ON THE FIXED POINT PROPERTY FOR ONE-RELATOR GROUPS

R.M.S. MAHMOOD
Naval College, P.O. Box 51216, Abu Dhabi, UAE
E-mail: rasheedmsm@yahoo.com

Abstract

We say that a group A has the fixed point property (FPP for short) if, whenever A acts on a tree X without inversions, A fixes at least one vertex of X. In this note we prove that subgroups of HNN groups, satisfying (FPP) are contained in conjugates of the base. As application we show that if $G=\langle t, b, c, \ldots ; r\rangle$ is a one-relator group, r is cyclically reduced, and if H is a subgroup of G such that H has the (FPP), then H is contained in a conjugate of a subgroup G_{0} of G, where G_{0} is a one-relator group whose defining relator has shorter length than r.

Key Words and Phrases: Groups acting on trees without inversions, fixed point property, HMM groups, one-relator groups.
2000 Mathematics Subject Classification: 20F05, 20E07, 20 E 08.

1. Introduction

In [2], Serre introduced the concept of groups acting on trees without inversions and proved that ([2], Proposition 21, page 59) if H is a subgroup of the free product $G_{1} *_{A} G_{2}$ of the groups G_{1} and G_{2} with amalgamation subgroup A such that H has property (FPP), then H is contained in a conjugate of G_{1} or in a conjugate of G_{2}. In this paper we generalize the above result to one-relator groups.

We begin by giving preliminary definitions. By a graph X we understand a pair of disjoint sets $V(X)$ and $E(X)$ with $V(X)$ non-empty, together with a mapping $E(X) \rightarrow V(X) \times V(X), y \rightarrow(o(y), t(y))$, and a mapping $E(X) \rightarrow$ $E(X), y \rightarrow \bar{y}$, satisfying the conditions that $\bar{y} \neq y, \overline{\bar{y}}=y$, and $o(\bar{y})=$ $t(y)$, for all $y \in E(X)$. If $x \in E(X), o(x)=t(x)$, then x is called a loop. There are obvious definitions of subgraphs, trees, morphisms of graphs and,

Aut (X), the set of all automorphisms of the graph X which is a group under the composition of morphisms of graphs. For more details see [2]. We say that a group G acts on a graph X without inversions, if there is a group homomorphism $\phi: G \rightarrow A u t(X)$. If $x \in X$ (vertex or edge) and $g \in G$, we write $g(x)$ for $(\phi(g))(x)$. If $y \in E(X)$ and $g \in G$, then $g(o(y))=o(g(y))$, $g(t(y))=t(g(y)), g(\bar{y})=\overline{g(y)}$, and $g(y) \neq \bar{y}$ for all $g \in G$ and all $y \in E(X)$ may occur. That is, G acts without inversions on X.

We have the following notations related to the action of the group G on the graph X.
(1) If $x \in X$ (vertex or edge), we define $G_{x}=\{g \in G: g(x)=x\}$ the stabilizer of x which is a subgroup of G. It is clear that if $y \in E(X)$, and $u \in\{o(y), t(y)\}$, then $G_{\bar{y}}=G_{y}$, and $G_{y} \leq G_{u}$. Moreover, if H is a subgroup of G, then $H_{x}=H \cap G_{x}$.
(2) We define X^{G} to be the set of all elements of X fixed by all elements of G. It is clear that $X^{G}=\left\{x \in X: G_{x}=G\right\}$. It is noted that [2, page 58] if X is a tree and $X^{G} \neq \emptyset$, then X^{G} is a subtree of X, and the subgroup H of G has (FPP) if and only if $X^{H} \neq \emptyset$. We end this section with the following proposition.

Proposition 1.1. Subgroups of groups acting on trees without inversions satisfying (FPP) are contained in vertex stabilizers.

Proof. Let G be a group acting on a tree X wityhout inversions and H be a subgroup of G satisfying (FPP). The action of H on X implies that there exists a vertex v of X such that $H=H_{v}=H \cap G_{v}$. This implies that H is contained in G_{v}. This completes the proof.

2. HNN GROUPS

HNN groups have appeared in [1, page 179]. In this paper we associate trees in which HNN groups act without inversions, and then find the structure of subgroups of HNN groups satisfying (FPP). Then we use such result to form (FPP) for one-relator groups. Now we use the terminology and notation of [1]. Let G be a group, and I be an indexed set. Let $\left\{A_{i}: i \in I\right\}$ and $\left\{B_{i}: i \in I\right\}$ be families of subgroups of G. For each $i \in I$, let $\phi_{i}: A_{i} \rightarrow B_{i}$ be an onto isomorphism. The group G^{*} with the presentation

$$
G^{*}=\left\langle G, t_{i} \mid r e l G, t_{i} A_{i} t_{i}^{-1}=B_{i}, \quad i \in I\right\rangle
$$

is called an HNN group with base G and associated pair $\left(A_{i}, B_{i}\right), i \in I$ of subgroups of G, where $\langle G \mid r e l G\rangle$ stands for any presentation of G and, $t_{i} A_{i} t_{i}^{-1}=B_{i}$ stands for the set of relations $t_{i} w(a) t_{i}^{-1}=w\left(\phi_{i}(a)\right)$, where $w(a)$ and $w\left(\phi_{i}(a)\right)$ are words in the generating symbols of the presentation of G of values a and $\phi_{i}(a)$ respectively, where a runs over the generators of A_{i}.

For each $i \in I$, let

$$
e_{i}= \pm 1, \quad C_{i}^{e_{i}}=\left\{\begin{array}{lll}
A_{i} & \text { if } & e_{i}=-1 \\
B_{i} & \text { if } & e_{i}=1
\end{array}\right.
$$

and, $\phi_{i}^{e_{i}}: C_{i}^{-e_{i}} \rightarrow C_{i}^{e_{i}}$ be the ismorphisms defined above.
Therefore, if $a \in C_{i}^{-e_{i}}$, then $\phi_{i}^{e_{i}}(a) \in C_{i}^{e_{i}}$.
It is proved in [1, page 182] that G is embedded in G^{*} (the embedding theorem for HNN groups) and every element g of $G^{*}, g \neq 1$ (Britton's lemma for HNN groups) can be written as the value of a reduced word w of G^{*}. That is, $g=w=g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} \ldots t_{n}^{e} g_{n}$, where $g_{0}, g_{i} \in G, e_{i}= \pm 1$, for $i=1, \ldots, n$ such that w contains no subword of the form $t_{i} a t_{i}^{-1}, a \in C_{i}^{-e_{i}}$.

Note. From above it is clear that $t_{i}^{e_{i}} a=\phi_{i}^{e_{i}}(a) t_{i}^{e_{i}}, a \in C_{i}^{-e_{i}}$.
Britton's lemma for HNN groups implies the following proposition. The proof is clear.

Proposition 2.1. Every nontrivial element of G^{*} is the value of a reduced word of G^{*}. Moreover, if $g \in G^{*}, g \neq 1$ is the value of the reduced words $f_{0} s_{1}^{k_{1}} f_{1} s_{2}^{k_{2}} \ldots s_{m}^{k_{m}}$ and $g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} \ldots t_{n}^{e} g_{n}$, then $m=n, k_{i}=e_{i}, s_{i}=t_{i}$, and there exist unique elements $a_{j} \in C_{j}^{e_{j}}, j=1, \ldots, n$ such that $f_{0}=g_{0} \phi_{1}^{e_{1}}\left(a_{1}^{-1}\right)$, $f_{i}=a_{i} g_{i} \phi_{i+1}^{e_{i+1}}\left(a_{i+1}^{-1}\right), i=1, \ldots, n-1$, and $f_{n}=a_{n} g_{n}$.

The following lemma is essential for the proof of the main result of this paper.

Lemma 2.2. A group is an HNN group if and only if there exists a tree on which the group acts without inversions and is transitive on the set of the vertices such that the stabilizer of any vertex is a conjugate of the base and the stabilizer of any edge is a conjugate of an associative subgroup of the base.

Proof. If a group G acts on a tree X without inversions such that G is transitive on $V(X)$, then G has exactly one vertex orbit. Then the quotient graph X / G is a loop, and Corollary 2 of [2, page 55] implies that G is an HNN group.

Conversely, let $G^{*}=\left\langle G, t_{i} \mid r e l G, t_{i} A_{i} t_{i}^{-1}=B_{i}, i \in I\right\rangle$ be the HNN group defined above. We need to find a tree X (the standard tree associated with G^{*}) on which G^{*} acts without inversions such that G^{*} is transitive on $V(X)$ and for every vertex v of X and every edge x of X, the stabilizer G_{v}^{*} of v is a conjugate of G and the stabilizer G_{x}^{*} of x is a conjugate of $A_{i}, i \in I$. The proof of the second part of lemma follows from the following propositions.

Proposition 2.3. Let $V=\left\{g G: g \in G^{*}\right\}, E=\left\{\left(g C_{i}^{e_{i}}, t_{i}^{e_{i}}\right): i \in I, g \in\right.$ $\left.G^{*}\right\}$, and $X=V \cup E$. Then X forms a graph.

Proof. Let $V(X)=V$, and $E(X)=E$.
For the edge $y_{i}=\left(g C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)$ define $o\left(y_{i}\right)=g G, t\left(y_{i}\right)=g t_{i}^{e_{i}} G$, and $\bar{y}_{i}=$ $\left(g t_{i}^{e_{i}} C_{i}^{-e_{i}}, t_{i}^{-e_{i}}\right)$. Then $o\left(\bar{y}_{i}\right)=g t_{i}^{e_{i}} G=t\left(y_{i}\right), t\left(\bar{y}_{i}\right)=g t_{i}^{e_{i}} t_{i}^{-e_{i}} G=g G=o\left(y_{i}\right)$, and $\overline{\bar{y}}_{i}=\overline{\left(g t_{i}^{e_{i}} C_{i}^{-e_{i}}, t_{i}^{-e_{i}}\right)}=\left(g t_{i}^{e_{i}} t_{i}^{-e_{i}} C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)=\left(g C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)=y_{i}$.

From the above we see that X forms a graph. This completes the proof.
Proposition 2.4. Let g be an element of $G^{*}, g \neq 1$. Let $g=$ $g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} \ldots t_{n}^{e} g_{n}$ be a reduced word of G^{*}, and for each $i, 1 \leq i \leq n$, let y_{i} be the edge $\left(g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} \ldots t_{i-1}^{e_{i-1}} g_{i-1} C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)$. Then y_{1}, \ldots, y_{n} is a reduced path in X joining the vertices G and $g G$.

Proof. First we show that $o\left(y_{1}\right)=G, t\left(y_{i}\right)=o\left(y_{i+1}\right)$, and $t\left(y_{n}\right)=g G$.
Now $o\left(y_{1}\right)=o\left(g_{0} C_{1}^{e_{1}}, t_{1}^{e_{1}}\right)=g_{0} G=G$, because $g_{0} \in G$,

$$
\begin{gathered}
t\left(y_{i}\right)=t\left(g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} \ldots t_{i-1}^{e_{i-1}} g_{i-1} C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)=g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} \ldots t_{i-1}^{e_{i-1}} g_{i-1} t_{i}^{e_{i}} G \\
=g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} \ldots t_{i-1}^{e_{i-1}} g_{i-1} t_{i}^{e_{i}} g_{i} G, \text { because } g_{i} \in G \\
=o\left(g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} \ldots t_{i-1}^{e_{i-1}} g_{i-1} t_{i}^{e_{i}} C_{i+1}^{e_{i+1}}, t_{i+1}^{e_{i+1}}\right)=o\left(y_{i+1}\right)
\end{gathered}
$$

and

$$
t\left(y_{n}\right)=t\left(g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} \ldots t_{n-1}^{e_{n-1}} C_{n}^{e_{n_{i}}}, t_{n}^{e_{n}}\right)=g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} \ldots t_{n}^{e_{n}} g_{n} G=g G
$$

This implies that y_{1}, \ldots, y_{n} is a path in X joining the vertices G and $g G$.
Now we show that the path y_{1}, \ldots, y_{n} is reduced.
If for $i, 1 \leq i \leq n-1$ we have $y_{i+1}=\bar{y}_{i}$, then

$$
\begin{aligned}
& \left(g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} \ldots t_{i-1}^{e-1} g_{i-1} t_{i}^{e_{i}} g_{i} C_{i+1}^{e_{i+1}}, t_{i+1}^{e_{i+1}}\right) \\
& =\left(g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} \ldots t_{i-1}^{e_{i-1}} g_{i-1} t_{i}^{e_{1}} C_{i}^{-e_{i}}, t_{i}^{-e_{i}}\right)
\end{aligned}
$$

This implies that $t_{i+1}^{e_{i+1}}=t_{i}^{-e_{i}}, C_{i+1}^{e_{i+1}}=C_{i}^{-e_{i}}$, and $g_{i} \in C_{i}^{-e_{i}}$. Then g contains the subword $t_{i}^{e_{i}} g_{i} t_{i}^{-e_{i}}, g_{i} \in C_{i}^{-e_{i}}$. This contradicts the assumption
that g is reduced. Hence the path y_{1}, \ldots, y_{n} is a reduced path in X joining the vertices G and $g G$. This completes the proof.

Remark. y_{1}, \ldots, y_{n} is called the reduced path induced by the word $g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} \ldots t_{n}^{e} g_{n}$.

Proposition 2.5. Reduced words of G^{*} of the same value induce the same reduced path.

Proof. Let w_{1} and w_{2} be two reduced words of G^{*} of the same value. Let $w_{1}=g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} \ldots t_{n}^{e_{n}} g_{n}$. Then by Proposition 2.1, $w_{2}=$ $f_{0} t_{1}^{e_{1}} f_{1} t_{2}^{e_{2}} f_{2} \ldots t_{n}^{e_{n}} f_{n}$, where $f_{0}=g_{0} \phi_{1}^{e_{1}}\left(a_{1}^{-1}\right), f_{i}=a_{i} g_{i} \phi_{i+1}^{e_{i+1}}\left(a_{i+1}^{-1}\right), i=$ $1, \ldots, n-1$, and $f_{n}=a_{n} g_{n}, a_{j} \in C_{j}^{e_{j}}, j=1, \ldots, n$. Then y_{1}, \ldots, y_{n} is the reduced path induced by w_{1}, and x_{1}, \ldots, x_{n} is the reduced path induced by w_{2}, where y_{i} is the edge $\left(g_{0} t_{1}^{t_{1}} g_{1} t_{2}^{e_{2}} g_{2} \ldots t_{i-1}^{e_{i-1}} g_{i-1} C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)$, and x_{i} is the edge $\left(f_{0} t_{1}^{e_{1}} f_{1} t_{2}^{e_{2}} f_{2} \ldots t_{i-1}^{e_{i-1}} f_{i-1} C_{i}^{e_{i}}, t_{i}^{e_{i}}\right), 1 \leq i \leq n$. Now we show that $x_{i}=y_{i}$. Now

$$
x_{i}=\left(f_{0} t_{1}^{e_{1}} f_{1} t_{2}^{e_{2}} f_{2} \ldots t_{i-1}^{e_{i-1}} f_{i-1} C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)
$$

$$
=\left(g_{0} \phi_{1}^{e_{1}}\left(a_{1}^{-1}\right) t_{1}^{e_{1}} a_{1} g_{1} \phi_{2}^{e_{2}}\left(a_{2}^{-1}\right) t_{2}^{e_{2}} a_{2} g_{2} \phi_{3}^{e_{3}}\left(a_{3}^{-1}\right) \ldots t_{i-1}^{e_{i-1}} a_{i} g_{i} \phi_{i}^{e_{i}}\left(a_{i}^{-1}\right) C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)
$$

$$
=\left(g_{0} t_{1}^{e_{1}} a_{1}^{-1} a_{1} g_{1} t_{2}^{e_{2}} a_{2}^{-1} a_{2} g_{2} t_{3}^{e_{3}} a_{3}^{-1} \ldots t_{i-1}^{e_{i-1}} a_{i} g_{i} \phi_{i}^{e_{i}}\left(a_{i}^{-1}\right) C_{i}^{e_{i}}, t_{i}^{e_{i}}\right), \text { see note above }
$$

$$
=\left(g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} t_{3}^{e_{3}} \ldots t_{i-1}^{e_{i-1}} a_{i} g_{i} \phi_{i}^{e_{i}}\left(a_{i}^{-1}\right) C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)
$$

$$
=\left(g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} g_{2} t_{3}^{e_{3}} \ldots t_{i-1}^{e_{i-1}} g_{i} C_{i}^{e_{i}}, t_{i}^{e_{i}}\right), \text { because } \phi_{i} e_{i}\left(a_{i}^{-1}\right) \in C_{i}^{e_{i}}
$$

$$
=y_{i} .
$$

This completes the proof.
Proposition 2.6. Every reduced path in X joining the vertices $u=G$, and $v=g G, g \neq 1$ is induced by a reduced word of G^{*} of value g.

Proof. Let $z_{1}, z_{2}, \ldots, z_{n}$ be a reduced path in X joining u and v. Then $z_{i}=\left(h_{i} C_{i}^{e_{i}}, t_{i}^{e_{i}}\right), h_{i} \in G^{*}, i=1, \ldots, n$.

Now $o\left(z_{1}\right)=h_{1} G=G, t\left(z_{i}\right)=o\left(z_{i+1}\right)$, and $t\left(z_{n}\right)=g G$ imply that $h_{1} \in G$, $h_{i} t_{i}^{t_{i}} G=h_{i+1} G$, and $h_{n} t_{n}^{e_{n}} G=g G$. Then $h_{1}=g_{0}, h_{i+1}=h_{i} t_{i}^{t_{i}} g_{i}$, and $g=$ $h_{n} t_{n}^{e_{n}} g_{n}$, where $g_{j} \in G$ for $j=1, \ldots, n-1$. Therefore g is the value of the word $w=g_{0} t_{1}^{e_{1}} g_{1} t_{2}^{e_{2}} \ldots t_{n}^{e} g_{n}$. If w is not reduced, then for some $i, i=1, \ldots, n-1$ we have $g_{i} \in C_{i}^{e_{i}}$, and $t_{i+1}^{e_{i+1}}=t_{i}^{-e_{i}}$. Then $\left(h_{i+1} C_{i+1}^{e_{i+1}}, t_{i+1}^{e_{i+1}}\right)=\left(h_{i} t_{i}^{e_{i}} g_{i} C_{i}^{-e_{i}}, t_{i}^{-e_{i}}\right)=$ $\left(h_{i} t_{i}^{e_{i}} C_{i}^{-e_{i}}, t_{i}^{-e_{i}}\right)$. This implies that $z_{i+1}=\bar{z}_{i}$. This contradicts the assumption that path $z_{1}, z_{2}, \ldots, z_{n}$ be a reduced. This completes the proof.

Proposition 2.7. X is a tree.

Proof. It is clear that X contains no loops. For, if $y=\left(g C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)=\bar{y}=$ $\left(g t_{i}^{e_{i}} C_{i}^{-e_{i}}, t_{i}^{-e_{i}}\right)$, then $t_{i}^{e_{i}}=t_{i}^{-e_{i}}$. This leads a contradiction. Let u and v be two vertices of X. Now we show that there is exactly one reduce path in X joining u and v. Clearly, $u=a G$ and $v=b G$, where a and b are two elements of G^{*}. If $u=v$, the case is clear. Let $u \neq v$ and $g=a^{-1} b$. Propositions 2.4, 2.5 and 2.6 imply that there is a unique reduced path y_{1}, \ldots, y_{n} in X joining the vertices G and $g G$. Then $a\left(y_{1}\right), \ldots, a\left(y_{n}\right)$ is the unique reduced path in X joining the vertices u and v. This completes the proof.

Proposition 2.8. G^{*} acts on X without inversions such that G^{*} is transitive on $V(X)$, and if v is the vertex $a G$, and y is the edge $y=\left(g C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)$, then $G_{v}^{*}=a G a^{-1}$, and $G_{y}^{*}=g C_{i}^{e_{i}} g^{-1}$.

Proof. Let $g^{\prime} \in G^{*}$. Then $g^{\prime}(v)=g^{\prime} a G$, and $g^{\prime}(y)=\left(g^{\prime} g C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)$. The action of G^{*} on the vertices of X is transitive because for any two vertices $a G$ and $b G$ of X we have $b a^{-1}(a G)=b G$. That is, the element $b a^{-1}$ of G^{*} maps the vertex $a G$ to the vertex $b G$. Then there is exactly one G^{*} vertex orbit. G^{*} acts on X without inversions, because if $g^{\prime}(y)=\bar{y}$, then $\left(g^{\prime} h C_{i}^{e_{i}}, t_{i}^{e_{i}}\right)=\left(h t_{i}^{e_{i}} C_{i}^{-e_{i}}, t_{i}^{-e_{i}}\right)$. Then $t_{i}^{e_{i}}=t_{i}^{-e_{i}}$, and this is a contradiction. If $g(v)=v$, then $g a G=a G$. This implies $g \in G$. So $G_{v}^{*}=a G a^{-1}$. Similarly we can show that $G_{y}^{*}=g C_{i}^{e_{i}} g^{-1}$. This completes the proof.

Remark. The tree X constructed above will be called the standard tree of the HNN group G^{*}.

The main result of this section is the following theorem.
Theorem 2.9. Subgroups of HNN groups with property (FPP) are contained in conjugates of the base.

Proof. Let H be a subgroup of the HNN group $G^{*}=\left\langle G, t_{i}\right| r e l G, t_{i} A_{i} t_{i}^{-1}=$ $\left.B_{i}, i \in I\right\rangle$ with property (FPP). Then the action of G^{*} on the standard tree X of G^{*} implies that H acts on X without inversions. As H has property (FPP), Propositions 1.1 and 2.8 imply that there exist a vertex $v=a G$ of X such that $H \subseteq G_{v}^{*}=a G a^{-1}$. This completes the proof.

By taking G in the HNN group $G^{*}=\left\langle G, t_{i} \mid r e l G, t_{i} A_{i}^{-1}=B_{i}, i \in I\right\rangle$ to be trivial yields that G^{*} is a free group generated by $t_{i}, i \in I$. This leads the following corollary.

Corollary 2.10. Subgroups of free groups with property (FPP) are trivial.

3. Application

As an application of Theorem 2.9, we get the following theorem.
Theorem 3.1. Subgroups of one-relator groups with property (FPP) are contained in conjugates of one-relator subgroups of shorter relators.
Proof. Let $G=\langle X \mid r\rangle$ be a one-relator presentation group generated by the set X, and of one relator r, where r is a cyclically reduced, and contains at least two different letters from X. Let K be a subgroup of G with property (FPP). By Theorem 5.1 of [1, pages 198, 294], G can be embedded in an HNN group $\left\langle H, t \mid r e l(H), t U t^{-1}=V\right\rangle$, where U and V are isomorphic free groups, and H is a one-relator group, $H \cong\left\langle X^{\prime} \mid r^{\prime}\right\rangle$ where r^{\prime} is cyclically reduced, and r^{\prime} is shorter than r. Then Theorem 2.9 implies that K is contained in a conjugate of H. This completes the proof.

Acknowledgement. The author would like to thank the referee for his sincere evaluation and constructive comments which improved the paper considerably.

References

[1] R.C. Lyndon and P.E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, New York, 1977.
[2] J.P. Serre, Arbres, Amalgames, $S L_{2}$, Asterisque no. 46 Société Mathématique de France, English Translation, Trees, by J. Stillwell, 1980, Springer.

Received 09.02.2006; Revised 15.04.2006

