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1. Introduction

The normalized duality mapping J from a general Banach space X into 2X∗

is given by
J(x) =

{
j ∈ X∗ : Re 〈x, j〉 = ‖x‖2 = ‖j‖2

}
, (1.1)

where X∗ denotes the dual space of X and 〈., .〉 the generalized duality pairing.
An operator T with domain D(T ) and range R(T ) in X is said to be ϕ−

generalized strongly accretive if there exists a k ∈ [0, 1] and a strictly increasing
function ϕ : [0,∞) → [0.∞) with ϕ(0) = 0 such that for all x, y ∈ D(T ), there
exists a j(x− y) ∈ J(x− y) satisfying:

Re 〈Tx− Ty, j(x− y)〉 ≥ ϕ (‖x− y‖) ‖x− y‖ − (1− k) ‖x− y‖2 (1.2)

Remark 1. It is interesting to note that the class of operators satisfying
(1.2) includes the class of ϕ−strongly accretive operators [3] corresponding to
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k = 1, that is, T satisfies the condition:

Re 〈Tx− Ty, j(x− y)〉 ≥ ϕ (‖x− y‖) ‖x− y‖

for all x, y ∈ X and ϕ is as specified above.
The following examples justify the above remark.
Example 1. Let X = R with the usual norm |.| . Define T : [0,∞) →

[0,∞) by

Tx = x2 − 1
2
x +

1
16

Then T is ϕ−generalized strongly accretive operator with ϕ(s) = s2 and

k =
1
2

such that for every f ∈ [0,∞) the equation Tx = f has at least one

solution. In particular,T has two fixed points (namely,
3− 2

√
2

4
and

3 + 2
√

2
4

).
However, it can be easily verified that T is not ϕ−strongly accretive.

Thus the class of ϕ−strongly accretive operators is a proper subset of the
class of ϕ−generalized strongly accretive operators.

Example 2. Let X = R with the usual norm |.| and define T : [0,∞) →
[0,∞) by

Tx = x2 − 1
2
x + 2

Then it can be easily verified that T is ϕ−generalized strongly accretive

with ϕ(s) = s2 and k =
1
2

but T is not ϕ−strongly accretive. In addition, the

equation Tx = x has no real solution for any x ∈ [0,∞). Thus, in general,
the equation Tx = f (f ∈ X) does not have a solution in X.

Remark 2. (i) For any non-negative real number λ with λ ≥ 1 − k, the
operator T + λI (where I denotes the identity operator on X) is a bijection
when T is continuous [4, Lemma 2.3].

Moreover, the relationship between the new class of operators and the class
of ϕ−strongly pseudo-contractive operators considered by Liu and Kang [4] is
that for any operator T satisfying (1.2), –T is ϕ−strongly pseudo-contractive
and by [4, Lemma 2.2], T + I has a unique zero in a real Banach space X

when T is continuous.
(ii) Recall that an operator T with domain D(T ) and range R(T ) in a

normed space X is ϕ−expansive (see [2]) if

ϕ (‖x− y‖) ≤ ‖Tx− Ty‖ (1.3)
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for all x, y ∈ X, where ϕ : [0,∞) → [0.∞) is a strictly increasing function with
ϕ(0) = 0.

It is known (see [2]) that ϕ−expansive operators are invertible but their
inverse operators need not be defined on the whole space X.

Notice that ϕ−strongly accretive operators are ϕ−expansive since they sat-
isfy the condition

ϕ (‖x− y‖) ‖x− y‖ ≤ ‖Tx− Ty‖ ‖x− y‖ . (1.4)

Our aim in this paper is to establish some new surjectivity conditions for
operators of type (1.2) with k ∈ [0, 1) and study the existence of solutions of
equation Tx = f for operators T. This is done, in particular, via some fixed
point conditions for ϕ−expansive operators that we establish in this paper.
For a detailed account of iterative approximations of fixed point and solution
of operator equation Tx = f , we refer to Berinde [1].

2. Main results

Now onward, N will denote the set of natural numbers while R(T ) will
denote the range of an operator T .

The following lemma gives us sufficient conditions for an operator of type
(1.2) with k ∈ (0, 1) to have a zero.

Lemma 2.1. Let X be a general Banach space and T : X → X be an
operator of type (1.2) with ϕ(t) > t for all t sufficiently large and for 0 < k <

1. Assume that the following conditions are satisfied.
(2.1.1) R(T )= R(T ).
(2.1.2) T + λI is one to one for every λ > 0 sufficiently small.
(2.1.3) There exists r > 0 : ‖T0‖ < r ≤ lim inf

‖x‖→∞
[ϕ(‖x‖)− ‖x‖] .

Then T has a zero in X.

Proof. Suppose µ = r − ‖T0‖ > 0 and let p ∈ Bµ(0) be arbitrary, where
Bµ(0) = {x ∈ X : ‖x‖ < µ} . Now consider the equation

Tx +
x

n
= p for all n ∈ N.

By condition (2.1.2), xn = (T +
1
n

I)−1p exists for all sufficiently large n.
Hence

1
n
‖xn‖ = ‖Txn − p‖ ≥ ‖Txn − T0‖ − ‖T0− p‖ . (2.1)
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But from (1.2) we deduce that

ϕ(‖x− y‖) ≤ (1− k) ‖ x− y‖+ ‖Tx− Ty‖ .

Hence (2.1) becomes

1
n
‖xn‖ ≥ ϕ(‖xn‖)− (1− k)ϕ(‖xn‖)− ‖T0‖ − ‖p‖

from which we deduce that

ϕ(‖xn‖)− (1− k +
1
n

) ‖xn‖ ≤ ‖T0‖+ ‖p‖ .

Since k is fixed, we may take n ∈ N sufficiently large so that (1−k+ 1
n) < 1.

Therefore from the above inequality we obtain

ϕ(‖xn‖)− ‖xn‖ ≤ ϕ(‖xn‖)− (1− k +
1
n

) ‖xn‖ ≤ ‖T0‖+ ‖p‖ . (2.2)

We now show that the sequence {xn} is bounded. Suppose this is not the
case. Without loss of generality we may assume that lim

n→∞ ‖xn‖ = ∞. Then

by condition (2.1.3) we have that for all ε > 0, there exists N ∈ N such that

r − ε < ϕ(‖xn‖)− ‖xn‖ for all n ≥ N

and by (2.2) this implies that

r − ε < ‖T0‖+ ‖p‖ .

Since ε > 0 is arbitrary, the above inequality gives us

r ≤ ‖T0‖+ ‖p‖ . (2.3)

Since p ∈ Bµ(0) and µ = r − ‖T0‖ , from (2.3) we immediately obtain that

r ≤ ‖T0‖+ ‖p‖ < ‖T0‖+ µ = r,

a contradiction. Hence the sequence {xn} is bounded. Therefore from (2.1)
we deduce that

lim
n→∞ ‖Txn − p‖ = 0

and by condition (2.1.1) we have that p ∈ R(T ). Therefore Bµ(0) ⊂ R(T ).
Consequently, there exists a point x0 ∈ X such that Tx0 = 0.¤

Theorem 2.2. Let X be a reflexive Banach space and T : X → X be
an operator that is weakly sequentially continuous and satisfies condition (1.2)
with k = 0 and ϕ(t) > t for all t sufficiently large. Assume that
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(2.2.1) For any f ∈ X, there exists r > 0 such that

‖T0‖+ ‖f‖ < r ≤ lim inf
‖x‖→∞

[ϕ(‖x‖)− ‖x‖ .

(2.2.2) R(T + λI ) = R(T +λI) and (T +λI) is one to one for every λ > 0
sufficiently small.

Then the equation Tx = f has at least one solution for each f ∈ X.

Proof. For any f ∈ X set S = I − T + f. Then S satisfies the condition

Re 〈Sx− Sy, j(x− y)〉 ≤ 2 ‖x− y‖2 − ϕ(‖x− y‖) ‖x− y‖

for all x, y ∈ X.
To show that S has a fixed point we consider the approximation

Sn =
n + 1

n
I − S

which is an operator of type (1.2) with k =
1
n

for every n ∈ N since

Re 〈Snx− Sny, j(x− y)〉 ≥ ϕ(‖x− y‖) ‖x− y‖ − (1− 1
n

) ‖x− y‖2 . (2.4)

But

‖Sn0‖ = ‖S0‖ = ‖f − T0‖ ≤ ‖f‖+ ‖T0‖ (2.5)

Hence by(2.2.1) above, the condition (2.1.3) of Lemma 2.1 is satisfied. Since
Sn = (T + 1

nI)− f , it is clear by the first part of the condition (2.2.2) that the
range of Sn is closed.

Moreover, for any m,n ∈ N arbitrarily large we have

1
m

I + Sn =
m + n

m.n
I + T − f.

Hence for any x, y ∈ X if

1
m

x + Snx =
1
m

y + Sny,

then we obtain
m + n

m.n
x + Tx =

m + n

m.n
y + Ty.

Therefore by the second part of the condition (2.2.2), 1
mI + Sn is one to

one. Since the conditions of Lemma 2.1 are satisfied for n sufficiently large,
there exists xn ∈ X such that Snxn = 0.
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Now we show that the sequence {xn} so obtained is bounded. Suppose the
contrary and without loss of generality assume that

lim
n→∞ ‖xn‖ = ∞

Then by (2.4) we get

ϕ(‖xn‖) ‖xn‖ − (1− 1
n

) ‖xn‖2 ≤ ‖Sn0‖ . ‖xn‖
which implies that

ϕ(‖xn‖) ‖xn‖ − ‖xn‖2 ≤ ‖Sn0‖ . ‖xn‖ .

Therefore we immediately obtain that

ϕ(‖xn‖)− ‖xn‖ ≤ ‖Sn0‖ .

Now using (2.2.1) along with the above inequality we have that for any
ε > 0, there exists N ∈ N such that

r − ε < ϕ(‖xn‖)− ‖xn‖ ≤ ‖Sn0‖ = ‖S0‖ .

Since ε > 0 is arbitrary, we have

r ≤ ‖S0‖ .

Therefore by (2.5) and (2.2.1) we arrive at the contradiction

r ≤ ‖S0‖ < r.

Consequently, the sequence {xn} is bounded.
Now from the boundedness of {xn} and the fact that

Snxn = 0 =
n + 1

n
xn − Sxn

we deduce that
lim

n→∞ ‖xn − Sxn‖ = 0.

Therefore the sequence {xn − Sxn} converges weakly to 0. Since X is
reflexive and {xn} is bounded, {xn} has a weakly convergent subsequence
say, {xnk

}. Further, notice that S is weakly sequentially continuous (since
S = I − T + f), there exists x0 ∈ X such that x0 = Sx0 implying that
Tx0 = f. Hence x0 is a solution of the equation Tx = f.¤

Using a dual type of relationship with ϕ− pseudocontractive operators, Liu
and Kang [4 ] recently proved that for any continuous ϕ−strongly accretive
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operators T : X → X on an arbitrary Banach space, the equation Tx = f

has a unique solution. In what follows, we are interested in using a fixed point
theorem for ϕ−expansive operators T and Remark 2(ii) in solving the equation
Tx = f , where T satisfies the condition (1.2) for k = 0.

First we have the following:
Lemma 2.3. Let X be a general Banach space and ϕ : [0,∞) → [0,∞) be

a strictly increasing function with ϕ(0) = 0 and that its inverse function ϕ−1

is upper semi-continuous. Suppose that T : X → X is a ϕ−expansive opera-
tor such that there exists x0 ∈ X and that the series

∑
n∈N

(ϕ−1)n(‖x0 − Tx0‖
converges. If the range R(T ) of T is closed, then T has at least one fixed
point in X.

Proof. Set y0 = Tx0 and consider the approximation process

y0 ∈ R(T ), yn+1 = T−1yn(n ≥ 0). (2.6)

We shall show that the sequence {yn} converges. First, we show by induc-
tion that

‖yn+1 − yn‖ ≤ (ϕ−1)n(‖x0 − Tx0‖ .

Notice from (1.3) that

ϕ
(∥∥T−1Tx− T−1Ty

∥∥) ≤ ‖Tx− Ty‖
and since ϕ is invertible, we have

(∥∥T−1Tx− T−1Ty
∥∥) ≤ ϕ−1(‖Tx− Ty‖) for all x, y ∈ X.

For n = 1, we have

‖y2 − y1‖ =
∥∥T−1y1 − T−1y0

∥∥ ≤ ϕ−1(‖y1 − y0‖)
= ϕ−1(‖x0 − Tx0‖ .

Therefore (2.6) is true for n = 1. Let it be true for n = k, i.e.

‖yk+1 − yk‖ ≤ (ϕ−1)k(‖x0 − Tx0‖)
Then for n = k + 1, we have

‖yk+2 − yk+1‖ =
∥∥T−1yk+1 − T−1yk

∥∥ ≤ (ϕ−1)k(‖yk+1 − yk‖)
≤ (ϕ−1)(ϕ−1)k(‖x0 − Tx0‖) = (ϕ−1)k+1(‖x0 − Tx0‖)

and the result holds. Hence by induction (2.6) holds for all n.



98 S. N. MISHRA and A. K. KALINDE

Now, for any n,m ∈ N with n < m, we have

‖ym − yn‖ ≤ ‖ym − ym−1‖+ ‖ym−1 − ym−2‖+ ... + ‖yn+1 − yn‖
≤ (ϕ−1)m−1(‖x0 − Tx0‖) + (ϕ−1)m−2(‖x0 − Tx0‖) + ... +

+ (ϕ−1)n(‖x0 − Tx0‖ .

By setting Sn(‖x0 − Tx0‖) =
n∑

k=1

(ϕ−1)k(‖x0 − Tx0‖ in the above inequality

we obtain

‖ym − yn‖ ≤ Sm−1(‖x0 − Tx0‖)− Sn−1(‖x0 − Tx0‖).

Since the series
∑
n∈N

(ϕ−1)n(‖x0 − Tx0‖ converges, the sequence

{Sn(‖x0 − Tx0‖)} is a Cauchy sequence in X. Hence the above inequal-
ity implies that {yn} is a Cauchy sequence in X. Therefore it converges to
some y ∈ R(T ) as R(T ) is closed. Hence we have

∥∥y − T−1y
∥∥ ≤ ‖y − yn‖+

∥∥yn − T−1y
∥∥

≤ ‖y − yn‖+
∥∥T−1yn−1 − T−1y

∥∥
≤ ‖y − yn‖+ ϕ−1(‖yn−1 − y‖).

By the upper semi-continuity of ϕ−1, the above inequality implies that
∥∥y − T−1y

∥∥ ≤ lim sup
n→∞

(‖y − yn‖) + ϕ−1(lim sup
n→∞

(‖yn−1 − y‖). = 0,

proving that y = T−1y, that is, y is a fixed point of T−1.

Let x ∈ X be such that y = Tx. Then y = T−1y implies that Tx = x and
the lemma is established.¤

We notice that the condition that
∑
n∈N

(ϕ−1)n(‖x0 − Tx0‖ is convergent is

quite reasonable as all the linear operators defined at the origin satisfy it
trivially.

Theorem 2.4. Let X be a general Banach space and ϕ : [0,∞) → [0,∞)
be a strictly increasing function with ϕ(0) = 0 and whose inverse function ϕ−1

is upper semi-continuous. Let T : X → X be an operator satisfying condition
(1.2) with k ∈ (0, 1) such that I + T has a closed range. If for any f ∈ X,

there exists x0 ∈ X such that the series
∑
n∈N

(ϕ−1)n(‖Tx0 − f‖ converges, then

the equation Tx = f has at least one solution in X.
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Proof. Suppose S = I + T − f for f ∈ X fixed. Then S is ϕ− strongly
accretive as it satisfies the condition

Re 〈Sx− Sy, j(x− y)〉 ≥ ϕ(‖x− y‖) ‖x− y‖+ k ‖x− y‖2 .

Hence S is ϕ−expansive (and strongly accretive).
Moreover, for any x ∈ X we have Sx − x = Tx − f. Therefore by the

given hypothesis of the theorem, there exists x0 ∈ X such that the series∑
n∈N

(ϕ−1)n(‖Tx0 − f‖ converges. Therefore the series
∑
n∈N

(ϕ−1)n(‖Sx0 − x0‖
also converges. Further, since I + T has a closed range, it follows that S also
has a closed range. Therefore by Lemma 2.3, S has at least one fixed point
say, x1. Then

x1 = Sx1 = x1 + Tx1 − f,

proving that Tx1 = f for some x1 ∈ X. Hence the equation Tx = f has a
solution in X.¤

Remark 3. If the operator T in the above theorem is continuous, then
the hypothesis that I + T has a closed range can be dispensed with in view of
Remark 2.

Theorem 2.5. Let X be a general Banach space and ϕ : [0,∞) → [0,∞)
be a strictly increasing function with ϕ(0) = 0 such that

lim sup
t→∞

ϕ(t)
t

= ∞

and that its inverse function ϕ−1 is upper semi-continuous. Assume that the
operator T : X → X satisfies condition (1.2) with k = 0 and the operators

T+
n + 1

n
I have a closed range in X for every n ∈ N . If for every f ∈ X, there

exists x0 ∈ X such that the series
∑
n∈N

(ϕ−1)n(‖Tx0 − f‖ + ‖x0‖) converges,

then the equation Tx = f has at least one solution in X.
Proof. For any n ∈ N, set Tn = T + 1

nI. Then for all x, y ∈ X and for
j(x− y) ∈ J(x− y) we have

Re 〈Tnx− Tny, j(x− y)〉 ≥ ϕ(‖x− y‖) ‖x− y‖ − (1− 1
n

) ‖x− y‖2 .
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Thus Tn satisfies condition (1.2) with k =
1
n

. Now for any f ∈ X fixed, let
Sn = I + Tn − f. Then we have

Re 〈Snx− Sn y, j(x− y)〉 ≥ ϕ(‖x− y‖) ‖x− y‖+
1
n
‖x− y‖2 . (2.7)

Therefore Sn is ϕ− strongly accretive (and ϕ−expansive). Let x0 ∈ X be
such that the series

∑

n∈N
(ϕ−1)n(‖Tx0 − f‖+ ‖x0‖)

converges. Now consider the expression

Snx0 − x0 = Tx0 − f +
x0

n
.

Then
‖Snx0 − x0‖ ≤ ‖Tx0 − f‖+ ‖x0‖ (2.8)

Hence from (2.8) and the hypothesis of the theorem, we conclude that the
series

∑
m∈N

(ϕ−1)m(‖Sx0 − x0‖ converges. Since T+(n+1
n )I has a closed range

in X for each n ∈ N, Sn has a closed range in X. Therefore by Lemma 2.3,
Sn has at least one fixed point for each n ∈ N, say, xn. That is

xn = Snxn = xn + Tnxn − f

from which we deduce that

Txn +
xn

n
− f = 0. (2.9)

Also from
Txn +

xn

n
− f − x1

n
+

x1

n
= 0

we obtain that

‖Txn − f‖ ≤ ‖xn − x1‖
n

+
‖x1‖

n
. (2.10)

Now we show that the sequence {xn} so obtained is bounded. If not, we
may assume without loss of generality that lim

n→∞ ‖xn‖ = ∞ and since xn =

xn − x1 + x1, we conclude that lim
n→∞ ‖xn − x1‖ = ∞. Hence from (2.10) we

deduce that

lim
n→∞

‖Txn − f‖
‖xn − x1‖ = 0.

But from (2.7) we have

ϕ(‖xn − x1‖) ‖xn − x1‖ ≤ Re 〈S1xn − S1x1, j(xn − x1)〉
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≤ Re 〈(xn + T1xn − f)− (x1 + T1x1 − f), j(xn − x1)〉
≤ Re 〈2(xn − x1) + Txn − Tx1, j(xn − x1)〉
≤ 2 ‖xn − x1‖2 + ‖xn − x1‖ . ‖Txn − Tx1‖

≤ 2 ‖xn − x1‖2 + ‖xn − x1‖ . (‖Txn − f‖+ ‖f − Tx1‖) .

This implies that

ϕ(‖xn − x1‖)
‖xn − x1‖ ≤ 2 +

‖Txn − f‖
‖xn − x1‖ +

‖f − Tx1‖
‖xn − x1‖ .

Now taking the limit superior on both sides of the above inequality along
with (2.10) and the fact that lim

n→∞ ‖xn − x1‖ = ∞ we get

lim sup
n→∞

ϕ(‖xn − x1‖)
‖xn − x1‖ ≤ 2,

a contradiction to the hypothesis

lim sup
n→∞

ϕ(‖xn − x1‖)
‖xn − x1‖ = ∞.

Therefore from (2.9) we deduce that

‖Txn − f‖ =
‖xn‖

n

and from which it follows that f ∈ R(T ). Now since R(T ) = R(T ), the
equation Tx = f has at least one solution in X.¤
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