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Abstract. We say that a group A has the fixed point property (FPP for short) if, whenever

A acts on a tree X without inversions, A fixes at least one vertex of X. In this note we

prove that subgroups of HNN groups, satisfying (FPP) are contained in conjugates of the

base. As application we show that if G = 〈t, b, c, . . . ; r〉 is a one-relator group, r is cyclically

reduced, and if H is a subgroup of G such that H has the (FPP), then H is contained in a

conjugate of a subgroup G0 of G, where G0 is a one-relator group whose defining relator has

shorter length than r.
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1. Introduction

In [2], Serre introduced the concept of groups acting on trees without inver-
sions and proved that ([2], Proposition 21, page 59) if H is a subgroup of the
free product G1 ∗A G2 of the groups G1 and G2 with amalgamation subgroup
A such that H has property (FPP), then H is contained in a conjugate of
G1 or in a conjugate of G2. In this paper we generalize the above result to
one-relator groups.

We begin by giving preliminary definitions. By a graph X we understand
a pair of disjoint sets V (X) and E(X) with V (X) non-empty, together with
a mapping E(X) → V (X)× V (X), y → (o(y), t(y)), and a mapping E(X) →
E(X), y → y, satisfying the conditions that y 6= y, y = y, and o(y) =
t(y), for all y ∈ E(X). If x ∈ E(X), o(x) = t(x), then x is called a loop.
There are obvious definitions of subgraphs, trees, morphisms of graphs and,
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Aut(X), the set of all automorphisms of the graph X which is a group under
the composition of morphisms of graphs. For more details see [2]. We say
that a group G acts on a graph X without inversions, if there is a group
homomorphism φ : G → Aut(X). If x ∈ X (vertex or edge) and g ∈ G, we
write g(x) for (φ(g))(x). If y ∈ E(X) and g ∈ G, then g(o(y)) = o(g(y)),
g(t(y)) = t(g(y)), g(y) = g(y), and g(y) 6= y for all g ∈ G and all y ∈ E(X)
may occur. That is, G acts without inversions on X.

We have the following notations related to the action of the group G on the
graph X.

(1) If x ∈ X (vertex or edge), we define Gx = {g ∈ G : g(x) = x} the
stabilizer of x which is a subgroup of G. It is clear that if y ∈ E(X), and
u ∈ {o(y), t(y)}, then Gy = Gy, and Gy ≤ Gu. Moreover, if H is a subgroup
of G, then Hx = H ∩Gx.

(2) We define XG to be the set of all elements of X fixed by all elements of
G. It is clear that XG = {x ∈ X : Gx = G}. It is noted that [2, page 58] if
X is a tree and XG 6= ∅, then XG is a subtree of X, and the subgroup H of
G has (FPP) if and only if XH 6= ∅. We end this section with the following
proposition.

Proposition 1.1. Subgroups of groups acting on trees without inversions
satisfying (FPP) are contained in vertex stabilizers.

Proof. Let G be a group acting on a tree X wityhout inversions and H be
a subgroup of G satisfying (FPP). The action of H on X implies that there
exists a vertex v of X such that H = Hv = H ∩ Gv. This implies that H is
contained in Gv. This completes the proof.

2. HNN groups

HNN groups have appeared in [1, page 179]. In this paper we associate trees
in which HNN groups act without inversions, and then find the structure of
subgroups of HNN groups satisfying (FPP). Then we use such result to form
(FPP) for one-relator groups. Now we use the terminology and notation of [1].
Let G be a group, and I be an indexed set. Let {Ai : i ∈ I} and {Bi : i ∈ I}
be families of subgroups of G. For each i ∈ I, let φi : Ai → Bi be an onto
isomorphism. The group G∗ with the presentation

G∗ = 〈G, ti|relG, tiAit
−1
i = Bi, i ∈ I〉
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is called an HNN group with base G and associated pair (Ai, Bi), i ∈ I

of subgroups of G, where 〈G|relG〉 stands for any presentation of G and,
tiAit

−1
i = Bi stands for the set of relations tiw(a)t−1

i = w(φi(a)), where w(a)
and w(φi(a)) are words in the generating symbols of the presentation of G of
values a and φi(a) respectively, where a runs over the generators of Ai.

For each i ∈ I, let

ei = ±1, Cei
i =

{
Ai if ei = −1
Bi if ei = 1

and, φei
i : C−ei

i → Cei
i be the ismorphisms defined above.

Therefore, if a ∈ C−ei
i , then φei

i (a) ∈ Cei
i .

It is proved in [1, page 182] that G is embedded in G∗ (the embedding
theorem for HNN groups) and every element g of G∗, g 6= 1 (Britton’s lemma
for HNN groups) can be written as the value of a reduced word w of G∗. That
is, g = w = g0t

e1
1 g1t

e2
2 . . . tengn, where g0, gi ∈ G, ei = ±1, for i = 1, . . . , n such

that w contains no subword of the form tiat−1
i , a ∈ C−ei

i .
Note. From above it is clear that tei

i a = φei
i (a)tei

i , a ∈ C−ei
i .

Britton’s lemma for HNN groups implies the following proposition. The
proof is clear.

Proposition 2.1. Every nontrivial element of G∗ is the value of a reduced
word of G∗. Moreover, if g ∈ G∗, g 6= 1 is the value of the reduced words
f0s

k1
1 f1s

k2
2 . . . skm

m and g0t
e1
1 g1t

e2
2 . . . tengn, then m = n, ki = ei, si = ti, and

there exist unique elements aj ∈ C
ej

j , j = 1, . . . , n such that f0 = g0φ
e1
1 (a−1

1 ),
fi = aigiφ

ei+1

i+1 (a−1
i+1), i = 1, . . . , n− 1, and fn = angn.

The following lemma is essential for the proof of the main result of this
paper.

Lemma 2.2. A group is an HNN group if and only if there exists a tree
on which the group acts without inversions and is transitive on the set of the
vertices such that the stabilizer of any vertex is a conjugate of the base and the
stabilizer of any edge is a conjugate of an associative subgroup of the base.

Proof. If a group G acts on a tree X without inversions such that G is
transitive on V (X), then G has exactly one vertex orbit. Then the quotient
graph X/G is a loop, and Corollary 2 of [2, page 55] implies that G is an HNN
group.
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Conversely, let G∗ = 〈G, ti|relG, tiAit
−1
i = Bi, i ∈ I〉 be the HNN group

defined above. We need to find a tree X (the standard tree associated with
G∗) on which G∗ acts without inversions such that G∗ is transitive on V (X)
and for every vertex v of X and every edge x of X, the stabilizer G∗

v of v is
a conjugate of G and the stabilizer G∗

x of x is a conjugate of Ai, i ∈ I. The
proof of the second part of lemma follows from the following propositions.

Proposition 2.3. Let V = {gG : g ∈ G∗}, E = {(gCei
i , tei

i ) : i ∈ I, g ∈
G∗}, and X = V ∪ E. Then X forms a graph.

Proof. Let V (X) = V , and E(X) = E.
For the edge yi = (gCei

i , tei
i ) define o(yi) = gG, t(yi) = gtei

i G, and yi =
(gtei

i C−ei
i , t−ei

i ). Then o(yi) = gtei
i G = t(yi), t(yi) = gtei

i t−ei
i G = gG = o(yi),

and yi = (gtei
i C−ei

i , t−ei
i ) = (gtei

i t−ei
i Cei

i , tei
i ) = (gCei

i , tei
i ) = yi.

From the above we see that X forms a graph. This completes the proof.
Proposition 2.4. Let g be an element of G∗, g 6= 1. Let g =

g0t
e1
1 g1t

e2
2 . . . tengn be a reduced word of G∗, and for each i, 1 ≤ i ≤ n, let

yi be the edge (g0t
e1
1 g1t

e2
2 . . . t

ei−1

i−1 gi−1C
ei
i , tei

i ). Then y1, . . . , yn is a reduced
path in X joining the vertices G and gG.

Proof. First we show that o(y1) = G, t(yi) = o(yi+1), and t(yn) = gG.
Now o(y1) = o(g0C

e1
1 , te1

1 ) = g0G = G, because g0 ∈ G,

t(yi) = t(g0t
e1
1 g1t

e2
2 g2 . . . t

ei−1

i−1 gi−1C
ei
i , tei

i ) = g0t
e1
1 g1t

e2
2 g2 . . . t

ei−1

i−1 gi−1t
ei
i G

= g0t
e1
1 g1t

e2
2 g2 . . . t

ei−1

i−1 gi−1t
ei
i giG, because gi ∈ G

= o(g0t
e1
1 g1t

e2
2 g2 . . . t

ei−1

i−1 gi−1t
ei
i C

ei+1

i+1 , t
ei+1

i+1 ) = o(yi+1),

and

t(yn) = t(g0t
e1
1 g1t

e2
2 g2 . . . t

en−1

n−1 C
eni
n , ten

n ) = g0t
e1
1 g1t

e2
2 g2 . . . ten

n gnG = gG.

This implies that y1, . . . , yn is a path in X joining the vertices G and gG.
Now we show that the path y1, . . . , yn is reduced.
If for i, 1 ≤ i ≤ n− 1 we have yi+1 = yi, then

(g0t
e1
1 g1t

e2
2 g2 . . . te−1

i−1gi−1t
ei
i giC

ei+1

i+1 , t
ei+1

i+1 )

= (g0t
e1
1 g1t

e2
2 g2 . . . t

ei−1

i−1 gi−1t
e1
i C−ei

i , t−ei
i ).

This implies that t
ei+1

i+1 = t−ei
i , C

ei+1

i+1 = C−ei
i , and gi ∈ C−ei

i . Then g

contains the subword tei
i git

−ei
i , gi ∈ C−ei

i . This contradicts the assumption
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that g is reduced. Hence the path y1, . . . , yn is a reduced path in X joining
the vertices G and gG. This completes the proof.

Remark. y1, . . . , yn is called the reduced path induced by the word
g0t

e1
1 g1t

e2
2 . . . tengn.

Proposition 2.5. Reduced words of G∗ of the same value induce the same
reduced path.

Proof. Let w1 and w2 be two reduced words of G∗ of the same
value. Let w1 = g0t

e1
1 g1t

e2
2 g2 . . . ten

n gn. Then by Proposition 2.1, w2 =
f0t

e1
1 f1t

e2
2 f2 . . . ten

n fn, where f0 = g0φ
e1
1 (a−1

1 ), fi = aigiφ
ei+1

i+1 (a−1
i+1), i =

1, . . . , n − 1, and fn = angn, aj ∈ C
ej

j , j = 1, . . . , n. Then y1, . . . , yn is
the reduced path induced by w1, and x1, . . . , xn is the reduced path induced
by w2, where yi is the edge (g0t

e1
1 g1t

e2
2 g2 . . . t

ei−1

i−1 gi−1C
ei
i , tei

i ), and xi is the edge
(f0t

e1
1 f1t

e2
2 f2 . . . t

ei−1

i−1 fi−1C
ei
i , tei

i ), 1 ≤ i ≤ n. Now we show that xi = yi. Now

xi = (f0t
e1
1 f1t

e2
2 f2 . . . t

ei−1

i−1 fi−1C
ei
i , tei

i )

= (g0φ
e1
1 (a−1

1 )te1
1 a1g1φ

e2
2 (a−1

2 )te2
2 a2g2φ

e3
3 (a−1

3 ) . . . t
ei−1

i−1 aigiφ
ei
i (a−1

i )Cei
i , tei

i )

= (g0t
e1
1 a−1

1 a1g1t
e2
2 a−1

2 a2g2t
e3
3 a−1

3 . . . t
ei−1

i−1 aigiφ
ei
i (a−1

i )Cei
i , tei

i ), see note above

= (g0t
e1
1 g1t

e2
2 g2t

e3
3 . . . t

ei−1

i−1 aigiφ
ei
i (a−1

i )Cei
i , tei

i )

= (g0t
e1
1 g1t

e2
2 g2t

e3
3 . . . t

ei−1

i−1 giC
ei
i , tei

i ), because φiei(a−1
i ) ∈ Cei

i

= yi.

This completes the proof.
Proposition 2.6. Every reduced path in X joining the vertices u = G, and

v = gG, g 6= 1 is induced by a reduced word of G∗ of value g.
Proof. Let z1, z2, . . . , zn be a reduced path in X joining u and v. Then

zi = (hiC
ei
i , tei

i ), hi ∈ G∗, i = 1, . . . , n.
Now o(z1) = h1G = G, t(zi) = o(zi+1), and t(zn) = gG imply that h1 ∈ G,

hit
ei
i G = hi+1G, and hnten

n G = gG. Then h1 = g0, hi+1 = hit
ei
i gi, and g =

hnten
n gn, where gj ∈ G for j = 1, . . . , n−1. Therefore g is the value of the word

w = g0t
e1
1 g1t

e2
2 . . . tengn. If w is not reduced, then for some i, i = 1, . . . , n−1 we

have gi ∈ Cei
i , and t

ei+1

i+1 = t−ei
i . Then (hi+1C

ei+1

i+1 , t
ei+1

i+1 ) = (hit
ei
i giC

−ei
i , t−ei

i ) =
(hit

ei
i C−ei

i , t−ei
i ). This implies that zi+1 = zi. This contradicts the assumption

that path z1, z2, . . . , zn be a reduced. This completes the proof.
Proposition 2.7. X is a tree.
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Proof. It is clear that X contains no loops. For, if y = (gCei
i , tei

i ) = y =
(gtei

i C−ei
i , t−ei

i ), then tei
i = t−ei

i . This leads a contradiction. Let u and v be
two vertices of X. Now we show that there is exactly one reduce path in X

joining u and v. Clearly, u = aG and v = bG, where a and b are two elements
of G∗. If u = v, the case is clear. Let u 6= v and g = a−1b. Propositions 2.4,
2.5 and 2.6 imply that there is a unique reduced path y1, . . . , yn in X joining
the vertices G and gG. Then a(y1), . . . , a(yn) is the unique reduced path in X

joining the vertices u and v. This completes the proof.
Proposition 2.8. G∗ acts on X without inversions such that G∗ is tran-

sitive on V (X), and if v is the vertex aG, and y is the edge y = (gCei
i , tei

i ),
then G∗

v = aGa−1, and G∗
y = gCei

i g−1.
Proof. Let g′ ∈ G∗. Then g′(v) = g′aG, and g′(y) = (g′gCei

i , tei
i ). The

action of G∗ on the vertices of X is transitive because for any two vertices
aG and bG of X we have ba−1(aG) = bG. That is, the element ba−1 of
G∗ maps the vertex aG to the vertex bG. Then there is exactly one G∗

vertex orbit. G∗ acts on X without inversions, because if g′(y) = y, then
(g′hCei

i , tei
i ) = (htei

i C−ei
i , t−ei

i ). Then tei
i = t−ei

i , and this is a contradiction. If
g(v) = v, then gaG = aG. This implies g ∈ G. So G∗

v = aGa−1. Similarly we
can show that G∗

y = gCei
i g−1. This completes the proof.

Remark. The tree X constructed above will be called the standard tree of
the HNN group G∗.

The main result of this section is the following theorem.
Theorem 2.9. Subgroups of HNN groups with property (FPP) are con-

tained in conjugates of the base.
Proof. Let H be a subgroup of the HNN group G∗ = 〈G, ti|relG, tiAit

−1
i =

Bi, i ∈ I〉 with property (FPP). Then the action of G∗ on the standard tree
X of G∗ implies that H acts on X without inversions. As H has property
(FPP), Propositions 1.1 and 2.8 imply that there exist a vertex v = aG of X

such that H ⊆ G∗
v = aGa−1. This completes the proof.

By taking G in the HNN group G∗ = 〈G, ti|relG, tiA
−1
i = Bi, i ∈ I〉 to

be trivial yields that G∗ is a free group generated by ti, i ∈ I. This leads the
following corollary.

Corollary 2.10. Subgroups of free groups with property (FPP) are trivial.
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3. Application

As an application of Theorem 2.9, we get the following theorem.
Theorem 3.1. Subgroups of one-relator groups with property (FPP) are

contained in conjugates of one-relator subgroups of shorter relators.
Proof. Let G = 〈X|r〉 be a one-relator presentation group generated by

the set X, and of one relator r, where r is a cyclically reduced, and contains
at least two different letters from X. Let K be a subgroup of G with property
(FPP). By Theorem 5.1 of [1, pages 198, 294], G can be embedded in an HNN
group 〈H, t|rel(H), tUt−1 = V 〉, where U and V are isomorphic free groups,
and H is a one-relator group, H ∼= 〈X ′|r′〉 where r′ is cyclically reduced, and r′

is shorter than r. Then Theorem 2.9 implies that K is contained in a conjugate
of H. This completes the proof.
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