 2.3].

Moreover, the relationship between the new class of operators and the class of φ-strongly pseudo-contractive operators considered by Liu and Kang [4] is that for any operator T satisfying (1.2), $-T$ is φ-strongly pseudo-contractive and by [4, Lemma 2.2], $T+I$ has a unique zero in a real Banach space X when T is continuous.
(ii) Recall that an operator T with domain $D(T)$ and range $R(T)$ in a normed space X is φ-expansive (see [2]) if

$$
\begin{equation*}
\varphi(\|x-y\|) \leq\|T x-T y\| \tag{1.3}
\end{equation*}
$$

for all $x, y \in X$, where $\varphi:[0, \infty) \rightarrow[0 . \infty)$ is a strictly increasing function with $\varphi(0)=0$.

It is known (see [2]) that φ-expansive operators are invertible but their inverse operators need not be defined on the whole space X.

Notice that φ-strongly accretive operators are φ-expansive since they satisfy the condition

$$
\begin{equation*}
\varphi(\|x-y\|)\|x-y\| \leq\|T x-T y\|\|x-y\| . \tag{1.4}
\end{equation*}
$$

Our aim in this paper is to establish some new surjectivity conditions for operators of type (1.2) with $k \in[0,1$) and study the existence of solutions of equation $T x=f$ for operators T. This is done, in particular, via some fixed point conditions for φ-expansive operators that we establish in this paper. For a detailed account of iterative approximations of fixed point and solution of operator equation $T x=f$, we refer to Berinde [1].

2. Main results

Now onward, \mathbb{N} will denote the set of natural numbers while $R(T)$ will denote the range of an operator T.

The following lemma gives us sufficient conditions for an operator of type (1.2) with $k \in(0,1)$ to have a zero.

Lemma 2.1. Let X be a general Banach space and $T: X \rightarrow X$ be an operator of type (1.2) with $\varphi(t)>t$ for all t sufficiently large and for $0<k<$ 1. Assume that the following conditions are satisfied.
(2.1.1) $\overline{R(T)}=R(T)$.
(2.1.2) $T+\lambda I$ is one to one for every $\lambda>0$ sufficiently small.
(2.1.3) There exists $r>0:\|T 0\|<r \leq \liminf _{\|x\| \rightarrow \infty}[\varphi(\|x\|)-\|x\|]$.

Then T has a zero in X.
Proof. Suppose $\mu=r-\|T 0\|>0$ and let $p \in B_{\mu}(0)$ be arbitrary, where $B_{\mu}(0)=\{x \in X:\|x\|<\mu\}$. Now consider the equation

$$
T x+\frac{x}{n}=p \text { for all } n \in \mathbb{N}
$$

By condition (2.1.2), $x_{n}=\left(T+\frac{1}{n} I\right)^{-1} p$ exists for all sufficiently large n. Hence

$$
\begin{equation*}
\frac{1}{n}\left\|x_{n}\right\|=\left\|T x_{n}-p\right\| \geq\left\|T x_{n}-T 0\right\|-\|T 0-p\| . \tag{2.1}
\end{equation*}
$$

But from (1.2) we deduce that

$$
\varphi(\|x-y\|) \leq(1-k)\|x-y\|+\|T x-T y\|
$$

Hence (2.1) becomes

$$
\frac{1}{n}\left\|x_{n}\right\| \geq \varphi\left(\left\|x_{n}\right\|\right)-(1-k) \varphi\left(\left\|x_{n}\right\|\right)-\|T 0\|-\|p\|
$$

from which we deduce that

$$
\varphi\left(\left\|x_{n}\right\|\right)-\left(1-k+\frac{1}{n}\right)\left\|x_{n}\right\| \leq\|T 0\|+\|p\|
$$

Since k is fixed, we may take $n \in \mathbb{N}$ sufficiently large so that $\left(1-k+\frac{1}{n}\right)<1$. Therefore from the above inequality we obtain

$$
\begin{equation*}
\varphi\left(\left\|x_{n}\right\|\right)-\left\|x_{n}\right\| \leq \varphi\left(\left\|x_{n}\right\|\right)-\left(1-k+\frac{1}{n}\right)\left\|x_{n}\right\| \leq\|T 0\|+\|p\| \tag{2.2}
\end{equation*}
$$

We now show that the sequence $\left\{x_{n}\right\}$ is bounded. Suppose this is not the case. Without loss of generality we may assume that $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\infty$. Then by condition (2.1.3) we have that for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
r-\epsilon<\varphi\left(\left\|x_{n}\right\|\right)-\left\|x_{n}\right\| \text { for all } n \geq N
$$

and by (2.2) this implies that

$$
r-\epsilon<\|T 0\|+\|p\|
$$

Since $\epsilon>0$ is arbitrary, the above inequality gives us

$$
\begin{equation*}
r \leq\|T 0\|+\|p\| \tag{2.3}
\end{equation*}
$$

Since $p \in B_{\mu}(0)$ and $\mu=r-\|T 0\|$, from (2.3) we immediately obtain that

$$
r \leq\|T 0\|+\|p\|<\|T 0\|+\mu=r
$$

a contradiction. Hence the sequence $\left\{x_{n}\right\}$ is bounded. Therefore from (2.1) we deduce that

$$
\lim _{n \rightarrow \infty}\left\|T x_{n}-p\right\|=0
$$

and by condition (2.1.1) we have that $p \in R(T)$. Therefore $B_{\mu}(0) \subset R(T)$. Consequently, there exists a point $x_{0} \in X$ such that $T x_{0}=0 . \square$

Theorem 2.2. Let X be a reflexive Banach space and $T: X \rightarrow X$ be an operator that is weakly sequentially continuous and satisfies condition (1.2) with $k=0$ and $\varphi(t)>t$ for all t sufficiently large. Assume that
(2.2.1) For any $f \in X$, there exists $r>0$ such that

$$
\|T 0\|+\|f\|<r \leq \liminf _{\|x\| \rightarrow \infty}[\varphi(\|x\|)-\|x\|
$$

(2.2.2) $\overline{R(T+\lambda I)}=R(T+\lambda I)$ and $(T+\lambda I)$ is one to one for every $\lambda>0$ sufficiently small.

Then the equation $T x=f$ has at least one solution for each $f \in X$.
Proof. For any $f \in X$ set $S=I-T+f$. Then S satisfies the condition

$$
\operatorname{Re}\langle S x-S y, j(x-y)\rangle \leq 2\|x-y\|^{2}-\varphi(\|x-y\|)\|x-y\|
$$

for all $x, y \in X$.
To show that S has a fixed point we consider the approximation

$$
S_{n}=\frac{n+1}{n} I-S
$$

which is an operator of type (1.2) with $k=\frac{1}{n}$ for every $n \in \mathbb{N}$ since

$$
\begin{equation*}
\operatorname{Re}\left\langle S_{n} x-S_{n} y, j(x-y)\right\rangle \geq \varphi(\|x-y\|)\|x-y\|-\left(1-\frac{1}{n}\right)\|x-y\|^{2} \tag{2.4}
\end{equation*}
$$

But

$$
\begin{equation*}
\left\|S_{n} 0\right\|=\|S 0\|=\|f-T 0\| \leq\|f\|+\|T 0\| \tag{2.5}
\end{equation*}
$$

Hence by (2.2.1) above, the condition (2.1.3) of Lemma 2.1 is satisfied. Since $S_{n}=\left(T+\frac{1}{n} I\right)-f$, it is clear by the first part of the condition (2.2.2) that the range of S_{n} is closed.

Moreover, for any $m, n \in \mathbb{N}$ arbitrarily large we have

$$
\frac{1}{m} I+S_{n}=\frac{m+n}{m \cdot n} I+T-f
$$

Hence for any $x, y \in X$ if

$$
\frac{1}{m} x+S_{n} x=\frac{1}{m} y+S_{n} y
$$

then we obtain

$$
\frac{m+n}{m \cdot n} x+T x=\frac{m+n}{m \cdot n} y+T y .
$$

Therefore by the second part of the condition (2.2.2), $\frac{1}{m} I+S_{n}$ is one to one. Since the conditions of Lemma 2.1 are satisfied for n sufficiently large, there exists $x_{n} \in X$ such that $S_{n} x_{n}=0$.

Now we show that the sequence $\left\{x_{n}\right\}$ so obtained is bounded. Suppose the contrary and without loss of generality assume that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\infty
$$

Then by (2.4) we get

$$
\varphi\left(\left\|x_{n}\right\|\right)\left\|x_{n}\right\|-\left(1-\frac{1}{n}\right)\left\|x_{n}\right\|^{2} \leq\left\|S_{n} 0\right\| .\left\|x_{n}\right\|
$$

which implies that

$$
\varphi\left(\left\|x_{n}\right\|\right)\left\|x_{n}\right\|-\left\|x_{n}\right\|^{2} \leq\left\|S_{n} 0\right\| .\left\|x_{n}\right\|
$$

Therefore we immediately obtain that

$$
\varphi\left(\left\|x_{n}\right\|\right)-\left\|x_{n}\right\| \leq\left\|S_{n} 0\right\|
$$

Now using (2.2.1) along with the above inequality we have that for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
r-\epsilon<\varphi\left(\left\|x_{n}\right\|\right)-\left\|x_{n}\right\| \leq\left\|S_{n} 0\right\|=\|S 0\|
$$

Since $\epsilon>0$ is arbitrary, we have

$$
r \leq\|S 0\|
$$

Therefore by (2.5) and (2.2.1) we arrive at the contradiction

$$
r \leq\|S 0\|<r
$$

Consequently, the sequence $\left\{x_{n}\right\}$ is bounded.
Now from the boundedness of $\left\{x_{n}\right\}$ and the fact that

$$
S_{n} x_{n}=0=\frac{n+1}{n} x_{n}-S x_{n}
$$

we deduce that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-S x_{n}\right\|=0
$$

Therefore the sequence $\left\{x_{n}-S x_{n}\right\}$ converges weakly to 0 . Since X is reflexive and $\left\{x_{n}\right\}$ is bounded, $\left\{x_{n}\right\}$ has a weakly convergent subsequence say, $\left\{x_{n_{k}}\right\}$. Further, notice that S is weakly sequentially continuous (since $S=I-T+f)$, there exists $x_{0} \in X$ such that $x_{0}=S x_{0}$ implying that $T x_{0}=f$. Hence x_{0} is a solution of the equation $T x=f . \square$

Using a dual type of relationship with φ - pseudocontractive operators, Liu and Kang [4] recently proved that for any continuous φ-strongly accretive
operators $T: X \rightarrow X$ on an arbitrary Banach space, the equation $T x=f$ has a unique solution. In what follows, we are interested in using a fixed point theorem for φ-expansive operators T and Remark 2(ii) in solving the equation $T x=f$, where T satisfies the condition (1.2) for $k=0$.

First we have the following:
Lemma 2.3. Let X be a general Banach space and $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a strictly increasing function with $\varphi(0)=0$ and that its inverse function φ^{-1} is upper semi-continuous. Suppose that $T: X \rightarrow X$ is a φ-expansive operator such that there exists $x_{0} \in X$ and that the series $\sum_{n \in \mathbb{N}}\left(\varphi^{-1}\right)^{n}\left(\left\|x_{0}-T x_{0}\right\|\right.$ converges. If the range $R(T)$ of T is closed, then T has at least one fixed point in X.

Proof. Set $y_{0}=T x_{0}$ and consider the approximation process

$$
\begin{equation*}
y_{0} \in R(T), y_{n+1}=T^{-1} y_{n}(n \geq 0) \tag{2.6}
\end{equation*}
$$

We shall show that the sequence $\left\{y_{n}\right\}$ converges. First, we show by induction that

$$
\left\|y_{n+1}-y_{n}\right\| \leq\left(\varphi^{-1}\right)^{n}\left(\left\|x_{0}-T x_{0}\right\|\right.
$$

Notice from (1.3) that

$$
\varphi\left(\left\|T^{-1} T x-T^{-1} T y\right\|\right) \leq\|T x-T y\|
$$

and since φ is invertible, we have

$$
\left(\left\|T^{-1} T x-T^{-1} T y\right\|\right) \leq \varphi^{-1}(\|T x-T y\|) \text { for all } x, y \in X
$$

For $n=1$, we have

$$
\begin{aligned}
\left\|y_{2}-y_{1}\right\| & =\left\|T^{-1} y_{1}-T^{-1} y_{0}\right\| \leq \varphi^{-1}\left(\left\|y_{1}-y_{0}\right\|\right) \\
& =\varphi^{-1}\left(\left\|x_{0}-T x_{0}\right\|\right.
\end{aligned}
$$

Therefore (2.6) is true for $n=1$. Let it be true for $n=k$, i.e.

$$
\left\|y_{k+1}-y_{k}\right\| \leq\left(\varphi^{-1}\right)^{k}\left(\left\|x_{0}-T x_{0}\right\|\right)
$$

Then for $n=k+1$, we have

$$
\begin{aligned}
\left\|y_{k+2}-y_{k+1}\right\| & =\left\|T^{-1} y_{k+1}-T^{-1} y_{k}\right\| \leq\left(\varphi^{-1}\right)^{k}\left(\left\|y_{k+1}-y_{k}\right\|\right) \\
& \leq\left(\varphi^{-1}\right)\left(\varphi^{-1}\right)^{k}\left(\left\|x_{0}-T x_{0}\right\|\right)=\left(\varphi^{-1}\right)^{k+1}\left(\left\|x_{0}-T x_{0}\right\|\right)
\end{aligned}
$$

and the result holds. Hence by induction (2.6) holds for all n.

Now, for any $n, m \in \mathbb{N}$ with $n<m$, we have

$$
\begin{aligned}
\left\|y_{m}-y_{n}\right\| & \leq\left\|y_{m}-y_{m-1}\right\|+\left\|y_{m-1}-y_{m-2}\right\|+\ldots+\left\|y_{n+1}-y_{n}\right\| \\
& \leq\left(\varphi^{-1}\right)^{m-1}\left(\left\|x_{0}-T x_{0}\right\|\right)+\left(\varphi^{-1}\right)^{m-2}\left(\left\|x_{0}-T x_{0}\right\|\right)+\ldots+ \\
& +\left(\varphi^{-1}\right)^{n}\left(\left\|x_{0}-T x_{0}\right\|\right.
\end{aligned}
$$

By setting $S_{n}\left(\left\|x_{0}-T x_{0}\right\|\right)=\sum_{k=1}^{n}\left(\varphi^{-1}\right)^{k}\left(\left\|x_{0}-T x_{0}\right\|\right.$ in the above inequality we obtain

$$
\left\|y_{m}-y_{n}\right\| \leq S_{m-1}\left(\left\|x_{0}-T x_{0}\right\|\right)-S_{n-1}\left(\left\|x_{0}-T x_{0}\right\|\right)
$$

Since the series $\sum_{n \in \mathbb{N}}\left(\varphi^{-1}\right)^{n}\left(\left\|x_{0}-T x_{0}\right\|\right.$ converges, the sequence $\left\{S_{n}\left(\left\|x_{0}-T x_{0}\right\|\right)\right\}$ is a Cauchy sequence in X. Hence the above inequality implies that $\left\{y_{n}\right\}$ is a Cauchy sequence in X. Therefore it converges to some $y \in R(T)$ as $R(T)$ is closed. Hence we have

$$
\begin{aligned}
\left\|y-T^{-1} y\right\| & \leq\left\|y-y_{n}\right\|+\left\|y_{n}-T^{-1} y\right\| \\
& \leq\left\|y-y_{n}\right\|+\left\|T^{-1} y_{n-1}-T^{-1} y\right\| \\
& \leq\left\|y-y_{n}\right\|+\varphi^{-1}\left(\left\|y_{n-1}-y\right\|\right)
\end{aligned}
$$

By the upper semi-continuity of φ^{-1}, the above inequality implies that

$$
\left\|y-T^{-1} y\right\| \leq \limsup _{n \rightarrow \infty}\left(\left\|y-y_{n}\right\|\right)+\varphi^{-1}\left(\limsup _{n \rightarrow \infty}\left(\left\|y_{n-1}-y\right\|\right) .=0\right.
$$

proving that $y=T^{-1} y$, that is, y is a fixed point of T^{-1}.
Let $x \in X$ be such that $y=T x$. Then $y=T^{-1} y$ implies that $T x=x$ and the lemma is established

We notice that the condition that $\sum_{n \in \mathbb{N}}\left(\varphi^{-1}\right)^{n}\left(\left\|x_{0}-T x_{0}\right\|\right.$ is convergent is quite reasonable as all the linear operators defined at the origin satisfy it trivially.

Theorem 2.4. Let X be a general Banach space and $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a strictly increasing function with $\varphi(0)=0$ and whose inverse function φ^{-1} is upper semi-continuous. Let $T: X \rightarrow X$ be an operator satisfying condition (1.2) with $k \in(0,1)$ such that $I+T$ has a closed range. If for any $f \in X$, there exists $x_{0} \in X$ such that the series $\sum_{n \in \mathbb{N}}\left(\varphi^{-1}\right)^{n}\left(\left\|T x_{0}-f\right\|\right.$ converges, then the equation $T x=f$ has at least one solution in X.

Proof. Suppose $S=I+T-f$ for $f \in X$ fixed. Then S is $\varphi-$ strongly accretive as it satisfies the condition

$$
\operatorname{Re}\langle S x-S y, j(x-y)\rangle \geq \varphi(\|x-y\|)\|x-y\|+k\|x-y\|^{2}
$$

Hence S is φ-expansive (and strongly accretive).
Moreover, for any $x \in X$ we have $S x-x=T x-f$. Therefore by the given hypothesis of the theorem, there exists $x_{0} \in X$ such that the series $\sum_{n \in \mathbb{N}}\left(\varphi^{-1}\right)^{n}\left(\left\|T x_{0}-f\right\|\right.$ converges. Therefore the series $\sum_{n \in \mathbb{N}}\left(\varphi^{-1}\right)^{n}\left(\left\|S x_{0}-x_{0}\right\|\right.$ also converges. Further, since $I+T$ has a closed range, it follows that S also has a closed range. Therefore by Lemma $2.3, S$ has at least one fixed point say, x_{1}. Then

$$
x_{1}=S x_{1}=x_{1}+T x_{1}-f
$$

proving that $T x_{1}=f$ for some $x_{1} \in X$. Hence the equation $T x=f$ has a solution in X.

Remark 3. If the operator T in the above theorem is continuous, then the hypothesis that $I+T$ has a closed range can be dispensed with in view of Remark 2.

Theorem 2.5. Let X be a general Banach space and $\varphi:[0, \infty) \rightarrow[0, \infty)$ be a strictly increasing function with $\varphi(0)=0$ such that

$$
\limsup _{t \rightarrow \infty} \frac{\varphi(t)}{t}=\infty
$$

and that its inverse function φ^{-1} is upper semi-continuous. Assume that the operator $T: X \rightarrow X$ satisfies condition (1.2) with $k=0$ and the operators $T+\frac{n+1}{n} I$ have a closed range in X for every $n \in N$. If for every $f \in X$, there exists $x_{0} \in X$ such that the series $\sum_{n \in \mathbb{N}}\left(\varphi^{-1}\right)^{n}\left(\left\|T x_{0}-f\right\|+\left\|x_{0}\right\|\right)$ converges, then the equation $T x=f$ has at least one solution in X.

Proof. For any $n \in \mathbb{N}$, set $T_{n}=T+\frac{1}{n} I$. Then for all $x, y \in X$ and for $j(x-y) \in J(x-y)$ we have

$$
\operatorname{Re}\left\langle T_{n} x-T_{n} y, j(x-y)\right\rangle \geq \varphi(\|x-y\|)\|x-y\|-\left(1-\frac{1}{n}\right)\|x-y\|^{2}
$$

Thus T_{n} satisfies condition (1.2) with $k=\frac{1}{n}$. Now for any $f \in X$ fixed, let $S_{n}=I+T_{n}-f$. Then we have

$$
\begin{equation*}
\operatorname{Re}\left\langle S_{n} x-S_{n} y, j(x-y)\right\rangle \geq \varphi(\|x-y\|)\|x-y\|+\frac{1}{n}\|x-y\|^{2} \tag{2.7}
\end{equation*}
$$

Therefore S_{n} is φ - strongly accretive (and φ-expansive). Let $x_{0} \in X$ be such that the series

$$
\sum_{n \in \mathbb{N}}\left(\varphi^{-1}\right)^{n}\left(\left\|T x_{0}-f\right\|+\left\|x_{0}\right\|\right)
$$

converges. Now consider the expression

$$
S_{n} x_{0}-x_{0}=T x_{0}-f+\frac{x_{0}}{n}
$$

Then

$$
\begin{equation*}
\left\|S_{n} x_{0}-x_{0}\right\| \leq\left\|T x_{0}-f\right\|+\left\|x_{0}\right\| \tag{2.8}
\end{equation*}
$$

Hence from (2.8) and the hypothesis of the theorem, we conclude that the series $\sum_{m \in \mathbb{N}}\left(\varphi^{-1}\right)^{m}\left(\left\|S x_{0}-x_{0}\right\|\right.$ converges. Since $T+\left(\frac{n+1}{n}\right) I$ has a closed range in X for each $n \in \mathbb{N}, S_{n}$ has a closed range in X. Therefore by Lemma 2.3, S_{n} has at least one fixed point for each $n \in \mathbb{N}$, say, x_{n}. That is

$$
x_{n}=S_{n} x_{n}=x_{n}+T_{n} x_{n}-f
$$

from which we deduce that

$$
\begin{equation*}
T x_{n}+\frac{x_{n}}{n}-f=0 \tag{2.9}
\end{equation*}
$$

Also from

$$
T x_{n}+\frac{x_{n}}{n}-f-\frac{x_{1}}{n}+\frac{x_{1}}{n}=0
$$

we obtain that

$$
\begin{equation*}
\left\|T x_{n}-f\right\| \leq \frac{\left\|x_{n}-x_{1}\right\|}{n}+\frac{\left\|x_{1}\right\|}{n} . \tag{2.10}
\end{equation*}
$$

Now we show that the sequence $\left\{x_{n}\right\}$ so obtained is bounded. If not, we may assume without loss of generality that $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\infty$ and since $x_{n}=$ $x_{n}-x_{1}+x_{1}$, we conclude that $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{1}\right\|=\infty$. Hence from (2.10) we deduce that

$$
\lim _{n \rightarrow \infty} \frac{\left\|T x_{n}-f\right\|}{\left\|x_{n}-x_{1}\right\|}=0
$$

But from (2.7) we have

$$
\varphi\left(\left\|x_{n}-x_{1}\right\|\right)\left\|x_{n}-x_{1}\right\| \leq \operatorname{Re}\left\langle S_{1} x_{n}-S_{1} x_{1}, j\left(x_{n}-x_{1}\right)\right\rangle
$$

$$
\begin{gathered}
\leq \operatorname{Re}\left\langle\left(x_{n}+T_{1} x_{n}-f\right)-\left(x_{1}+T_{1} x_{1}-f\right), j\left(x_{n}-x_{1}\right)\right\rangle \\
\leq \operatorname{Re}\left\langle 2\left(x_{n}-x_{1}\right)+T x_{n}-T x_{1}, j\left(x_{n}-x_{1}\right)\right\rangle \\
\leq 2\left\|x_{n}-x_{1}\right\|^{2}+\left\|x_{n}-x_{1}\right\| \cdot\left\|T x_{n}-T x_{1}\right\| \\
\leq 2\left\|x_{n}-x_{1}\right\|^{2}+\left\|x_{n}-x_{1}\right\| \cdot\left(\left\|T x_{n}-f\right\|+\left\|f-T x_{1}\right\|\right)
\end{gathered}
$$

This implies that

$$
\frac{\varphi\left(\left\|x_{n}-x_{1}\right\|\right)}{\left\|x_{n}-x_{1}\right\|} \leq 2+\frac{\left\|T x_{n}-f\right\|}{\left\|x_{n}-x_{1}\right\|}+\frac{\left\|f-T x_{1}\right\|}{\left\|x_{n}-x_{1}\right\|}
$$

Now taking the limit superior on both sides of the above inequality along with (2.10) and the fact that $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{1}\right\|=\infty$ we get

$$
\limsup _{n \rightarrow \infty} \frac{\varphi\left(\left\|x_{n}-x_{1}\right\|\right)}{\left\|x_{n}-x_{1}\right\|} \leq 2
$$

a contradiction to the hypothesis

$$
\limsup _{n \rightarrow \infty} \frac{\varphi\left(\left\|x_{n}-x_{1}\right\|\right)}{\left\|x_{n}-x_{1}\right\|}=\infty
$$

Therefore from (2.9) we deduce that

$$
\left\|T x_{n}-f\right\|=\frac{\left\|x_{n}\right\|}{n}
$$

and from which it follows that $f \in \overline{R(T)}$. Now since $\overline{R(T)}=R(T)$, the equation $T x=f$ has at least one solution in X .

Acknowledgement. We thank the referee for his valuable comments.

References

[1] A.G. Kartatos, Mapping theorems involving compact perturbations and compact resolvents of nonlinear operators in Banach spaces, J. Math. Anal. Appl., 80(1981), 130-146.
[2] M.O. Osilike, Iterative solution of nonlinear equations of the φ-strongly accretive type, J. Math. Anal. Appl., 200(1996), 259-271.
[3] Z. Liu and S.M. Kang, Convergence theorems for φ - strongly accretive and $\varphi-$ hemicontractive operators, J. Math. Anal. Appl., 253(2001), 35-49.

Received 12.04.2004; Revised 10.03.2006.

